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Meaningful Information

Paul M. Vitányi

Abstract—The information in an individual finite object (like a binary
string) is commonly measured by its Kolmogorov complexity. One can di-
vide that information into two parts: the information accounting for the
useful regularity present in the object and the information accounting for
the remaining accidental information. There can be several ways (model
classes) in which the regularity is expressed. Kolmogorov has proposed the
model class of finite sets, generalized later to computable probability mass
functions. The resulting theory, known as Algorithmic Statistics, analyzes
the algorithmic sufficient statistic when the statistic is restricted to the given
model class. However, the most general way to proceed is perhaps to express
the useful information as a total recursive function. The resulting measure
has been called the “sophistication” of the object. We develop the theory
of recursive functions statistic, the maximum and minimum value, the ex-
istence of absolutely nonstochastic objects (that have maximal sophistica-
tion—all the information in them is meaningful and there is no residual
randomness), determine its relation with the more restricted model classes
of finite sets, and computable probability distributions, in particular with
respect to the algorithmic (Kolmogorov) minimal sufficient statistic, the re-
lation to the halting problem and further algorithmic properties.

Index Terms—Computability, constrained best fit model selection, Kol-
mogorov complexity, Kolmogorov structure function, lossy compression,
minimal sufficient statistic, nonprobabilistic statistics, sophistication, suf-
ficient statistic.

I. INTRODUCTION

The information contained by an individual finite object (like a fi-
nite binary string) is objectively measured by its Kolmogorov com-
plexity—the length of the shortest binary program that computes the
object. Such a shortest program contains no redundancy: every bit is
information; but is it meaningful information? If we flip a fair coin to
obtain a finite binary string, then with overwhelming probability that
string constitutes its own shortest program. However, also with over-
whelming probability, all the bits in the string are meaningless infor-
mation, random noise. On the other hand, let an object x be a sequence
of observations of heavenly bodies. Then x can be described by the bi-
nary string pd, where p is the description of the laws of gravity, and the
observational parameter setting, while d is the data-to-model code ac-
counting for the (presumably Gaussian) measurement error in the data.
This way we can divide the information in x into meaningful informa-
tion p and data-to-model information d.

The main task for statistical inference and learning theory is to distil
the meaningful information present in the data. The question arises
whether it is possible to separate meaningful information from acci-
dental information, and if so, how.
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In statistical theory, every function of the data is called a “statistic”
of the data. A central notion in probabilistic statistics is that of a “suf-
ficient” statistic, introduced by the father of statistics R. A. Fisher [4]:
“The statistic chosen should summarise the whole of the relevant in-
formation supplied by the sample. This may be called the Criterion of
Sufficiency … In the case of the normal curve of distribution it is evi-
dent that the second moment is a sufficient statistic for estimating the
standard deviation.” For traditional problems, dealing with frequencies
over small sample spaces, this approach is appropriate. But for cur-
rent novel applications, average relations are often irrelevant, since the
part of the support of the probability density function that will ever
be observed has about zero measure. This is the case in, for example,
complex video and sound analysis. There arises the problem that for
individual cases the selection performance may be bad although the
performance is good on average. There is also the problem of what
probability means, whether it is subjective, objective, or exists at all.

To simplify matters, and because all discrete data can be binary
coded, we consider only data samples that are finite binary strings. The
basic idea is to base statistical theory on finite combinatorial princi-
ples independent of probabilistic assumptions, as the relation between
the individual data and its explanation (model). We study extraction
of meaningful information in an initially limited setting where this in-
formation be represented by a finite set (a model) of which the object
(the data sample) is a typical member. Using the theory of Kolmogorov
complexity, we can rigorously express and quantify typicality of indi-
vidual objects. But typicality in itself is not necessarily a significant
property: every object is typical in the singleton set containing only
that object. More important is the following Kolmogorov complexity
analog of probabilistic minimal sufficient statistic which implies typ-
icality: The two-part description consisting of the description of the
largest finite set, together with the index of the object in that set, is
as concise as the shortest one-part description of the object. The finite
set models the regularity present in the object (since it is a typical el-
ement of the set). This approach has been generalized to computable
probability mass functions. The combined theory has been developed
in detail in [6] and called “Algorithmic Statistics.”

Here we study the most general form of algorithmic statistic: recur-
sive function models. In this setting, the issue of meaningful informa-
tion versus accidental information is put in its starkest form; and in
fact, has been around for a long time in various imprecise forms un-
connected with the sufficient statistic approach: The issue has sparked
the imagination and entered scientific popularization in [8] as “effec-
tive complexity” (here “effective” is apparently used in the sense of
“producing an effect” rather than “constructive” as is customary in the
theory of computation). It is time that it receives formal treatment. For-
mally, we study the minimal length of a total recursive function that
leads to an optimal length two-part code of the object being described.
(“total” means the function value is defined for all arguments in the do-
main, and “partial” means that the function is possibly not total.) This
minimal length has been called the “sophistication” of the object in
[14], [15] in a different, but related, setting of compression and predic-
tion properties of infinite sequences. That treatment is technically suf-
ficiently vague so as to have no issue for the present work. We develop
the notion based on prefix Turing machines, rather than on a variety of
monotonic Turing machines as in the cited papers. Below we describe
related work in detail and summarize our results. Subsequently, we for-
mulate our problem in the formal setting of computable two-part codes.
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A. Related Work

A.N. Kolmogorov in 1974 [11] proposed an approach to a non-prob-
abilistic statistics based on Kolmogorov complexity. An essential fea-
ture of this approach is to separate the data into meaningful information
(a model) and meaningless information (noise). Cover [2], [3] attached
the name “sufficient statistic” to a model of which the data is a “typ-
ical” member. In Kolmogorov’s initial setting the models are finite sets.
As Kolmogorov himself pointed out, this is no real restriction: the fi-
nite sets model class is equivalent, up to a logarithmic additive term, to
the model class of computable probability density functions, as studied
in [19], [20], [23]. Related aspects of “randomness deficiency” were
formulated in [12], [13] and studied in [19], [24]. Despite its evident
epistemological prominence in the theory of hypothesis selection and
prediction, only selected aspects of the theory were studied in these ref-
erences. Recent work [6] can be considered as a comprehensive inves-
tigation into the sufficient statistic for finite set models and computable
probability density function models. Here we extend the approach to
the most general form: the model class of total recursive functions. This
idea was pioneered by [14], [15] who, unaware of a statistic connection,
coined the cute word “sophistication.” The algorithmic (minimal) suffi-
cient statistic was related to an applied form in [7], [23]: the well-known
“minimum description length” principle [1] in statistics and inductive
reasoning.

In another paper [21] (chronologically following the present paper)
we comprehensively treated all stochastic properties of the data in
terms of Kolmogorov’s so-called structure functions. The sufficient
statistic aspect, studied here, covers only part of these properties.
The results on the structure functions, including (non)computability
properties, are valid, up to logarithmic additive terms, also for the
model class of total recursive functions, as studied here.

B. This Work

It will be helpful for the reader to be familiar with initial parts of
[6]. In [11], Kolmogorov observed that randomness of an object in
the sense of having high Kolmogorov complexity is being random in
just a “negative” sense. That being said, we define the notion of so-
phistication (minimal sufficient statistic in the total recursive function
model class). It is demonstrated to be meaningful (existence and non-
triviality). We then establish lower and upper bounds on the sophis-
tication, and we show that there are objects for which the sophistica-
tion achieves the upper bound. In fact, these are objects in which all
information is meaningful and there is (almost) no accidental infor-
mation. That is, the simplest explanation of such an object is the ob-
ject itself. In the simpler setting of finite set statistic the analogous ob-
jects were called “absolutely nonstochastic” by Kolmogorov. If such
objects have high Kolmogorov complexity, then they can only be a
random outcome of a “complex” random process, and Kolmogorov
questioned whether such random objects, being random in just this
“negative” sense, can occur in nature. But there are also objects that
are random in the sense of having high Kolmogorov complexity, but
simultaneously are typical outcomes of “simple” random processes.
These were therefore said to be random in a “positive” sense [11].
An example are the strings of maximal Kolmogorov complexity; those
are very unsophisticated (with sophistication about 0), and are typical
outcomes of tosses with a fair coin—a very simple random process.
We subsequently establish the equivalence between sophistication and
the algorithmic minimal sufficient statistics of the finite set class and
the probability mass function class. Finally, we investigate the algo-
rithmic properties of sophistication: nonrecursiveness, upper semicom-
putability, and intercomputability relations of Kolmogorov complexity,
sophistication, halting sequence.

II. PRELIMINARIES

A string is a finite binary sequence, an element of f0; 1g�. If x is a
string then the length l(x) denotes the number of bits in x. We identify
N , the natural numbers, and f0; 1g� according to the correspondence

(0; �); (1; 0); (2; 1); (3; 00); (4; 01); . . . :

Here � denotes the empty word. Thus, l(�) = 0. The emphasis is on
binary sequences only for convenience; observations in any alphabet
can be encoded in such a way that is “theory neutral.” Below we will
use the natural numbers and the strings interchangeably.

A string y is a proper prefix of a string x if we can write x = yz

for z 6= �. A set fx; y; . . .g � f0; 1g� is prefix free if for any pair
of distinct elements in the set neither is a proper prefix of the other. A
prefix-free set is also called a prefix code and its elements are called
codewords. An example of a prefix code, that is useful later, encodes
the source word x = x1x2 � � � xn by the codeword

x = 1n0x:

This prefix-free code is called self-delimiting, because there is fixed
computer program associated with this code that can determine where
the codeword �x ends by reading it from left to right without backing
up. This way, a composite code message can be parsed in its constituent
codewords in one pass, by the computer program. (This desirable prop-
erty holds for every prefix-free encoding of a finite set of source words,
but not for every prefix-free encoding of an infinite set of source words.
For a single finite computer program to be able to parse a code mes-
sage, the encoding needs to have a certain uniformity property like the
x code.) Since we use the natural numbers and the strings interchange-
ably, l(�x) where x is ostensibly an integer, means the length in bits of
the self-delimiting code of the string with index x. On the other hand,
l(x) where x is ostensibly a string, means the self-delimiting code of
the string with index the length l(x) of x. Using this code, we define
the standard self-delimiting code for x to be x0 = l(x)x. It is easy to
check that l(x) = 2n+1 and l(x0) = n+2 logn+1. Let h�i denote a
standard invertible effective one–one encoding fromN�N to a subset
of N . For example, we can set hx; yi = x0y or hx; yi = �xy. We can
iterate this process to define hx; hy; zii, and so on.

A. Kolmogorov Complexity

For definitions, notation, and an introduction to Kolmogorov
complexity, see [16]. Informally, the Kolmogorov complexity, or
algorithmic entropy, K(x) of a string x is the length (number of bits)
of a shortest binary program (string) to compute x on a fixed reference
universal computer (such as a particular universal Turing machine).
Intuitively, K(x) represents the minimal amount of information
required to generate x by any effective process. The conditional
Kolmogorov complexity K(xjy) of x relative to y is defined similarly
as the length of a shortest program to compute x, if y is furnished
as an auxiliary input to the computation. For technical reasons, we
use a variant of complexity, the so-called prefix complexity, which
is associated with Turing machines for which the set of programs
resulting in a halting computation is prefix free. We realize prefix
complexity by considering a special type of Turing machine with a
one-way input tape, a separate work tape, and a one-way output tape.
Such Turing machines are called prefix Turing machines. If a machine
T halts with output x after having scanned all of p on the input tape,
but not further, then T (p) = x and we call p a program for T . It is
easy to see that fp : T (p) = x; x 2 f0; 1g�g is a prefix code.

Definition 2.1: A function f from the natural numbers to the nat-
ural numbers is partial recursive, or computable, if there is a Turing
machine T that computes it: f(x) = T (x) for all x for which either f
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or T (and hence both) are defined. This definition can be extended to
(multi-tuples of) rational arguments and values.

Let T1; T2; . . . be a standard enumeration of all prefix Turing ma-
chines with a binary input tape, for example, the lexicographical length-
increasing ordered syntactic prefix Turing machine descriptions [16],
and let �1; �2; . . . be the enumeration of corresponding functions that
are computed by the respective Turing machines (Ti computes �i).
These functions are the partial recursive functions of effectively prefix-
free encoded arguments. The Kolmogorov complexity of x is the length
of the shortest binary program from which x is computed by such a
function.

Definition 2.2: The prefix Kolmogorov complexity of x is

K(x) = min
p;i

fl(�i) + l(p) : Ti(p) = xg; (II.1)

where the minimum is taken over p 2 f0; 1g� and i 2 f1; 2; . . .g. For
the development of the theory we actually require the Turing machines
to use auxiliary (also called conditional) information, by equipping the
machine with a special read-only auxiliary tape containing this infor-
mation at the outset. Then, the conditional version K(x j y) of the
prefix Kolmogorov complexity of x given y (as auxiliary information)
is defined similarly as before, and the unconditional version is set to
K(x) = K(x j �).

Notation 2.3: From now on, we will denote by
+

< an inequality to

within an additive constant, and by
+
= the situation when both

+

< and
+

> hold.

B. Two-Part Codes

Let T1; T2; . . . be the standard enumeration of Turing machines, and
let U be a standard universal Turing machine satisfying U(hi; pi) =
Ti(p) for all indices i and programs p. We fix U once and for all and
call it the reference universal prefix Turing machine. The shortest pro-
gram to compute x by U is denoted as x� (if there is more than one of
them, then x� is the first one in standard enumeration). It is a deep and
useful fact that the shortest effective description of an object x can be
expressed in terms of a two-part code: the first part describing an ap-
propriate Turing machine and the second part describing the program
that interpreted by the Turing machine reconstructs x. The essence of
the theory is the Invariance Theorem that can be informally stated as
follows: For convenience, in the sequel we simplify notation and write
U(x; y) for U(hx; yi). Rewrite

K(x) = min
p;i

fl(�i) + l(p) : Ti(p) = xg

= min
p;i

f2l(i) + l(p) + 1 : Ti(p) = xg

� min
q
fl(q) : U(�; q) = xg+ 2l(u) + 1

� min
r;j

fl(j�) + l(r) : U(�; j��r) = Tj(r) = xg+ 2l(u) + 1

+

< K(x):

Here, the minima are taken over p; q; r 2 f0; 1g� and i; j 2
f1; 2; . . .g. The last equalities are obtained by using the universality
of U = Tu with l(u)

+
= 0, and the explanation of the role of � follows

in the next paragraph. As consequence

K(x)
+
=min

r;j
fl(j�) + l(r) : U(�; j��r) = Tj(r) = xg

K(x)
+
=KU (x) = minfl(q) : U(�; q) = xg:

Thus, K(x) and KU (x) differ by at most an additive constant de-
pending on the choice of U . It is standard to use

K(x) � KU(x) (II.2)

instead of (II.1) as the definition of prefix Kolmogorov complexity
[16]. However, we highlighted definition (II.1) to bring out the two-part
code nature. By universal logical principles, the resulting theory is re-
cursively invariant under adopting either definition (II.1) or definition
(II.2), as long as we stick to one choice. If T stands for a literal descrip-
tion of the prefix Turing machine T in standard format, for example the
index j when T = Tj , then we can write K(T )

+
= K(j). The string

j� is a shortest self-delimiting program of K(j) bits from which U can
compute j, and subsequent execution of the next self-delimiting fixed
program � will compute �j from j, and compute U(j; r). Altogether,
this has the effect that U(�; j��r) = Tj(r). If (j0; r0) minimizes the

expression above, then Tj (r0) = x, and hence K(xjj0)
+

< l(r0), and
K(j0) + l(r0)

+
= K(x). It is straightforward that

K(j0) +K(xjj0)
+

> K(x; j0)
+

> K(x)

and, therefore, we have l(r0)
+

< K(xjj0). Altogether, l(r0)
+
=

K(xjj0). Replacing the minimizing j = j0 by the minimizing
T = Tj and l(r0) by K(xjT ), we can rewrite the last displayed
equation as

K(x)
+
= min

T
fK(T ) +K(x j T ) : T 2 fT0; T1; . . .gg: (II.3)

C. Meaningful Information

Expression (II.3) emphasizes the two-part code nature of Kol-
mogorov complexity: using the regular aspects of x to maximally
compress. Suppose we consider an ongoing time-series 0101 . . . and
we randomly stop gathering data after having obtained the initial
segment

x = 10101010101010101010101010:

We can encode this x by a small Turing machine representing “the re-
peating pattern is 01,” and which computes x, for example, from the
program “13.” Intuitively, the Turing machine part of the code squeezes
out the regularities in x. What is left are irregularities, or random as-
pects of x relative to that Turing machine. The minimal-length two-part
code squeezes out regularity only insofar as the reduction in the length
of the description of random aspects is greater than the increase in the
regularity description. In this setup the number of repetitions of the sig-
nificant pattern is viewed as the random part of the data.

This interpretation of K(x) as the shortest length of a two-part code
for x, one part describing a Turing machine, or model, for the regular
aspects of x and the second part describing the irregular aspects of x in
the form of a program to be interpreted byT , has profound applications.

The “right model” is a Turing machine T among the ones that halt
for all inputs, a restriction that is justified later, and reach the minimum
description length in (II.3). This T embodies the amount of useful in-
formation contained in x. It remains to decide which such T to select
among the ones that satisfy the requirement. Following Occam’s Razor
we opt here for the shortest one—a formal justification for this choice
is given in [23]. The main problem with our approach is how to prop-
erly define a shortest program x� for x that divides into parts x� = pq

such that p represents an appropriate T .

D. Symmetry of Information

The following central notions are used in this correspondence. The
information in x about y is I(x : y) = K(y) � K(y j x�). By the
symmetry of information, a deep result of [5]

K(x; y)
+
= K(x) +K(y j x�)

+
= K(y) +K(x j y�): (II.4)
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Rewriting according to symmetry of information we see that
I(x : y)

+
= I(y : x) and, therefore, we call the quantity I(x : y) the

mutual information between x and y.

III. MODEL CLASSES

Instead of the model class of finite sets, or computable probability
density functions, as in [6], in this work we focus on the most general
form of algorithmic model class: total recursive functions. We define
the different model classes and summarize the central notions of “ran-
domness deficiency” and “typicality” for the canonical finite set models
to obtain points of reference for the related notions in the more general
model classes.

A. Set Models

The model class of finite sets consists of the set of finite subsets
S � f0; 1g�. The complexity of the finite set S is K(S)—the length
(number of bits) of the shortest binary program p from which the refer-
ence universal prefix machine U computes a listing of the elements
of S and then halts. That is, if S = fx1; . . . ; xng, then U(p) =
hx1; hx2; . . . ; hxn�1; xni . . .ii. The conditional complexity K(x j S)
of x, given S, is the length (number of bits) in the shortest binary pro-
gram p from which the reference universal prefix machine U , given
S literally as auxiliary information, computes x. For every finite set
S � f0; 1g� containing x we have

K(x j S)
+

< log jSj: (III.1)

Indeed, consider the self-delimiting code ofx consisting of its dlog jSje
bit long index of x in the lexicographical ordering of S. This code
is called data-to-model code. Its length quantifies the maximal “typi-
cality,” or “randomness,” data (possibly different from x) can have with
respect to this model. The lack of typicality of x with respect to S is
measured by the amount by which K(x j S) falls short of the length of
the data-to-model code, the randomness deficiency of x in S, defined
by

�(x j S) = log jSj �K(x j S) (III.2)

for x 2 S, and1 otherwise. Data x is typical with respect to a finite set
S if the randomness deficiency is small. If the randomness deficiency is
close to 0, then there are no simple special properties that single it out
from the majority of elements in S. This is not just terminology. Let
S � f0; 1gn. According to common viewpoints in probability theory,
each property represented by S defines a large subset of S consisting of
elements having that property, and, conversely, each large subset of S
represents a property. For probabilistic ensembles we take high prob-
ability subsets as properties; the present case is uniform probability
with finite support. For some appropriate fixed constant c, let us iden-
tify a property represented by S with a subset S0 of S of cardinality
jS0j > (1 � 1=c)jSj. If �(x j S) is close to 0, then x satisfies (that
is, is an element of) all properties (that is, sets) S0 � S of low Kol-
mogorov complexity K(S0) = O(logn). The precise statements and
quantifications are given in [16], [21], and we do not repeat them here.

B. Probability Models

The model class of computable probability density functions consists
of the set of functions P : f0; 1g� ! [0; 1] with P (x) = 1. “Com-
putable” means here that there is a Turing machine TP that, given x
and a positive rational �, computes P (x) with precision �. The (prefix-)
complexity K(P ) of a computable (possibly partial) function P is de-
fined by

K(P ) = min
i

fK(i) : Turing machine Ti computes Pg:

C. Function Models

The model class of total recursive functions consists of the set of
functions f : f0; 1g� ! f0; 1g� such that there is a Turing machine
T such that T (i) < 1 and f(i) = T (i), for every i 2 f0; 1g�. The
(prefix-) complexity K(f) of a total recursive function f is defined by

K(f) = min
i

fK(i) : Turing machine Ti computes fg:

If f� is a shortest program for computing the function f (if there is
more than one of them then f� is the first one in enumeration order),
then K(f) = l(f�).

Remark 3.1: In the definitions ofK(P ) andK(f), the objects being
described are functions rather than finite binary strings. To unify the
approaches, we can consider a finite binary string x as corresponding to
a function having value x for argument 0. Note that we can upper-semi-
compute x� given x, but we cannot upper-semi-compute P � given P
(as an oracle), or f� given f (again given as an oracle), since we should
be able to verify agreement of a program for a function and an oracle
for the target function, on all infinitely many arguments. }

IV. TYPICALITY

To explain typicality for general model classes, it is convenient to
use the distortion-rate [17], [18] approach for individual data recently
introduced in [9], [22]. Modeling the data can be viewed as encoding
the data by a model: the data are source words to be coded, and models
are codewords for the data. As before, the set of possible data is D =
f0; 1g�. LetR+ denote the set of nonnegative real numbers. For every
model classM (particular set of codewords) we choose an appropriate
recursive function d : D�M! R+ defining the distortion d(x;M)
between data x and model M .

Remark 4.1: The choice of distortion function is a selection of which
aspects of the data are relevant, or meaningful, and which aspects are
irrelevant (noise). We can think of the distortion as measuring how far
the model falls short in representing the data. Distortion-rate theory un-
derpins the practice of lossy compression. For example, lossy compres-
sion of a sound file gives as “model” the compressed file where, among
others, the very high and very low inaudible frequencies have been sup-
pressed. Thus, the distortion function will penalize the deletion of the
inaudible frequencies but lightly because they are not relevant for the
auditory experience. }

Example 4.2: Let us look at various model classes and distortion
measures:

i) The set of models are the finite sets of finite binary strings. Let
S � f0; 1g� and jSj <1. We define d(x; S) = log jSj if x 2 S, and
1 otherwise.

ii) The set of models are the computable probability density func-
tions P mapping f0; 1g� to [0; 1]. We define d(x; S) = log 1=P (x) if
P (x) > 0, and 1 otherwise.

iii) The set of models are the total recursive functions f mapping
f0; 1g� to N . We define d(x; f) = minfl(d) : f(d) = xg, and 1 if
no such d exists. }

If M is a model class, then we consider distortion balls of given
radius r centered on M 2 M

BM(r) = fy : d(y;M) � rg:

This way, every model class and distortion measure can be treated sim-
ilarly to the canonical finite set case, which, however, is especially
simple in that the radius is not variable. That is, there is only one dis-
tortion ball centered on a given finite set, namely, the one with radius



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 10, OCTOBER 2006 4621

equal to the log-cardinality of that finite set. In fact, that distortion ball
equals the finite set on which it is centered.

Let M be a model class and d a distortion measure. Since in
our definition the distortion is recursive, given a model M 2 M
and diameter r, the elements in the distortion ball of diameter r
can be recursively enumerated from the distortion function. Giving
the index of any element x in that enumeration we can find the

element. Hence, K(xjM; r)
+
< log jBM (r)j. On the other hand, the

vast majority of elements y in the distortion ball have complexity

K(yjM; r)
+
> log jBM (r)j since, for every constant c, there are only

2log jB (r)j�c � 1 binary programs of length < log jBM (r)j � c
available, and there are jBM (r)j elements to be described. We can
now reason as in the similar case of finite set models. With data x

and r = d(x;M), if K(xjM; d(x;M))
+
> jBM (d(x;M))j, then x

belongs to every large majority of element (has the property repre-
sented by that majority) of the distortion ball BM(d(x;M)), provided
that property is simple in the sense of having a description of low
Kolmogorov complexity.

Definition 4.3: the randomness deficiency of xwith respect to model
M under distortion d is defined as

�(x jM) = log jBM (d(x;M))j �K(xjM; d(x;M)):

Data x is typical for model M 2M (and that model “typical” or “best
fitting” for x) if

�(x jM)
+
= 0: (IV.1)

If x is typical for a model M , then the shortest way to effectively
describe x, givenM , takes about as many bits as the descriptions of the
great majority of elements in a recursive enumeration of the distortion
ball. So there are no special simple properties that distinguish x from
the great majority of elements in the distortion ball: they are all typical
or random elements in the distortion ball (that is, with respect to the
contemplated model).

Example 4.4: Continuing Example 4.2 by applying (IV.1) to dif-
ferent model classes we get the following.

i) Finite sets: For finite set models S, clearly K(xjS)
+
< log jSj.

Together with (IV.1) we have that x is typical for S, and S best fits x,
if the randomness deficiency according to (III.2)satisfies �(xjS)

+
= 0.

ii) Computable probability density functions: Instead of the
data-to-model code length log jSj for finite set models, we consider
the data-to-model code length log 1=P (x) (the Shannon–Fano code).
The value log 1=P (x) measures how likely x is under the hypothesis
P . For probability models P , define the conditional complexity
K(x j P; dlog 1=P (x)e) as follows. Say that a function A approx-
imates P if jA(y; �) � P (y)j < � for every y and every positive
rational �. Then K(x j P; dlog 1=P (x)e) is defined as the minimum
length of a program that, given dlog 1=P (x)e and any function A
approximating P as an oracle, prints x.

Clearly, K(xjP; dlog 1=P (x)e)
+
< log 1=P (x). Together with

(IV.1), we have that x is typical for P , and P best fits x, if

K(xjP; dlog 1=P (x)e)
+
> log jfy : log 1=P (y) � log 1=P (x)gj:

The right-hand side set condition is the same as P (y) � P (x), and
there can be only � 1=P (x) such y, since otherwise the total prob-
ability exceeds 1. Therefore, the requirement, and hence typicality, is

implied byK(xjP; dlog 1=P (x)e)
+
> log 1=P (x). Define the random-

ness deficiency by

�(x j P ) = log 1=P (x)�K(x j P; dlog 1=P (x)e):

Altogether, a string x is typical for a distribution P , or P is the best
fitting model for x, if �(x j P )

+
= 0.

iii) Total recursive functions: In place of log jSj for finite set models
we consider the data-to-model code length (actually, the distortion
d(x; f) above)

lx(f) = minfl(d) : f(d) = xg:

Define the conditional complexity K(x j f; lx(f)) as the minimum
length of a program that, given lx(f) and an oracle for f , prints x.

Clearly, K(xjf; lx(f))
+
< lx(f). Together with (IV.1), we have that

x is typical for f , and f best fits x, if

K(xjf; lx(f))
+
> logfy : ly(f) � lx(f)g:

There are at most (2l (f)+1� 1)—many y satisfying the set condition
since ly(f) 2 f0; 1g�. Therefore, the requirement, and hence typi-

cality, is implied by K(xjf; lx(f))
+
> lx(f). Define the randomness

deficiency by �(x j f) = lx(f)�K(x j f; lx(f)). Altogether, a string
x is typical for a total recursive function f , and f is the best fitting re-
cursive function model for x if �(x j f)

+
= 0, or written differently

K(xjf; lx(f))
+
= lx(f): (IV.2)

Note that since lx(f) is given as conditional information, with lx(f) =
l(d) and f(d) = x, the quantity K(xjf; lx(f)) represents the number
of bits in a shortest self-delimiting description of d. }

Remark 4.5: We required lx(f) in the conditional in (IV.2). This
is the information about the radius of the distortion ball centered on
the model concerned. Note that in the canonical finite set model case,
as treated in [11], [6], [21], every model has a fixed radius which is
explicitly provided by the model itself. But in the more general model
classes of computable probability density functions, or total recursive
functions, models can have a variable radius. There are subclasses of
the more general models that have fixed radiuses (like the finite set
models).

i) In the computable probability density functions, one can think of
the probabilities with a finite support, for example, Pn(x) = 1=2n for
l(x) = n, and P (x) = 0 otherwise.

ii) In the total recursive function case, one can similarly think of
functions with finite support, for example, fn(x) =

n

i=1 xi for x =
x1 . . . xn, and fn(x) = 0 for l(x) 6= n.

The incorporation of te radius in the model will increase the com-
plexity of the model, and hence of the minimal sufficient statistic below.

}

V. SUFFICIENT STATISTIC

A statistic is a function mapping the data to an element (model) in the
contemplated model class. With some sloppiness of terminology, we
often call the function value (the model) also a statistic of the data. The
most important concept in this correspondence is the sufficient statistic.
For an extensive discussion of this notion for specific model classes see
[6], [21]. A statistic is called sufficient if the two-part description of the
data by way of the model and the data-to-model code is as concise as
the shortest one-part description of x. Consider a model class M.

Definition 5.1: A model M 2 M is a sufficient statistic for x if

K(M;d(x;M)) + log jBM(d(x;M))j
+
= K(x): (V.1)

Lemma 5.2: If M is a sufficient statistic for x, then

K(x jM; d(x;M)
+
= log jBM (d(x;M))j

that is, x is typical for M .
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Proof: We can rewrite

K(x)
+

<K(x;M; d(x;M))
+

<K(M;d(x;M)) +K(xjM; d(x;M))
+

<K(M;d(x;M)) + log jBM(d(x;M))j
+
= K(x):

The first three inequalities are straightforward and the last equality is
by the assumption of sufficiency. Altogether, the first sum equals the
second sum, which implies the lemma.

Thus, if M is a sufficient statistic for x, then x is a typical ele-
ment for M , and M is the best fitting model for x. Note that the con-
verse implication, “typicality” implies “sufficiency,” is not valid. Suf-
ficiency is a special type of typicality, where the model does not add
significant information to the data, since the preceding proof shows
K(x)

+
= K(x;M; d(x;M)). Using the symmetry of information (II.4)

this shows that

K(M;d(x;M) j x)
+
= K(M j x)

+
= 0: (V.2)

This means that we have the following.
i) A sufficient statistic M is determined by the data in the sense that

we need only an O(1)-bit program, possibly depending on the data
itself, to compute the model from the data.

ii) For each model class and distortion there is a universal constant c
such that for every data item x there are at most c sufficient statistics.

Example 5.3: Finite sets: For the model class of finite sets, a set S
is a sufficient statistic for data x if

K(S) + log jSj
+
= K(x):

Computable probability density functions: For the model class of
computable probability density functions, a function P is a sufficient
statistic for data x if

K(P ) + log 1=P (x)
+
= 0: }

Definition 5.4: For the model class of total recursive functions, a
function f is a sufficient statistic for data x if

K(x)
+
= K(f) + lx(f): (V.3)

Following the above discussion, the meaningful information in x is rep-
resented by f (the model) in K(f) bits, and the meaningless informa-
tion in x is represented by d (the noise in the data) with f(d) = x

in l(d) = lx(f) bits. Note that l(d)
+
= K(d)

+
= K(djf�), since the

two-part code (f�; d) for x cannot be shorter than the shortest one-part
code of K(x) bits, and therefore the d-part must already be maximally
compressed. By Lemma 5.2, lx(f)

+
= K(x j f�; lx(f)), x is typical

for f , and hence, K(x)
+
= K(f) +K(x j f�; lx(f)).

VI. MINIMAL SUFFICIENT STATISTIC

Definition 6.1: Consider the model class of total recursive functions.
A minimal sufficient statistic for data x is a sufficient statistic (V.3) for
x of minimal prefix complexity. Its length is known as the sophistica-
tion of x, and is defined by

soph(x) = minfK(f) : K(f) + lx(f)
+
= K(x)g:

Recall that the reference universal prefix Turing machine U was
chosen such thatU(T; d) = T (d) for all T and d. Looking at it slightly

more from a programming point of view, we can define a pair (T; d)
to be a description of a finite string x, if U(T; d) prints x and T is
a Turing machine computing a function f so that f(d) = x. For the
notion of minimal sufficient statistic to be nontrivial, it should be im-
possible to always shift, if f(d) = x and K(f) + lx(f)

+
= K(x) with

K(f)
+

6= 0, information from f to d and write, for example, f 0(d0) = x

withK(f 0)+ lx(f
0)

+
= K(x) withK(f 0)

+
= 0. If the model class con-

tains a fixed universal model that can mimic all other models, then we
can always shift all model information to the data-to-(universal)-model
code. Note that this problem does not arise in common statistical model
classes: these do not contain universal models in the algorithmic sense.
First, we show that the partial recursive function model class, because
it contains a universal element, does not allow a straightforward non-
trivial division into meaningful and meaningless information.

Lemma 6.2: Assume for the moment that we allow all partial recur-
sive programs as statistic. Then, the sophistication of all data x is

+
= 0.

Proof: Let the index of U (the reference universal prefix Turing
machine) in the standard enumeration T1; T2; . . . of prefix Turing ma-
chines be u. Let Tf be a Turing machine computing f . Suppose that
U(Tf ; d) = x. Then, also U(u; hTf ; di) = U(Tf ; d) = x.

Remark 6.3: This shows that unrestricted partial recursive statistics
are uninteresting. Naively, this could leave the impression that the sep-
aration of the regular and the random part of the data is not as objective
as the whole approach allows us to hope for. If we consider complex-
ities of the minimal sufficient statistics in model classes of increasing
power: finite sets, computable probability distributions, total recursive
functions, partial recursive functions, then the complexities appear to
become smaller all the time eventually reaching zero. It would seem
that the universality of Kolmogorov complexity, based on the notion of
partial recursive functions, would suggest a similar universal notion of
sufficient statistic based on partial recursive functions. But in this case
the very universality trivializes the resulting definition: because par-
tial recursive functions contain a particular universal element that can
simulate all the others, this implies that the universal partial recursive
function is a universal model for all data, and the data-to-model code
incorporates all information in the data. Thus, if a model class contains
a universal model that can simulate all other models, then this model
class is not suitable for defining two-part codes consisting of mean-
ingful information and accidental information. It turns out that the key
to nontrivial separation is the requirement that the program witnessing
the sophistication be total. That the resulting separation is nontrivial
is evidenced by the fact, shown below, that the amount of meaningful
information in the data does not change by more than a logarithmic
additive term under change of model classes among finite set models,
computable probability models, and total recursive function models.
That is, very different model classes all result in the same amount of
meaningful information in the data, up to negligible differences. So if
deterioration occurs in widening model classes, it occurs all at once by
having a universal element in the model class. }

Apart from triviality, a class of statistics can also possibly be vacuous
by having the length of the minimal sufficient statistic exceed K(x).
Our first task is to determine whether the definition is nonvacuous. We
will distinguish sophistication in different description modes:

Lemma 6.4 (Existence): For every finite binary string x, the sophis-

tication satisfies soph(x)
+

< K(x).
Proof: By definition of the prefix complexity there is a program

x� of length l(x�) = K(x) such that U(x�; �) = x. This program x�

can be partial. But we can define another program x�

s = sx� where s is
a program of a constant number of bits that tells the following program
to ignore its actual input and compute as if its input were �. Clearly, x�

s
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is total and is a sufficient statistic of the total recursive function type,
that is,

soph(x) � l(x�s)
+
< l(x�) = K(x):

The previous lemma gives an upper bound on the sophistication. This
still leaves the possibility that the sophistication is always

+
= 0, for

example in the most liberal case of unrestricted totality. But this turns
out to be impossible.

Theorem 6.5:
i) For every x, if a sufficient statistic f satisfies K(lx(f)jf

�)
+
= 0,

then K(f)
+
> K(K(x)) and lx(f)

+
< K(x)�K(K(x)).

ii) For x as a variable running through a sequence of finite binary
strings of increasing length, we have

lim inf
l(x)!1

soph(x)
+
= 0: (VI.1)

iii) For every n, there exists an x of length n, such that every suffi-

cient statistic f for x that satisfies K(lx(f)jf
�)

+
= 0 has K(f)

+
> n.

iv) For every n there exists an x of length n such that

soph(x)
+
> n� logn� 2 log logn:

Proof:
i) If f is a sufficient statistic for x, then

K(x)
+
= K(f) +K(d j f�)

+
= K(f) + lx(f): (VI.2)

Since K(lx(f)jf
�)

+
= 0, given an O(1) bit program q, we can retrieve

both lx(f) and alsoK(f) = l(f�) from f�. Therefore, we can retrieve

K(x)
+
= K(f)+lx(f) from qf�. That shows thatK(K(x))

+
< K(f).

This proves both the first statement, and the second statement follows
by (VI.2).

ii) An example of very unsophisticated strings are the individually
random strings with high complexity: x of length l(x) = n with com-
plexityK(x)

+
= n+K(n). Then, the identity program � with �(d) = d

for all d is total, has complexity K(�)
+
= 0, and satisfies K(x)

+
=

K(�)+l(x�). Hence, �witnesses that soph(x)
+
= 0. This shows (VI.1).

iii) Consider the set Sm = fy : K(y) � mg. By [6] we have
log jSmj

+
= m � K(m). Let m � n. Since there are 2n strings of

length n, there are strings of length n not in Sm. Let x be any such
string, and denote k = K(x). Then, by construction k > m and by

definition k
+
< n + K(n). Let f be a sufficient statistic for x. Then,

K(f) + lx(f)
+
= k. By assumption, there is an O(1)-bit program q

such that U(qf�) = lx(f). Let d witness lx(f) by f(d) = x with
l(d) = lx(f). Define the set D = f0; 1gl (f). Clearly, d 2 D. Since
x can be retrieved from f and the lexicographical index of d in D, and
log jDj = lx(f), we have K(f) + log jDj

+
= k. Since we can obtain

D from qf� we have K(D)
+
< K(f). On the other hand, since we

can retrieve x from D and the index of d in D, we must have K(D)+

log jDj
+
> k, which implies K(D)

+
> K(f). Altogether, therefore,

K(D)
+
= K(f).

We now show that we can choose x so that K(D)
+
> n, and there-

fore, K(f)
+
> n. For every length n, there exists a z of complexity

K(z j n)
+
< n such that a minimal sufficient finite set statistic S for z

has complexity at least K(S j n)
+
> n, by [6, Theorem IV.2 ]. Since

fzg is trivially a sufficient statistic for z, it follows that K(z j n)
+
=

K(S j n)
+
= n. This implies K(z);K(S)

+
> n. Therefore, we can

choose m = n � c2 for a large enough constant c2 so as to ensure
that z 62 Sm. Consequently, we can choose x above as such a z. Since

every finite set sufficient statistic for x has complexity at least that of an

finite set minimal sufficient statistic for x, it follows that K(D)
+
> n.

Therefore, K(f)
+
> n, which was what we had to prove.

iv) In the proof of i) we used K(lx(f)jf
�)

+
= 0. Without using

this assumption, the corresponding argument yields k
+
< K(f) +

K(lx(f))) + log jDj. We also have K(f) + lx(f)
+
< k and l(d)

+
=

log jDj. Since we can retrieve x from D and its index in D, the same

argument as above shows jK(f)�K(D)j
+
< K(lx(f)), and still fol-

lowing the argument above, K(f)
+
> n�K(lx(f)). Since lx(f)

+
< n,

we have K(lx(f))
+
< logn+2 log logn. This proves the statement.

The useful (V.2) states that there is a constant, such that for every x
there are at most that constant many sufficient statistics for x, and there
is a constant length program (possibly depending on x), that generates
all of them from x�. In fact, there is a slightly stronger statement from
which this follows:

Lemma 6.6: There is a universal constant c, such that for every x,
the number of f�d such that f(d) = x and K(f) + l(d)

+
= K(x), is

bounded above by c.
Proof: Let the prefix Turing machine Tf compute f . Since

U(Tf ; d) = x and K(Tf) + l(d)
+
= K(x), the combination f�d

(with self-delimiting f�) is a shortest prefix program for x. From
[16, Exercise 3.3.7 item (b) on p. 205], it follows that the number of
shortest prefix programs is upper-bounded by a universal constant.

VII. RELATION BETWEEN SUFFICIENT STATISTIC FOR

DIFFERENT MODEL CLASSES

Earlier work studied sufficiency for finite set models, and com-
putable probability mass functions models, [6]. The most general
models that are still meaningful are total recursive functions as studied
here. We show that there are corresponding, almost equivalent, suffi-
cient statistics in all model classes.

Lemma 7.1:
i) If S is a sufficient statistic of x (finite set type), then there is a cor-

responding sufficient statistic P of x (probability mass function type)
such thatK(P )

+
= K(S), log 1=P (x)

+
= log jSj, andK(P j x�)

+
= 0.

ii) IfP is a sufficient statistic of x of the computable total probability
density function type, then there is a corresponding sufficient statistic
f of x of the total recursive function type such that K(f)

+
= K(P ),

lx(f)
+
= log 1=P (x), and K(f j x�)

+
= 0.

Proof:
i) By assumption, S is a finite set such that x 2 S and K(x)

+
=

K(S) + log jSj. Define the probability distribution P (y) = 1=jSj
for y 2 S and P (y) = 0 otherwise. Since S is finite, P is com-
putable. Since K(S)

+
= K(P ), and log jSj = dlog 1=P (x)e, we have

K(x)
+
= K(P ) + log 1=P (x). Since P is a computable probability

mass function we have K(x j P �)
+
< log 1=P (x), by the standard

Shannon–Fano code construction [3] that assigns a codeword of length
log 1=P (x) to x. Since by (II.4) we have

K(x)
+
< K(x; P )

+
= K(P ) +K(x j P �)

it follows that log 1=P (x)
+
< K(x j P �). Hence,

K(x j P �)
+
= log 1=P (x):

Therefore, by (II.4), K(x; P )
+
= K(x) and, by rewriting K(x; P ) in

the other way according to (II.4), K(P j x�)
+
= 0.

ii) By assumption, P is a computable probability density function
with P (x) > 0 and K(x)

+
= K(P ) + log 1=P (x). The witness of
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this equality is a shortest program P � for P and a codeword sx for
x according to the standard Shannon–Fano code, [3], with l(sx)

+
=

log 1=P (x). GivenP , we can reconstruct x from sx by a fixed standard
algorithm. Define the recursive function f fromP such that f(sx) = x.
In fact, from P � this only requires a constant length program q, so that
Tf = qP � is a program that computes f in the sense that U(Tf ; d) =

f(d) for all d. Similarly, P can be retrieved from f . Hence, K(f)
+
=

K(P ) and K(x)
+
= K(f) + l(sx). That is, f is a sufficient statistic

for x. Also, f is a total recursive function. Since f(sx) = x we have

K(x j f�)
+

< l(sx), and K(x j f�)
+

< l(sx). This shows that K(x)
+

>
K(f) + K(x j f�), and since x can by definition be reconstructed
from f� and a program of length K(x j f�), it follows that equality
must hold. Consequently, l(sx)

+
= K(x j f�), and hence, by (II.4),

K(x; f)
+
= K(x) and K(f j x�)

+
= 0.

We have now shown that a sufficient statistic in a less general model
class corresponds directly to a sufficient statistic in the next more gen-
eral model class. We now show that, with a negligible error term, a
sufficient statistic in the most general model class of total recursive
functions has a directly corresponding sufficient statistic in the least
general finite set model class. That is, up to negligible error terms, a
sufficient statistic in any of the model classes has a direct representa-
tive in any of the other model classes.

Lemma 7.2: Let x be a string of length n, and f be a total recursive
function sufficient statistic for x. Then, there is a finite set S 3 x such
that K(S) + log jSj

+
= K(x) + O(logn).

Proof: By assumption, there is an O(1)-bit program q such that
U(qf�) = lx(f). For each y 2 f0; 1g�, let iy = minfi : f(i) = yg.

Define S = fy : f(iy) = y; l(iy)
+

< lx(f)g. We can compute S by
computation of f(i), on all arguments i of at most l(i) � lx(f) bits,
since by assumption f is total. This shows

K(S)
+

< K(f; lx(f))
+

< K(f) +K(lx(f)):

Since lx(f)
+

< K(x), we have lx(f)
+

< l(x) = n. Moreover, log jSj
+
=

lx(f). Since x 2 S, K(x)
+

< K(S) + log jSj
+

< K(x) + O(logn),
where we use the sufficiency of f to obtain the last inequality.

VIII. ALGORITHMIC PROPERTIES

We investigate the recursion properties of the sophistication func-
tion. In [5], Gács gave an important and deep result, see (VIII.1) below,
that quantifies the uncomputability of K(x) (the bare uncomputability
can be established in a much simpler fashion). For every length n there
is an x of length n such that

logn� log logn
+

< K(K(x) j x)
+

< logn: (VIII.1)

Note that the right-hand side holds for every x by the simple argument

that K(x) � n + 2 logn and hence, K(K(x))
+

< logn. But there
are x’s such that the length of the shortest program to compute K(x)

almost reaches this upper bound, even if the full information about x
is provided. It is natural to suppose that the sophistication function is
not recursive either. The following lemmas suggest that the complexity
function is more uncomputable than the sophistication.

Theorem 8.1: The function soph is not recursive.
Proof: Given n, let x0 be the least x such that soph(x) >

n � 2 logn. By Theorem 6.5, we know that there exist x such that
soph(x) ! 1 for x ! 1, hence, x0 exists. Assume by way of
contradiction that the sophistication function is computable. Then,

we can find x0, given n, by simply computing the successive values

of the function. But then K(x0)
+

< K(n), while by Lemma 6.4,

K(x0)
+

> soph(x0) and by assumption soph(x0) > n � 2 logn,
which is impossible.

The halting sequence � = �1�2 . . . is the infinite binary character-
istic sequence of the halting problem, defined by�i = 1 if the reference
universal prefix Turing machine U halts on the ith input: U(i) < 1,
and 0 otherwise.

Lemma 8.2: Let f� be a total recursive function sufficient statistic
of x.

i) We can compute K(x) from f� and x, up to fixed constant preci-
sion, which implies that K(K(x) j f�; x)

+
= 0.

ii) If also K(lx(f)jf
�)

+
= 0, then we can compute K(x) from f�,

up to fixed constant precision, which implies that K(K(x) j f�)
+
= 0.

Proof:
i) Since f is total, we can run f(e) on all strings e � x in lex-

icographical length-increasing order. Since f is total, we will find a
shortest string e0 such that f(e0) = x. Set lx(f) = l(e0). Since
l(f�) = K(f), and by assumption, K(f) + lx(f)

+
= K(x), we now

can compute
+
= K(x).

ii) Follows from item i).

Theorem 8.3: Given an oracle that on query x answers with a suf-
ficient statistic f� of x and a cx

+
= 0 as required below. Then, we can

compute the Kolmogorov complexity function K and the halting se-
quence �.

Proof: By Lemma 8.2, we can compute the function K(x), up
to fixed constant precision, given the oracle (without the value cx) in
the statement of the theorem. Let cx in the statement of the theorem
be the difference between the computed value and the actual value of
K(x). In [16, Exercise 2.2.7 on p. 175], it is shown that if we can solve
the halting problem for plain Turing machines, then we can compute
the (plain) Kolmogorov complexity, and vice versa. The same holds for
the halting problem for prefix Turing machines and the prefix Turing
complexity. This proves the theorem.

Lemma 8.4: There is a constant c, such that for every x there is
a program (possibly depending on x) of at most c bits that computes
soph(x) and the witness program f from x;K(x). That is, K(f j

x;K(x))
+
= 0. With some abuse of notation we can express this as

K(soph j K)
+
= 0.

Proof: By definition of sufficient statistic f�, we have
K(f) + lx(f)

+
= K(x). By (V.2), the number of sufficient sta-

tistics for x is bounded by an independent constant, and we can
generate all of them from x by a

+
= 0 length program (possibly

depending on x). Then, we can simply determine the least length of a
sufficient statistic, which is soph(x).

There is a subtlety here: Lemma 8.4 is nonuniform. While for every
x we only require a fixed number of bits to compute the sophistication
from x;K(x), the result is nonuniform in the sense that these bits may
depend on x. Given a program, how do we verify if it is the correct one?
Trying all programs of length up to a known upper bound, we do not
know if they halt or if they halt with the correct answer. The question
arising is if there is a single program that computes the sophistication
and its witness program for all x. In [21], this much more difficult ques-
tion is answered in a strong negative sense: there is no algorithm that for
every x, given x;K(x), approximates the sophistication of x to within
precision l(x)=(10 log l(x)).
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Theorem 8.5: For every x of length n, and f� the program that

witnesses the sophistication of x, we have K(f� j x)
+
< logn. For

every length n, there are strings x of length n, such that

K(f� j x)
+
> logn� log logn:

Proof: Let f� witness the soph(x): That is, K(f) + lx(f)
+
=

K(x), and l(f�) = soph(x). Using the conditional version of (II.4),
see [6], we find that K(K(x); f� j x)

+
=K(K(x) j x) +K(f� j K(x);K(K(x) j x); x)
+
=K(f� j x) +K(K(x) j f�; K(f� j x); x):

In Lemma 8.2, item i), we show K(K(x) j x; f�)
+
= 0, hence

also, K(K(x) j f�; K(f� j x); x)
+
= 0. By Lemma 8.4, K(f� j

K(x); x)
+
= 0, hence also K(f� j K(x);K(K(x) j x); x)

+
= 0.

Substitution of the constant terms in the displayed equation shows

K(K(x); f� j x)
+
= K(f� j x)

+
= K(K(x) j x)

+
= K(x� j x):

(VIII.2)
This shows that the shortest program to retrieve f� from x is essen-

tially of the same length as the shortest program as to retrieve x� from
x or K(x) from x. Using (VIII.1), this shows that

log l(x)
+
> lim sup

l(x)!1

K(f� j x)
+
> log l(x)� log log l(x):

Since f� is the witness program for l(f�) = soph(x), we have

l(f�)
+
= K(f�)

+
> K(f� j x).

Definition 8.6: A function f from the rational numbers to
the real numbers is upper semicomputable if there is a recur-
sive function H(x; t) such that H(x; t + 1) � H(x; t) and
limt!1H(x; t) = f(x). Here we interpret the total recursive func-
tion H(hx; ti) = hp; qi as a function from pairs of natural numbers
to the rationals: H(x; t) = p=q. If f is upper semicomputable,
then �f is lower semicomputable. If f is both upper-a and lower
semicomputable, then it is computable.

Recursive functions are computable functions over the natural num-
bers. Since K(�) is upper semicomputable [16], and from K(�) we can
compute soph(x), we have the following.

Lemma 8.7:
i) The function soph(x) is not computable to any significant preci-

sion.
ii) Given an initial segment of length 22l(x) of the halting sequence

� = �1�2 . . ., we can compute soph(x) from x. That is,

K(soph(x) j x; �1 . . .�2 )
+
= 0:

Proof:
i) The fact that soph(x) is not computable to any significant preci-

sion is shown in [21].
ii) We can run U(p; d) for all (program, argument) pairs such that

l(p)+l(d)� 2l(x). (Not l(x) since we are dealing with self-delimiting
programs.) If we know the initial segment of �, as in the statement of
the theorem, then we know which (program, argument) pairs halt, and
we can simply compute the minimal value of l(p)+l(d) for these pairs.

IX. DISCUSSION

“Sophistication” is the algorithmic version of “minimal sufficient
statistic” for data x in the model class of total recursive functions. How-
ever, the full stochastic properties of the data can only be understood
by considering the Kolmogorov structure function �x(�) (mentioned
earlier) that gives the length of the shortest two-part code of x as a
function of the maximal complexity � of the total function supplying
the model part of the code. This function has value about l(x) for �
close to 0, is nonincreasing, and drops to the line K(x) at complexity
�0 = soph(x), after which it remains constant, �x(�) = K(x) for
� � �0, everything up to a logarithmic addive term. A comprehensive
analysis, including many more algorithmic properties than are analyzed
here, has been given in [21] for the model class of finite sets containing
x, but it is shown there that all results extend to the model class of com-
putable probability distributions and the model class of total recursive
functions, up to an additive logarithmic term.
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Zero-Error Source–Channel Coding With Side Information
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Abstract—This correspondence presents a novel application of the theta
function defined by Lovász. The problem of coding for transmission of a
source through a channel without error when the receiver has side infor-
mation about the source is analyzed. Using properties of the Lovász theta
function, it is shown that separate source and channel coding is asymptot-
ically suboptimal in general. By contrast, in the case of vanishingly small
probability of error, separate source and channel coding is known to be
asymptotically optimal. For the zero-error case, it is further shown that the
joint coding gain can in fact be unbounded. Since separate coding simplifies
code design and use, conditions on sources and channels for the optimality
of separate coding are also derived.

Index Terms—Graph homomorphisms, Lovász theta function,
source–channel separation, zero-error coding.

I. INTRODUCTION

An information-theoretic result that has had a profound impact on
practical communication system design is the separation theorem,
which says that source and channel code design can be separated
without any asymptotic loss of optimality. The first theorem of this
kind was proved by Shannon [1] who considered the case where a
discrete memoryless source needs to be communicated over a discrete
memoryless channel and a nonzero reconstruction error that asymp-
totically vanishes as the code block length increases is allowed. This
theorem has since been shown to hold for most analytically tractable
single-user source–channel scenarios with a few exceptions under the
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asymptotically vanishing error constraint described previously [2].
Note that separation theorems are asymptotic results and make no
claims about the behavior at finite block lengths.

A study of communication systems under the more stringent
error-free constraint was also initiated by Shannon [3]. He charac-
terized the zero-error capacity of the discrete memoryless channel
both with and without feedback and established that the zero-error
regime is different from the asymptotically vanishing error regime.
For the source–channel pair of [1], the separation theorem trivially
holds even under a zero-error constraint. The question of optimality
of source–channel separation in the zero-error case becomes far more
interesting when the decoder has access to side information about the
source. For this communication scenario we resolve the question and
demonstrate that zero-error behavior and the asymptotically vanishing
error behavior differ substantially.

Let C be a discrete memoryless channel with transition probability
pY jX(yjx), x 2 X , y 2 Y , where X and Y are finite sets. With
an asymptotically vanishing error requirement, the capacity of this
channel is C = maxp (x) I(X;Y ), where I(X;Y ) is the mutual
information between X and Y . The zero-error capacityC0, which was
characterized by Shannon [3], will be discussed in detail in Section II.

Let (SU ;SV ) be a pair of memoryless correlated sources producing
realizations of a pair of random variables (U; V ) from a finite setU�V
at each instant. Alice, “the sender,” has access to U while Bob, “the re-
ceiver,” has access to V . Alice and Bob are connected by the channel C.
Alice employs (m;n) codes that map m realizations of U to n-length
blocks of the channel input alphabet in order to noiselessly convey U .
We wish to determine the minimum amount of channel resources re-
quired for Alice to convey U to Bob. We quantify the efficiency of a
code by its rate n

m
channel uses per source symbol.

Suppose we wish to design a source–channel code for the source
U with side information V and channel C. The celebrated results
of Shannon [1] and Slepian and Wolf [4] imply that communication
is possible using separate source and channel codes if the rate is
at least H(UjV )

C
. On the other hand, Shamai and Verdú [5] have

shown that codes with rate less than H(UjV )
C

cannot exist even if
joint source–channel coding is employed. Hence, separate source and
channel coding is asymptotically optimal when a vanishingly small
probability of error is allowed.

In this correspondence, we focus on the zero-error setting for the
problem of source–channel coding with side information. Section III
presents our main results—the suboptimality of separate coding and
the gains by joint coding. Our main tool in analyzing these problems is
the theta function, a graph functional shown by Lovász to be an upper
bound on the Shannon capacity of a graph [6]. Lovász employed the
theta function to characterize the Shannon capacity of the pentagon
graph, a problem that had remained open for more than two decades.
To quantify the gains, we employ a graph construction by Alon that
was used by him to disprove a conjecture of Shannon regarding the
additivity of zero-error capacity with respect to channel sums [7]. In
Section IV, we turn to the question of when separate coding is indeed
optimal and present sufficient conditions on sources and channels. In
Section V, we present some comments on the complexity of code de-
sign before concluding in Section VI. Since results in zero-error coding
for the source and channel that we consider are not widely known, we
first survey relevant aspects of this area in Section II.

II. PRELIMINARIES AND NOTATION

The imposition of zero-error constraints naturally leads to problem
formulations in terms of graphs and we begin this section with some
useful graph-theoretic definitions.
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