
BASICS OF INVENTORY MANAGEMENT: PART VI - 1 -

THE (R,s,S)-MODEL

We finalize the discussion of the basic models for the management of independent demand items with the (R,s,S)-

model. The (R,s,S)-model is an extension of the (R,S)-model, where one need not reorder every review moment. As

with the (R,S)-model orders are such that they raise the inventory position to an order-up-to-level S. As with the

(R,b,Q)-model an order is triggered by an undershoot of the reorder level s at a review moment.

The analysis of the (R,s,S)-model is quite similar to that of the continuous review (s,S)-model. Yet the periodic review

aspects cause some additional complexities and we have to resort to a more approximate analysis. The results of this

analysis prove to be quite accurate for practically relevant cases.

The outline of this chapter is like the outline of the preceding chapters. First we define the model under consideration.

This is done in section 7.1. In section 7.2. an expression is derived for the P2-measure and the P^ 1-measure. In section

7.3. we focus on the mean physical stock and the mean backlog. 

7.1. The model

The management of the stock keeping facility has decided to review the inventory periodically each Rth time unit. The

products in stock are typically rather inexpensive and therefore it is economically infeasible to order every period.

Therefore a reorder level s is introduced. An order is triggered if at a review moment the inventory position, the sum

of physical stock and inventory on order minus backorders, is below s. To ensure that orders are triggered only now

and then the order should exceed some minimum quantity Ä. Therefore the order size is set equal to Ä plus the

undershoot of s. Or equivalently, when an order is triggered an amount is ordered at the supplier, such that the inventory

position is raised to an order-up-to-level S and S equals s+Ä.

The quantity Ä is typically based on some mean demand rate and cost consideration, like fixed order costs and batch

stock phenomena. The determination of the reorder level s is based on customer service incentives. Therefore s depends

on both market uncertainty and supplier reliability.

The supplier reliability is incorporated through the assumption that each order is delivered after some time L. L may

be a random variable. We assume that consecutive orders cannot overtake.

The market uncertainty is incorporated by making assumptions concerning the demand process. First of all, we assume

that demand is stationary. To be more precise, demand over time intervals of fixed length does not depend on time itself.

This can be modelled in two ways. Either we assume that demand occurs at discrete equidistant points in time, or we

assume that the demand is a compound renewal process.

For the case of discrete time demand, we assume that demand occurs each time unit. The demand per time unit equals

D. D is a random variable. Hence we have a series of {Dn}, where Dn denotes the demand in the nth time unit. Each Dn

is distributed as D. Also we assume that the Dn's are mutually independent.

For the case of the compound renewal demand process we distinguish between a series of interarrival times {An} and

a series of demands per customer {Dn}. Both series constitute a renewal process, i.e. the series consist of independent

identically distributed random variables. The series {An} and {Dn} are independent.

Note that the discrete time case is a special case of the compound renewal case. We distinguish between these two cases,

because we rely on different approximations in the two cases. So in the compound renewal case we assume that ó(A)>0,
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where A is the generic random variable describing the demand per customer. If ó(A)=0 the discrete time results should

be applied. In that case it is reasonable to assume that R is a multiple of E[A].
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(7.1)
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(7.3)

(7.4)

7.2. The service measures

We want to determine an appropriate reorder level s, since we already know Ä. For instance, Ä is equal to the Economic

Order Quantity in the deterministic model. Unless stated otherwise, we assume that the reorder level s is derived from

a service level constraint. As service measures we consider the P2-measure, the fraction of demand satisfied directly

from stock on hand, and the P^ 1-measure, the fraction of time the net stock is positive. Expressions for the P1-measure

are trivially derived from the analysis, and is left to the reader.

7.2.1. P2-measure

To derive an expression for the P2-measure for given values of s and Ä we consider the order cycle (0,ó1] and the

replenishment cycle (L0,ó1+L1]. The random variables of ó1, L0 and L1 have been defined in section 6.2.

At time 0 the inventory position is reviewed and it is found that the inventory position is below s. Therefore an amount

is ordered such that the inventory position is raised to s+Ä. At review moment ó1 the inventory position equals s-U1,R

and therefore an amount Ä+U1,R is ordered. At time ó1-R+TU the reorder level s is undershot by an amount U1. The order

at time 0 arrives at time L0, the order at time ó1 arrives at time ó1+L1.

We conjecture the following results.

Equations (7.1) and (7.2) are based on the arguments applied in chapter 5 to obtain (5.1). Equation (7.3) is equivalent

to (6.3).

Then it follows from (7.1) and (7.2) that
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(7.5)

(7.6)

(7.7)

The denominator in (7.4) is the average demand per replenishment cycle, which is equal to the average demand per

order cycle. At the end of the typical order cycle (0,ó1] an amount Ä+U1,R is ordered, which is equal to the demand in

(0,ó1].

We can apply the PDF-method to (7.4). Let us define the pdf ã(.) by

Let Xã denote the random variable associated with ã(.). Then

Since (7.4) is identical to (5.2) it sufficed to copy (5.10) and (5.11) with the appropriate random variables.

Now we define ã^(.) as the gamma distribution with its first two moments given by (7.5) and (7.6), respectively. Then

we claim that

It remains to derive expressions for the moments of D(0,L0] and U1,R. First of all we assume that both random variables

are gamma distributed. Then it suffices to determine their first two moments.

In the last chapter concerning the (R,b,Q)-model we derived expressions for the moments of D(0,L0] and U1,R. These

expressions apply here as well, since D(0,L0] is independent of the control policy applied and U1,R is approximated

identically. Thus we obtain the appropriate expressions from (6.8)-(6.14) for the discrete time model and from (6.8),

(6.9) and (6.15)-(6.18) for the compound renewal model.

7.2.2. P^ 1-measure
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(7.8)

(7.9)

The analysis of the P^ 1-measure for the (R,s,S)-model will be a mixture of the related analysis for the (s,S)-model and

the (R,b,Q)-model. As in section (6.2) we immediately distinguish between the discrete time model and the compound

renewal demand model.

Case I: The discrete time model

We consider the replenishment cycle (L0,ó+L1]. It can be shown that the long-run fraction of time the net stock is

positive equals the quotient of the expected time the net stock is positive during (L0,ó1+L1] and the expected length of

the replenishment cycle, which is E[ó1]. It is easily derived that

The expected time the net stock is positive during (L0,ó1+L1] is computed as follows. Recall from section 6.2. that

T+(x,t) = the expected time the net stock is positive during (0,t], given that the net stock is x$0 at time 0,

is equal to

For the net stock at time L0 we have

Conditioning on X(L0) we find for E[T+(s,Ä)], the expected time the net stock is positive during (L0,ó1+L1],

We can rewrite D(0,ó1+L1] as
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(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

which implies

By definition of the demand process, U1,R and D(ó1,ó1+L1] are independent.

Let us consider U1,R. This random variable can be written as

with W defined as

and N(R-TU) is defined as the number of customers arriving in [ó1-R+TU,ó1). Substituting (7.11) into (7.10) and

convolving M(.) with FU (.), we find
        1

We applied the fact that D(0,L0] is identically distributed as D(ó1,ó1+L1]. By combining (7.8) and (7.9) we obtain

As with the continuous review (s,S)-model we cannot get rid of M(.) in (7.13), as has appeared to be possible for the

(R,b,Q)-model. This complicates matters, but we can apply the results in chapter 5 for the (s,S)-model. Indeed, (7.14)

is similar to the second term on the right hand side of (5.22).

To make the similarity stronger we rewrite (7.14) as
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(7.15)

(7.16)

(7.17)

The above expression is not tractable. Therefore we apply the PDF-method. Define the pdf ã(.) as

and let Xã be the random variable associated with ã(.). Applying the analysis following equation (5.22) to the first term

on the right hand side of (7.15) and a straightforward analysis to the second term on the right hand side of (7.15), we

obtain

We fit the gamma distribution ã^(.) to E[Xã] and E[X^
ã] to obtain

The performance of this approximation is tested in figure 7.2.

Case II: Compound renewal demand
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(7.18)

Consider again the replenishment cycle (L0,ó+L1]. We make the "Arbitrary Points In Time"-assumption (APIT), i.e.

All review and replenishment moments are arbitrary points in time from the point of view of the arrival process.

This assumption enables us to apply an approximation for T+(x,t), which is derived in chapter 2,

Proceeding as in the discrete time case this yields

The second term on the right hand side with E[A]=1 is identical to the right hand side of (7.9), the expression for

E[T+(s,Ä)] in the discrete time model. Therefore we can copy the analysis for the discrete time case with respect to this

part of (7.18). The first term on the right hand side of (7.18) if identical to the first term on the right hand side of (5.17)

after application of the identity

So we can rely on previous results to obtain expressions for the first two moments of the pdf ã(.) associated with P^ 1(s,Ä).

We furthermore note that

and
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(7.19)

After application of the above arguments and considerable algebra we find the following expression for E[Xã] and

E[X2
ã], the first two moments associated with ã(.),
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(7.20)

(7.21)

Again the gamma fit ã^(.) to E[Xã] and E[X2
ã] provides a good approximation to P^ 1(s,Ä),

7.3. Mean physical stock and backlog

The measurement of the physical stock is highly dependent on the monitoring abilities of the inventory management

system. Therefore we again do a separate analysis of the discrete time model and the compound renewal model. In both

cases the approximation obtained for the mean physical stock yields an approximation for the mean backlog as a by-

product through a relation between mean backlog and mean physical stock. The results obtained are quite complicated

in terms of the size of the expressions. Yet, under the assumptions made throughout the text, the expressions involve

only standard calculations, which can be routinely and fast executed by a computer.

Case I: Discrete time case

Suppose we incur a cost of $ 1 for each item and for each time unit that this item is on stock. Let

H(s,Ä) := the cost incurred in the time interval (L0,ó1+L1].

Then it follows from renewal-reward arguments that

An expression for E[K(s,Ä)] is derived from a basic result stated in chapter 2. Let the function H(x,t) be defined as

H(x,t) := the expected cost incurred during (0,t], given that the net stock at time 0 equals x$0 and no orders

arrive in (0,t].

Then equation (2.56) given an expression for H(x,t),
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(7.22)

The net stock at time L0 equals S-D(0,L0]. The interval (0,t] in the above equation coincides with the interval (L0, ó1

+ L1]. Then conditioning on the net stock at time L0 and the length of the replenishment cycle, we obtain after some

algebra

In (7.22) we used the fact that D(0,L0] is identically distributed to D(ó1,ó1+L1]. Furthermore U1,R and D(ó1,ó1-L1] are

independent.

By the definition of W we have that

Applying the approximation (6.22) we find
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(7.23)

(7.24)

(7.25)

and thus

Let us rewrite (7.23) as follows

The first term on the right hand side of (7.24) causes problems. But this term is identical to the second term on the right

hand side of (5.32) in the discussion of the mean physical stock for the (s,S)-model. The analysis following (5.32) builds

on a relation between the backlog and the physical stock. We proceed analogously.

By our standard cost arguments it can be seen that

We need an expression for E[Y(s,Ä)]. Suppose $ y is incurred per time unit if the inventory position equals y during

that time unit. Define

C(s,Ä) = cost incurred during (0,ó1].

Then
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(7.26)

(7.27)

Also,

and thus

Now note that the second term on the right hand side of (7.27) is the expected cost incurred during an order cycle in

the (s,S)-model. The third term on the right hand side of (7.27) is equivalent to the complementary holding cost given

by (2.67). Since ó1-TU is homogeneously distributed on 0,...,R-1 we find after some algebra and using the above

arguments
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(7.28)

(7.29)

(7.30)

(7.31)

(7.32)

Together with (7.26) and (7.27) this yields

It is interesting to give another derivation for (7.28). Note that

Furthermore note that

Because ó1 is a stopping time we have

Together (7.29)-(7.31) yield

Another useful relation is
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(7.33)

(7.34)

Then

Substitution of (7.33) into (7.32) yields

Then an alternative expression for E[Y(s,Ä)] is

It is easily checked that (7.34) is identical to (7.28). In the sequel we use (7.34).

From (7.25) and (7.34) we obtain
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(7.35)

(7.36)

From (7.35) we find for s sufficiently large

This is the first practical approximation for E[X+(s,Ä)]. However, not in every practical case we may assume that

E[B(s,Ä)] is negligible. In that case we proceed as in the analysis for the (s,S)-model, i.e. we apply the PDF-method

to E[B(s,Ä)]. In order to do so we derive from (7.24) and (7.35) that

After some algebra we can write E[B(s,Ä)] as follows
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,     (7.37)

(7.38)

with a0, a1 and a2 given below (5.34).

Now we are in business! The expression between brackets is identical to the second term on the right hand side of

(5.34). When applying the PDF-method to E[B(s,Ä)] this term gives rise to the expressions I1 and I2 given by (5.40)

and (5.41), respectively, where we should insert the proper expressions for the moments of D(0,L0].

So we proceed as follows. Define ã(.) as

From (7.37) we obtain

Let E[Xã] and E[X2
ã] be the first and second moment, respectively, of ã(.). Then
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(7.39)

(7.40)

(7.41)

(7.42)

Assuming W+D(0,L0] is gamma distributed, it is easy to compute E[Xã] and E[X2
ã].

Now E[B(s,Ä)] is approximated by

where ã^(.) is the gamma distribution with the same first two moments as ã(.). Then it follows from (7.35) and (7.41)

that

Substitution of s=-Ä into (7.42) yields consistency with (7.38). For sake of completeness we also give the expression

for E[B(s,Ä)], when s#-Ä.
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(7.43)

(7.44)

In the literature usually a linear interpolation formula is applied,

We compare (7.36) and (7.44). Since E[U2
1,R]$E2[U1,R] we have that

Hence for s large and E[U1] small, we expect that E[X+(s,Ä)] (7.44) overestimates stock. In the case of smooth demand

(7.36) and (7.44) are approximately equal. For s small we expect both (7.36) and (7.44) yield poor approximations. This

is confirmed by our results

Case II: The compound renewal model

We derive approximations for E[X+(s,Ä)] and E[B(s,Ä)] along the lines of section 6.3. We apply the approximation

derived for the function H(x,t),

H(x,t) := expected cost incurred during (0,t], assuming no orders arrive during (0,t], the net stock at time 0

equals x$0.

The cost structure is again as follows. For each item in stock a cost of $ 1 is paid per time unit. To obtain an expression

for the expected cost incurred during the replenishment cycle (L0,ó1+L1], E[H(s,Ä)], we condition on the net stock at

time L0,

This yields
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Clearly we have

From the analysis in chapter 2 we know that

Combination of the above results yields an expression for E[X+(s,Ä)],
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(7.45)

(7.46)

Employing the now standard arguments we can rewrite this expression as

Equation (7.45) will be applied after the derivation of an approximate relation between E[B(s,Ä)] and E[X+(s,Ä)].

From another cost argument we can deduce that

We are again confronted with the problem to derive an expression for E[Y(s,Ä)], the average inventory position. In this

case we follow the arguments leading to (7.28). Assume that $ y is paid per time unit when the inventory position equals

y. Define

C(s,Ä) := cost incurred during (0,ó1].

We write E[C(s,Ä)] as
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(7.47)

(7.48)

Remember that TU is the time at which the reorder level is undershot. By numerical experimentation we found that

and ó1-TU independent of U1.

The expectation of the first integral in (7.47) is equal to the expected cost incurred in an (s,S)-model with s=0 and s=Ä,

corrected for the fact that the first arrival is at Ã1 instead of A1, where A1 is an ordinary interarrival time and Ã1 is the

stationary residual lifetime associated with A. This yields

To obtain an expression for the expectation of the second integral we proceed as follows.

We define TN+1 by
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(7.49)

(7.50)

where N is defined as

N := the number of customers arriving in [T^ U,ó1].

Now we assume that TN+1-ó1 is independent of N and distributed according to the stationary residual lifetime of A. This

is in fact in agreement with the APIT-assumption. Hence

Furthermore we assumed that U1 is independent of ó1-T
^

U homogeneously distributed on (0,R). Now we can derive the

following

Using the fact that {Dn} is independent of N and that N+1 is stopping time for {Am}, we find

In principle (7.49) yields a tractable expression for the required expectation, since we have approximations for E[N]

and E[N2] given by (6.45) and (6.46), respectively. For the convenience of further analysis we rewrite (7.49) to

eliminate E[N] and E[N2] and to write the expectation on the left hand side of (7.49) in terms of E[W] and E[W2]. After

some straightforward algebra, where we use expectations (6.47) and (6.48) for E[W] and E[W2], respectively, we find
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(7.51)

(7.52)

Substitution of (7.50) into (7.46) yields

Equation (7.51) expresses E[X+(s,Ä)] in terms of E[B(s,Ä)] and vice versa. In the preceding chapters we derived an

approximation for E[B(s,Ä)] by applying the PDF-method. We proceed accordingly. Yet, before doing so, we observe

that for s sufficiently large,

Approximation (7.52) is of use for most practical situations. Yet a more robust approximation is derived from

application of the PDF-method. Towards this end we substitute (7.45) into (7.51). Some algebra leads to the following

expression for E[B(s,Ä)],
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(7.53)

(7.54)

Equation (7.53) is partly identical to the expressions for E[B(s,Ä)] in the (s,S)-model and the discrete time (R,s,S)-

model. Taking the right parts from (5.34) and (7.37), we can compute the first two moments of Xã, which has the pdf

ã(.), defined by
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(7.55)

(7.56)

(7.57)

It is easily derived from (7.51) that

Let ã^(.) be the gamma distribution with its first two moments equal to E[Xã] and E[X2
ã], respectively. This yields

An expression for E[B(s,Ä)] for s<-Ä is again derived from (7.51),
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(7.58)

(7.59)

Substitution of (7.57) into (7.51) yields the following robust approximation to E[X+(s,Ä)],

This concludes our analysis of the (R,s,S)-model. We have expressions for the main performance characteristics. We

have tested them by computer simulation and they have proven to be practically useful. It is now time to apply the

results to gain insight into the mechanics of inventory management. We want to get some feeling for the benefits and

drawbacks of the various models, both in terms of service performance and in operational costs. This discussion is

subject of chapter 8.
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