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1 Problem

In turbulence modelling, and more particularly in the LES framework, we are concerned with finding
a suitable closure model to represent the effect of the unresolved subgrid-scales on the larger/resolved
scales. In recent years, the scientific computing community has started to gravitate towards machine
learning techniques to attempt to solve this issue. However, stability and abidance by physical structure
of the resulting closure models is still an open problem.

2 Preliminaries

2.1 Discretizing PDEs

In this project we deal with PDEs of the following type:

∂u

∂t
= f(u), (1)

which describe the evolution of some initial fluid velocity field u(x, t = 0) = u0 in space x ∈ Ω and
time t. The right-hand side (RHS) f is typically derived from underlying physical conservation laws.
In order to solve such a PDE on a computer we discretize in space to obtain a set of ODEs:

du

dt
= fh(u), (2)

where u ∈ RN approximates u on a grid (with grid-spacing h) and fh is an approximation of the
continuous operators in f . The problem is that in the case of turbulent flows we require N to be large,
resulting in high computational costs [1].

2.2 Filtering

To resolve this issue we apply a spatial averaging filter to the solution:

ū = Wu, (3)

where multiplication by W ∈ RI×N reduces the degrees of freedom in the system from N to I.
However, we still require knowledge of the high-resolution approximation u to evolve the averaged
system in time [1]:

dū

dt
= Wfh(u). (4)

To circumvent this we rewrite this to

dū

dt
= fH(ū) + (Wfh(u)− fH(ū))︸ ︷︷ ︸

:=c

, (5)
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Figure 1: Decomposition of kinetic energy E into Ē and E′.

where fH represents a coarse discretization of the PDE. The commutator error c(u) is referred to as
the closure term. The goal is now to model this closure term by some approximation c̃(ū) s.t.

c̃(ū) ≈ c(u). (6)

In this way we do not require knowledge of the high-resolution approximation to ”close” the averaged
system of ODEs s.t. we lower the degrees of freedom and in turn alleviate the computional burden.

2.3 Machine learning solution

Machine learning algorithms, more specifically neural networks, can readily be applied to model this
closure term [2–6] which transform the set of ODEs to

dū

dt
= fH(ū) + NN(ū) (7)

with NN(ū) being the output of a neural network. The neural network is trained by minimizing
the error w.r.t. high-resolution reference data. However, these hybrid classical + neural network
approaches can lead to unstable simulations, as the neural network is unaware of physical conservation
laws. In ongoing work attempt resolve by building kinetic energy conservation into the neural network.

2.4 Energy conservation

To achieve this, we first show that we can split the kinetic energy into a resolved Ē and unresolved E′

part:
E = Ē(ū) + E′(u′), (8)

where u′ ∈ RN is everything that is filtered out by multiplying u with W. We refer to u′ as the
subgrid-scale (SGS) content and to E′ as the SGS energy. This changes the energy-conservation
condition to

dE

dt
=

dĒ

dt
+

dE′

dt
= 0. (9)

This decomposition is shown in Figure 1 for a high-resolution simulation of the Korteweg-de Vries
equation [7]. To circumvent the need for the full u′ in this conservation law we introduce a set of SGS
variables s ∈ RI which approximate the SGS energy on the coarse grid as

E′ ≈ H

2
sT s, (10)
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where H is the grid-spacing for the uniform coarse grid. The result is an approximated kinetic energy
conservation condition

dĒ

dt
+

H

2

dsT s

dt
= 0. (11)

Both ū and s are evolved in time using our newly developed skew-symmetric neural network architec-
ture that ensures that this condition is satisfied, yielding stability.

Currently, these SGS variables are constructed by applying a linear filter, learned from high-
resolution simulations, to u′ which compresses the SGS content onto the coarse grid reducing the
degrees of freedom of the system from N to 2I.

3 Objectives & project outline

For this project we are mainly interested in gaining more understanding of both the theoretical and
practical aspects of the SGS variables. We therefore propose the following outline of the project:

• Literature study on: partial differential equations, computational fluid mechanics, closure mod-
elling, machine learning [2–5, 8, 9].

• Theoretical study on the SGS variables: What do they represent?

• Suggest new forms for the SGS variables, e.g. neural networks.

• Possibly suggest new neural network architectures (or non-data-driven approaches, linear models
etc.) for the closure model, derived from energy arguments.

• Implement SGS variables and compare performance for the convection-diffusion equation.

• If everything goes well: Burgers equation, Korteweg-de Vries equation, possibly Navier-Stokes.
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