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Abstract
Singularly perturbed boundary value problems for equations of elliptic and parabolic type are studied.
For small values of the perturbation parameter, parabolic boundary layers appear in these problems. If
classical discretisation methods are used, the solution of the finite difference scheme and the approxi-
mation of the diffusive flux derived from it do not converge uniformly with respect to this parameter.
In particular, the relative error of the diffusive flux becomes unbounded as the perturbation parameter
tends to zero. Using the method of special condensing grids, we can construct difference schemes
that allow approximation of the solution and the normalised diffusive flux uniformly with respect to
the small parameter.
We also consider singularly perturbed boundary value problems for convection-diffusion equations.
Also for these problems we construct special finite difference schemes, the solution of which converges
e-uniformly. We study what problems appear, when classical schemes are used for the approximation
of the spatial derivatives. Also for parabolic equations e-uniformly convergent approximations for the
normalised fluxes are constructed. Results of numerical experiments are discussed.
Summarising, we consider:
1. Problems for Singularly Perturbed (SP) parabolic equation with discontinuous boundary conditions.
2. Problems for SP elliptic equations with boundary conditions of Dirichlet, Neumann and Robin type.
3. Problems for SP parabolic equations, for which the solution and the normalised diffusive fluxes are
required.
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Part 1
Introduction

Consider a substance (or admixture ) in a solution with a flux satisfying Fick’s law, and with distri-
bution given by a diffusion equation. Let the initial concentration of the admixture in the material as



well as the concentration of the admixture on the boundary of the body be known. It is required to
find the distribution of admixture in the material at any given time and also the quantity of admixture
(that is the diffusive flux) emitted from the boundaries into the exterior environment. Such problems
are of interest in environmental sciences in determining the pollution entering the environment from
manufactured sources, such as houses, factories and vehicles, and from industrial and agricultural
waste disposal sites, and also in chemical kinetics where the chemical reactions are described by
reaction-diffusion equations.

In considering such problems, it is important to note that the diffusion Fourier number, which is
given by the diffusion coefficient of the admixture in materials, can be sufficiently small that large
variations of concentration occur along the depth of the material. For small values of the Fourier
number, diffusion boundary layers appear. Therefore these problems exhibit a singularly perturbed
character. The mathematical formulation of such problems have a perturbation parameter which is a
small coefficient (the diffusion Fourier number) multiplying the highest derivatives of the differential
equation.

Even in the case where only the approximate solution of the singularly perturbed boundary value
problem is required, classical numerical methods, such as finite difference schemes and finite element
methods [16, 17, 18] exhibit unsatisfactory behaviour. This arises because the accuracy of the ap-
proximate solution depends inversely on the perturbation parameter value and thus it deteriorates as
the parameter decreases. In [22] it was shown that the use of classical numerical methods does not
give approximate solutions with acceptable accuracy even for very fine grids. Thus, even the use of
computers with extremely large capacity will not guarantee acceptable accuracy in the answer. To be
more precise, it can be shown that the error in the approximate solution on any arbitrarily fine grid is
greater than some positive number (independent of the number of grid nodes), for a sufficiently small
value of the perturbation parameter (the diffusion Fourier number). For some applied problems such
solution accuracy can be satisfactory. However even in these cases dissatisfaction can be caused by
the lack of a guarantee than the use of a finer grid will increase the accuracy of the approximation.

More serious problems occur when an accurate approximation of the spatial derivatives of the
solution is also required. For example, in order to determine the quantity of admixture which enters
the environment per unit of time, it is necessary to compute the gradient of the concentration of the
substance along the normal to the surface of the material. When classical finite difference schemes are
used it can be expected that errors in the computed diffusive flux will be much larger than those of the
computed concentration. Such errors in evaluating fluxes can are often of unacceptable magnitude.

Similar difficulties appear also in problems of heat exchange in cases where the heat Fourier number
can take any arbitrary small value. One often requires an accurate approximation of the thermal flux
on a boundary of the body.

This report is devoted to the construction of numerical approximations, using finite difference
schemes, of singularly perturbed boundary value problems for elliptic and parabolic equations. The
simplest example of problems of such type in a one-dimensional case is the problem of a stationary
diffusion process with a reacting substance :

2d2

e ulz) — c(z)u(z) = f(z), €D,

u(z) =p(z), z€T,

for ¢(z) > ¢ > 0, z € D. Here D = (0,1), T = D\ D is a boundary of the domain D and the
parameter £ can take any value in the interval (0,1]. The parameter ¢ characterises the diffusion
coefficient of the substance and the function ¢(z) characterises the intensity of decay of the diffusion
matter. When the parameter tends to zero, diffusion boundary layers appear in a neighbourhood of
the boundary.

In the case of regular boundary value problems the error in the approximate solution produced with
the use of grid methods, is a function of the smoothness of the solution and of the distribution of



the nodes of the grids used. However, the application of classical grid methods for such singularly
perturbed boundary value problems leads to loss of accuracy for the approximate solution when the
parameter value is small (see, for example, [12, 22] and results in IT). The following question therefore
arise: how to construct and to analyse special numerical methods for solving singularly perturbed
boundary value problems, the approximate solution of which converges uniformly with respect to
the parameter e (or, in short, e-uniformly). The error of the approximate solution obtained by such
methods, should be independent of the parameter value and defined only by the number of nodes of
the grid used.

Detailed analytic investigations of such special numerical methods dates back to the end of 1960s
(see, for example, [3, 12]). These first strong results for problems with boundary layers belong to two
different approaches which are used for construction of special numerical methods:

(a) fitted methods [12] on meshes with arbitrary distribution of nodes (for example, on a uniform
mesh) the coefficients of difference equations (difference approximations) are chosen (fitted) to ensure
parameter-uniform accuracy of the approximate solution; or

(b) methods on special condensing grids (or adaptive meshes) [3]. Those methods use the standard
classical difference equations but the nodes of the mesh are redistributed (or adapted, or condensed
in the boundary layer) such that parameter-uniform convergence is achieved.

Special, fitted schemes (that is the first approach) are attractive, since they allow the use of meshes
with an arbitrary distribution of nodes, e.g. uniform grids (see, for example, [1, 2, 4, 6, 12] ). Using the
second approach, adapted meshes with classical finite difference approximations, parameter-uniformly
convergent schemes were also constructed for a series of boundary value problems (see, for example,
[28] and references therein). For some boundary value problems parameter-uniformly convergent
schemes were constructed using either the first or the second approach for the same problem (see, for
example [6, 25]), or using both approaches together for the same problem (see, for example [22, 23],
where different approaches were used in different coordinate directions). In [14] both approaches were
used at the same time (a fitted scheme on a grids with condensing nodes in the boundary layer). Thus
there is a large variety of special approaches tailored to individual boundary value problems in the
literature.

In the case of singularly perturbed boundary value problems, for which accurate estimates of the
diffusive fluxes are required, methods must be evolved which approximate both the solution and the
normalised fluxes accurately. Investigations of such methods have been sparse in the literature (see,
for example, [22]).

In this report we consider singular perturbed elliptic and parabolic equations with parabolic bound-
ary layers. For boundary value problems we construct special difference schemes, solutions of which
converge e-uniformly in an £°°- norm. Also approximations of the normalised diffusive fluxes which
converge e-uniformly, are proposed.

In IT it is shown that the computed solution, for a singularly perturbed ordinary differential equa-
tion, which is found using a classical scheme does not converge e-uniformly. We then consider the
construction of special schemes which are e-uniformly convergent. Grid approximations of solutions
and diffusive fluxes for singularly perturbed parabolic equations are considered in ITI. Approximations
of elliptic equation with mixed boundary condition, which admit Dirichlet and Neumann conditions
are studied in IV. To construct the special schemes in III, IV methods based on special condensed
grids are used.

In V we investigate singularly perturbed boundary value problems with discontinuous boundary
conditions. In this case fitted methods are used.

The improved special finite difference schemes which allow accurate approximation of both the solu-
tions and the normalised diffusive fluxes for boundary value problems can be effectively applied for the
solution and numerical analysis of applied problems with boundary and interior layers. The methods
for construction of special schemes developed here can also be used to construct and investigate special
schemes for more general singularly perturbed boundary value problems (see, for example, [7, 8, 28] ).



Part 11
The necessity to construct special
schemes. A numerical example

In order to demonstrate the problems which may appear in the numerical solution process, we consider
the following simple example of a singularly perturbed ordinary differential equation for a boundary
value problem:

Liayyu(z) = 52%%7;) —u(z)=-1, z€D, (1.1a)
w(0) =u(1)=0; €€ (0,1], (1.1b)

where D = (0,1). For the solution of this problem we should like to use classical numerical methods,
for example finite difference schemes'.
The standard scheme for the problem (1.1) is defined as follows. In the interval D, we introduce
the grid
Dy, =y, (1.2)

where @; is a uniform grid with a step-size h = 1/N, and N + 1 is the number of nodes of the grid
@;. For the problem (1.1) we employ the classical difference scheme

A(1_3)z(m) = {526z5 —1}z(z) = -1, z € Dy, (1.3)

z(0) = z(1) = 0.

Here Dy, = D N Dy, 6,52(x) is the second order central difference approximation to the second
derivative

Sez2(z) = K1 (6, — 63)2(2),
8p2(x) = W1 (z(z + h) — 2(z)), 6zz(z) = h™ ' (2(z) — z(z — h)).

It is known (see, for example, [8, 12]) that the error of the scheme (in the £*°-norm) depends on
the value of the parameter € and on the grid step-size

| u(z) — 2(2) | < Q(e)h?, =z € Dy. (1.4)

Here the constant Q(e) essentially depends on the parameter value.
Moreover, for sufficiently small values of the parameter, that is, for ¢ = £(h) = h™!, this error
becomes larger than some positive constant [22]

max | u(z) — 2(z) | > mu.5 >0 for h—0 (1.5)
Dy

where u(z) = u(z;¢e), z(z) = z(z;e,h). That is, for any very small step-size of the grid and an
arbitrary value of the parameter €, € € (0,1], a value of € can be found such that the error is not less
than a positive constant.

It follows from the estimate (1.4) that the difference scheme (1.3), (1.2) converges as h — 0 (or
N — o) for a fixed value of the parameter. However, according to the estimate (1.5) this difference
scheme does not converge uniformly with respect to the small parameter € (that is it does not converge
e-uniformly).

1 . ; ; . .
The notation L(; ), L‘Ej.k) (or f(j.x) (), f("‘]k)(m)) means that these operators (or functions) are first introduced

in formula (5.k).



It is desirable to have numerical methods, for which the error in the approximate solution tends to
zero independently of the parameter € as N — oo, that is methods in which the approximate solution
converges e-uniformly to the actual solution for N — oo.

The importance of this criterion for applications, in particular, in the case of the boundary value
problem (1.1) is demonstrated by the following numerical experiments.

The solution of problem (1.1) is given by the following expression:

e—m/a + e—(l—m)/e

e 1/ , €D,

u(z) =u(z;e) =1—

Note that the function u(z) satisfies the following relations
0<u(z)<1l, z€D,
mgxu(:c) =u(1/2), Eli_nilu(1/2) =1.
In Table 1 we give the results of computing the value E(e, N),

E(e,N) = maxe(z;e,N),= max |u(z;e) — z(z; e, N)|
Dh Dh

which is the maximum local error on Dy,. Here u(z;¢) is the solution of problem (1.1), and z(z;e, N)
the solution of problem (1.3). The values of E(N), are also given, where

E(N)=maxE(e,N), e=2712...,1.0

is the largest error of the approximate solution for a fixed value of IV and € varying over the values
shown in Table 1

The value E(N) defines the best guaranteed accuracy which is obtained by using the scheme (1.3),
(1.2) to solve the problem (1.1) for a given N and various values of the parameter ¢ = 4™™, m =
0,1,---,6.

TABLE 1. Table of errors E(N,¢) for the classical scheme

e\ N 4 16 64 256 1024 u(0.5; €)
1 5.295e—04 3.333e—05 2.084e—06 1.303e—07 8.142e—09 | 1.132e—01
272 1.991e—02 1.328e—03 8.339e—05 5.213e—06 3.258e—07 | 7.342e—01
274 3.758e—02 1.409e—02 9.526e—04 5.986e—05 3.742e—06 | 9.993e—01
278 3.876e—03 3.741le—02 1.409e—02 9.526e—04 5.985e—05 | 1.000e4-00
278 2.440e—04 3.876e—03 3.741e—02 1.409e—02 9.526e—04 | 1.000e+00
2710 1.526e—05 2.440e—04 3.876e—03 3.741le—02 1.409e—02 | 1.000e+00
2712 9.53T7e—07 1.526e—05 2.440e—04 3.876e—03 3.741le—02 | 1.000e4-00

E(N) 3.758e—02 3.741le—02 3.741e—02 3.741le—02 3.741le—02

It follows from Table 1 that the solution of the difference scheme (1.3), (1.2) converges to the solution
of problem (1.1) for a fixed value of the parameter. However, the error behaviour is not regular with
increasing N. The error decreases with increasing N only for N > 4e~!. The approximate solution
does not converge e-uniformly. Indeed, for a fixed value of N the largest error is found for the
parameter value € = ¢(N) = 471 N1, and this error is equal to 3.74 - 1072, For any large value of
N we cannot guarantee an accuracy better than 3.74 - 1072, For the worst realisable error E(N) the
lower bound E(N) > 3.74 - 1072 holds. The relative worst realisable error for a fixed N, namely, the
value §(N) = E(N) [ maxg [u(z)| |=" > E(N), is independent of N and is equal to 3.74 %.

Although the approximate solution does not converge e-uniformly, this level of accuracy in the
computed solution can be acceptable in some cases. The computed solution gives a good qualitative
representation of the exact solution behaviour for all values of the parameter e.



However the accuracy issue appears more significant in the case where, for problem (1.1), it is
required to find the gradient of the function w(z) on a boundary (at the ends of the interval D).
The derivative (d/dz)u(z) increases unboundedly on the boundary as the parameter e tends to zero.
However, the value P(z) = e(d/dz)u(z) (we call this value the normalised diffusion flux, or more
briefly the normalised flux) remains bounded e-uniformly. Therefore it is natural to consider the
following problem:

find for boundary value problem (1.1) the solution u(z), z € D

and the normalised diffusion flur P(z) on the boundary T. (1.6)

Note that for the function P(z) = P(z;¢) the relations

max|P(z)| < 1;
D

P(0;e) = —P(1;¢) > 05 ;1_1)1}) P(0;e) =1

hold.
To solve the problem (1.1), (1.6) we apply the difference scheme (1.3), (1.2). The value P(0) is

approximated by the value
P (z) = ebp2(z), =0 (1.7)

which is the computed normalised diffusive flux at the point z = 0.
In Table 2 we give the results of computing the value Q(e, N)

Q(e, N) = | P(0) = P"*(0) |,

which is the error in the normalised flux on the boundary z = 0 for various values of € and N. Values
of Q(N) are also given where

Q(N) = max Q(e,N).

e=4—™ m=0,1,---,6.

The value Q(N), which is the best guaranteed accuracy (for varying €) of the computed normalised
flux at z = 0, that can be obtained when using the scheme (1.3), (1.2), (1.7) to solve the problem
(1.1), (1.6) for a given N and various values of the parameter e.

TABLE 2. Table of errors of the normalised flux Q(IV, ) for the classical scheme
e\ N 4 16 64 256 1024 P(0; ¢)
1 1.224e—01 3.109¢—02 7.802e—03 1.952e—03 4.882e—04 | 4.621e—01
272 3.926e—01 1.179e—01 3.080e—02 7.785e—03 1.951e—03 | 9.640e—01
274 7.640e—01 3.820e—01 1.172e—01 3.076e—02 7.782e—03 | 1.000e+00
276 9.377e—01 7.639e—01 3.820e—01 1.172e—01 3.076e—02 | 1.000e4-00
28 9.844e—01 9.377e—01 7.639e—01 3.820e—01 1.172e—01 | 1.000e4-00
2710 9.961e—01 9.844e—01 9.377e—01 7.639e—01 3.820e—01 | 1.000e+-00
27" ] 9.990e—01 9.961e—01 9.844e—01 9.377e—01 7.639e—01 | 1.000e+00

Q(N) | 9.990e—01 9.961e—01 9.844e—01 9.377e—01  7.639e—01

It follows from Table 2 that the value P"*(0) = P"*+(0;¢, N), the computed normalised flux at
z = 0, converges to the value P(0; ) with increasing N, for a fixed value of the parameter ¢. However,
they do not converge e-uniformly. The error Q(g, N) remains constant for a constant product eN.
Moreover, the error Q(e, N) tends to the value Py with decreasing ¢ for any fixed N, where

Py = lim P(0;¢e) = 1.
e—0



In Table 3 the values A(e, N) are given where

e, N) = % = %u(o;s) [6,2(0;6,N) |

denotes the ratio of the exact and the computed flux at z = 0.

TABLE 3. Table of ratios of the normalised fluxes A(NNV, ) for the classical scheme
e\ N 4 16 64 256 1024 P(0; )

1 1.360e+00 1.072e+00 1.017e+00 1.004e+00 1.001e+00 | 4.621e—01
272 1.687e4+00 1.139e+00 1.033e+00 1.008e4+00 1.002e4+00 | 9.640e—01
2~4 4.237e+00 1.618¢+00 1.133¢+00 1.032¢+00 1.008e+00 | 1.000e+00
276 1.606e+01  4.236e+00 1.618e+00 1.133e+00 1.032e+00 | 1.000e+00
278 6.402e+01  1.606e+01 4.236e+00 1.618e4+00 1.133e+00 | 1.000e+00
2710 | 2.560e+02 6.402e4+01 1.606e+01 4.236e+00 1.618e400 | 1.000e+00
2712 | 1.024e4+03  2.560e+02 6.402e4+01 1.606e+01 4.236e400 | 1.000e400

A(N) | 1.024e+03  2.560e+02 6.402e+01 1.606e+01  4.236e+00

This ratio of the exact derivative to its computed difference approximation on the boundary z = 0,
increases unboundedly for a fixed value of N as the parameter € tends to zero. The value also increases
very sharply when N — oo and eN — 0 (that is for ¢ < N~!). In these cases the computed flux
gives a value which significantly underestimates the actual derivative. This means that, if the classical
difference scheme (1.3), (1.2), (1.7) is used, the normalised flux is not even qualitatively approximated
by the computed flux in an e-uniform sense.

In the case of singularly perturbed elliptic equations, for which reduced equations do not contain
spatial derivatives, and the principal term in the singular part of the problem solution is described
by an equation similar to (1.1a) (see, for example, [22, 23, 25] ), so it can be expected that, when
solving such singularly perturbed elliptic and parabolic equations with classical difference schemes,
computational problems will arise.



Part III
Boundary value problem for parabolic
equations

1. INTRODUCTION

Here we study boundary value problems for singularly perturbed parabolic equations. Using a special
condensing grid we construct special difference schemes, which approximate the solution and the
normalised flux e-uniformly. Using numerical examples we compare the classical and the special
schemes and we show the effectiveness of the constructed schemes.

For the open interval D = (0,d), on the domain

G=Dx(0,T], S=8(G)=G\G, (1.1)

we consider a boundary value problem for the parabolic equation

Ly gyu(z,t) = {52a(m,t)% —c(z,t) —p(m,t)% Yu(z,t) = f(z,t), (z,t) € G, (1.2a)

u(z,t) = o(z,t), (z,t) €S. (1.2b)

Here the functions a(z,t), ¢(z,t), p(z,t), f(z,t), and also the function ¢(z,t) are sufficiently smooth
functions on the sets G and S respectively. Moreover

ao < a(z,t) <a’, c(z,t) >0, p(z,t) >po, (z,t)€QG,

ag, po > 0, € € (0,1]. Suppose that at the corner points S* = {(0,0) , (d,0)} compatibility
conditions are satisfied, [13], which ensure smoothness of the solution to the boundary value problem
for a fixed value of the parameter. The solution of the boundary value problem is a function u €
C?1(@) N CY°(G), which satisfies the equation on G and the boundary condition on S. We wish to
find the solution and the derivative (8/8x)u(z,t), (z,t) € G.

When the parameter € tends to zero, a parabolic boundary layer appears in the neighbourhood of
the set S', that is the lateral boundary of the set G. Note that the derivative (8/0z)u(z,t), in the
neighbourhood of the boundary layer, increases unboundedly when the parameter tends to zero. It
is therefore convenient to consider, instead of the gradient (8/8z)u(z,t), the value €(8/0z)u(z,t),
(z,t) € G which is bounded uniformly with respect to the parameter. The value

P(z,t) = E%U(m,t), (z,t) € G

is called the normalised diffusive flux. In the case of problem (1.2) it is required to find the functions

u(z,t), P(z,t), (,t) € G.

On the set G(1.1), we shall also consider the boundary value problem for the quasi-linear parabolic

equation
2

L(1_3)(u(m,t)) = {s%x(m,t)% — p(m,t)% Yu(z, t)— (1.3a)
—g(z,t,u(z,t)) =0, (z,t) € G,
u(z,t) = o(z,t), (z,t) €S.

The function g(z,t,u) is a sufficiently smooth function on the set G x R, satisfying

o _
—m1.3) < %g(m,t, u) < oo, (z,t,u) € G x R, (1.3b)



and the functions a(z,t), p(z,t), ¢(z,t) and the parameter ¢ satisfy the conditions above. Again, it
is required to find the functions u(z,t) and P(z,t), (z,t) € G, that is, the solution of problem (1.3)
and normalised flux.

We arrive at problem (1.3) by considering, for example, the diffusion of a substance (e.g. pollution)
in a homogeneous layer of solid material of thickness L. When the concentration of substance C
depends only on y, that is the distance to the surface, then the distribution of the substance in the
layer is described by the diffusion equation

2

0 0
D—C(y’T) - _C(y’T) = F(yaT)y 0< y< L’ 0<T <9
Oy? or

Here D is the diffusion coefficient, and the function F(y, ) defines the source. Using variables z =
L='y,t =977 and denoting €2 = DYL~2, u(z,t) = C(y(z),7(t)), f(z,t) = 9F(y(z),7(t)), we obtain
an equation of the form (1.2a) where a = p = 1, ¢ = 0. The parameter 2 is the diffusion Fourier
number Fg = DYL~2. The diffusive flux of the substance is defined by the formula

DQC(y,T) =DL™! ﬂu(m,t) = Dl/zﬁ_l/zsgu(m,t) =
Oy Ox Oz

= DY29712p(z,t),

where z = z(y), t = t(7).

The diffusion coefficients for different media vary considerably, ranging from 10~° m?2/sec for gases
to 10~ m?/sec for solid materials. For example, the diffusion coefficient of phenol in air and water
is 0.8-107% m?2/sec and 0.8-10~° m? /sec respectively [5]. The diffusion Fourier number is determined
by the diffusion coefficient and also by the size of the material samples and by the time period of the
diffusion process. For dwellings or local air reservoirs, L is a value between 10 and 10® m and ¥ is
between 10 min and 1 hour, then Fg takes on values between 5-1072 and 3-10~* for the process of
phenol diffusion.

For thermal processes the Fourier number is defined by the formula FJ = adL~2, where a is the
thermal conductivity of the material. In the case of rapidly varying processes FJ becomes a small
parameter. It is necessary not only to solve accurately for the temperature but also for the thermal
gradients, since physically important variables such as thermal stresses depend directly on them.

We now describe the problems which appear when (1.2) is solved using classical finite difference
schemes. For example, consider the boundary value problem

o
ot
u(z,t) = p(z,t), (z,t) €S,

82
Lgyu(z,t) = {E2ﬁ —1—- — }u(z,t) =0, (z,t) € G, (1.4a)

where d =1, T > 1, and ¢(z,t) is a sufficiently smooth function, defined on S, satisfying

(0,8) =1
oo [ L<t<T. (1.4b)
To solve problem (1.4) we use the following classical difference scheme [17]. On the set G introduce

a rectangular grid .
G =w1 X wo, (1.5&)

where @; and Wy are uniform grids, including the end-points, respectively on the intervals [0,1], [0,T],
with step-sizes h = N~1, 7 = No_l, where N + 1 and Ny + 1 are the number of nodes of the grids @
and @y respectively. For problem (1.4) the difference scheme

A syz(z,t) = {26, —1— 6; t2(z,t) =0, (z,t) € Gh, (1.5Db)



Z(m,t) = (P(I,t), (mat) € Sh
is used. Here 8,z 2(2,1), 67 2(z,t) are the second central and the first (backward) difference derivatives
respectively, G, = GN Gy, S, = SN Gp. The function P(z,t) is approximated

Pht(z,t) = eb,2(z,t), (z,t) €G, , (1.6)
where that function is defined, that is on G}, =w,” X @y , where &, = w; N[0, d). In the case where
z(z,t) is the solution of (1.5), we use the notation P(';‘_'é_l_s)(:v, t) or P(’ﬁ,,)(m, t) if this is not ambiguous.

Choosing T sufficiently large, we have the following inequality (see [28]):
| v1.4)(h, T) — 2(1.5)(h, T) | > m, (1.7)
provided
e=¢e(h)=h, (1.8)
and the inequality
| Pa.4y(0,T) = Pi%,(0,T) | 2m (1.9)
provided
e=o(h) for h—0. (1.10)
It follows (see [28]) that in the case when
T=T(r)=0(1) for 7 — 0, (1.11)

the ratio of the real normalised diffusion flux on the boundary, namely P(0,T), and the computed
normalised flux P"**(0,T) increase unboundedly as h,T — 0:

P1.4y(0,T)

h
Bl (0,T)

— oo for h,7—0. (1.12)

Thus, for differences of the functions w(y 4)(,t) — 2(1.5)(z,t) and Py 4y(z,t) — P(’;‘_E)(m,t) and also for
the ratios of the real flux and the computed flux the estimates (1.7), (1.9), (1.12) hold; that is the
computed solution and flux do not converge e-uniformly for A, 7 — 0.

We summarise this in the following theorem.

THEOREM 1.1 The functions z(z,t), (z,t) € Gy and P"*(z,t), (z,t) € G, which are respectively
the solution of the finite difference scheme (1.5) for (1.4), and the computed normalised diffusive flux,
do not converge e-uniformly to the functions u(z,t) and P(z,t), (z,t) € G, which are respectively
the solution of boundary value problem (1.4) and the exact normalised diffusive flux. The ratio of the
exact normalised flux and the computed flux is not bounded e-uniformly when h, 7 — 0.

Remark 1. Instead of the function P"*(z,t), (x,t) € G, , for the approximation of the flux
P(z,t) one can use the backward or central approximations

Ph(z,t) = ebzz(a,t), (z,t) €G, (1.13)
Ph(z,t) = ebz2(x,t), (x,t) € G, (1.14)

where @: =o," X @y, &7 = w; N(0,d],
z($i+17 t) - Z(mi_17 t)

hi—l + hi
Also the functions P*~(z,t), P"(z,t) for h, 7 — 0 do not converge to P(z,t) e-uniformly, for sym-
metry reasons.

Thus, in the case of the singularly perturbed boundary value problem (1.2) we arrive at the problem

of developing special finite difference schemes which approximate e-uniformly both the solution and
the normalised diffusive flux.

bzz(z,t) =

_ i
, T= € wip.
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2. NUMERICAL EXPERIMENTS WITH A CLASSICAL DIFFERENCE SCHEME

Firstly, let us formulate a problem suitable for numerical experiments with the classical finite difference
schemes (1.4). The qualitative behaviour of the functions z(z,t), P*~(z,t), P"*(x,t), Ph(x,t) is
described by Theorem 1.1 and Remark 1. It is interesting to analyze more precisely the errors of the
approximate solution of (1.4) and the errors in the computed normalised flux. For the pointwise errors

e(z,t) = |u(z,t) — z(z,t)|, (z,t) € G,

gt (z,t) = |P(z,t) — Ph+(m,t)|, (z,t) € G,

the following inequalities hold
e(z,t) < e’(z) + [u(z,t) —u’(2)] + |2(z, 1) — 2°(z)],

¢t (z,t) < ¢°* () + |P(z,t) — P()| + | P"* (2, 8) — P*"* ()],

where
e'(z) = e(z,e,N) = |u0(:L') - zo(m)|, (2.1)

¢"*(z) = ¢ *(z,e, N) = |P°(a) — P°"* (a)]. (2.2)

Here, the function u%(z) is the solution of the stationary problem

Logu(z) ={2L; —1}u(z)=0, z€D, (2.3)
u(z) = p(z), zel,
I'= D\ D, the function P°(z) is the normalised diffusive flux for stationary problem (2.3): P°(z) =
e(d/dz)u’(z), = € D. The boundary function o(z) in problem (2.3) is defined as in (1.4).
The function 2%(z) is the solution of the stationary discrete problem

Ap.ayz(z) = {26,z —1}2(z) =0, =z € Dy, (2.4)
z(z) = (), z € [y, ’
the function P%**(z) is the normalised diffusive flux for problem (2.4): P°"*(z) = ¢6,2%(z), z € D,, .
The largest contribution to the functions e(z,t) and q*(z,t) for t = T, with T is sufficiently large,
and small h and 7, is caused by the terms €°(z) and ¢° *(x). Therefore the main interest here is in
the numerical investigation of the influence of the parameter € and the number N on the behaviour
of values €’(z;e, N) and ¢ (z;¢e, N). As the derivatives of the function u°(z) become large only for
small values of ¢, it is most interesting to investigate the behaviour of €°(z,e, N), ¢°t(z, e, N) for this
case.

The behaviour of the general errors €°(z,e, N), ¢°T(z,e, N) is complex and not particularly suitable
for direct analysis of the numerical results. Therefore instead of problem (2.3), (1.4) we consider a
closely related problem for which analysis of the errors for the approximate solutions and fluxes is
considerably simpler. Let the function

W(z) =exp(—e'z), z€D

be the solution of singularly perturbed equation (2.3). Then

d d
max |[W(z)| = W(0) =1, max|e—W(z)| = —e—W(0) = 1. (2.5)
D D dx
Further, the following estimate holds for u%(z),

[u®(z) — W (z)], |E%u0(m) - siW(m)| <Me", ze€D, (2.6)



where n is a sufficiently large number. Thus, the function W (z) and e(d/dz)W (z) approximate well
the solution of problem (2.3) and the normalised diffusive flux P?(z), for sufficiently small ¢.
By virtue of monotonicity of the operator A, 4) for the solution of the difference scheme

A = 0, € Dy,
(2.4)2(1‘) T h (2.7)
z(z) = W(z), z€ly
the following estimates -
|z2.7)(2) — 2(2.4) ()| < Me™, = € Dy,
| Pt (0) — Ph%,(0)| < M7, (2.8)

(2.7) (2.4)

are valid where P(’;‘;) (0) and P(';‘_:)(O) are the normalised diffusive fluxes for problems (2.7) and (2.4).
According to relations (2.6), (2.8), the principal parts of the errors |u(;.4)(2,T) — 2(1.5)(=,T)| and

|P(0,T) — P(’;'_':,))(O, T')| for sufficiently large 7" and small values of €, are the errors |W (z) — z(2.7)(z)|

and |e(d/dz)W (0) — Pl5%,(0)]-
Therefore, let us consider the difference scheme (2.7) for the boundary value problem (2.3) with
boundary condition

p(z) =W(z), zel. (2.9)

We wish to demonstrate the influence of the parameter € and the number of nodes NV on the error of
the approximate solution and also on the error of computed normalised flux at z = 0.
Suppose
e(z) = e(z;6,N) = [u(z) — z(z)],
¢t (2) = ¢* (z;6,N) = |P(2) — P"*(2)],

where u(z) is the solution of problem (2.3), (2.9), z(2) = z(2.7)() is the solution of difference scheme
(2.7), and P(z) and Ph*(z) = P(’;-;)(ZI)) are the normalised fluxes for problems (2.3), (2.9) and (2.7).
Note that u(z) = W(z), = € D. Using (2.5) it is clear that the solution of problem (2.3), (2.9) satisfies
the following conditions

m§x|u(m)| =u(0) =1, mﬁax|P(m)| =—P(0)=1.

In Tables 4 and 5 we can see the results of computing the errors E(e, N)

E(e,N) = maxe(z;e, N) (2.10a)
Dy

that are the maximal pointwise errors on the grid Dy, and results of computing the errors Q(e, N)
Q(e,N) = ¢*(z = 0;¢,N), (2.11a)

that is the errors of the normalised flux on the boundary = 0. These results were obtained using the
difference scheme (2.7) for various values of € and N. The values of E(N) and Q(N) are also given,
where .
E(N) = max E(e,N), m=0,1,---,6, (2.10b)
e—d-m
is the largest (with respect to €) error of the approximate solution (for a fixed value of N, and
Q(N) = max Q(s,N), m=0,1,---,6, (2.11b)
e=4-—™
is the largest error of the computed normalised flux for z = 0. The values E(N) and Q(N) define the
best guaranteed accuracy which can be obtained using the scheme (2.7) to solve the problem (2.3),
(2.9) for a given N and all values of £ shown.
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TABLE 4. Table of errors E(e, N) for the classical scheme
e\ N 4 16 64 256 1024

1 3.621e—04 2.296e—05 1.437e—06 8.982e—08 5.614e—09
272 1.395e—02 9.443e—04 5.934e—05 3.710e—06 2.319e—07
274 3.741e—02 1.409e—02 9.526e—04 5.985e—05 3.742e—06
276 3.876e—03 3.74le—02 1.409e—02 9.526e—04 5.985e—05
278 2.440e—04 3.876e—03 3.741e—02 1.409e—02 9.526e—04
2710 1.526e—05 2.440e—04 3.876e—03 3.741e—02 1.409e—02
212 9.537e—07 1.526e—05 2.440e—04 3.876e—03 3.741le—02

E(N) 3.741e—02 3.741le—02 3.741e—02 3.741le—02 3.741le—02

TABLE 5. Table of errors of the normalised flux Q(e, N) for the classical scheme
e\ N 4 16 64 256 1024
1 1.164e—01 3.071e—02 7.779e—03 1.951e—03 4.881le—04
272 3.818e—01 1.172e—01 3.076e—02 7.782e—03 1.951e—03
274 7.639¢e—01 3.820e—01 1.172e—01 3.076e—02 7.782e—03
276 9.377e—01 7.639e—01 3.820e—01 1.172e—01 3.076e—02
278 9.844e—01 9.377e—01 7.639e—01 3.820e—01 1.172e—01
2719 | 9.961e—01 9.844e—01 9.377e—01 7.639e—01  3.820e—01
2712 9.990e—01 9.961e—01 9.844e—01 9.377e—01 7.639e—01

Q(N) | 9.990e—01 9.961e—01 9.844e—01 9.377e—01 7.639e—01

From Table 4 we see that the solution of difference scheme (2.7) converges to the solution of boundary
value problem (2.3), (2.9) for a fixed value of the parameter . However, these approximate solutions
z(z) = z(x;¢, N) do not converge e-uniformly. For the worst realisable error E(N) the lower bound
E(N) > 3.74-1072 holds. The relative worst realisable error for a fixed N is given by formula

E(N)

maxg |u(z)|’

§(N) =

where u(z) is the solution of problem (2.3), (2.9). The relative error §(N) does not depend on N and
it is equal to 3.741 %.

From Table 5 it follows that Ph*(0) = P"*(0;¢, N), the computed normalised diffusive flux at the
boundary z = 0, converges to the value P(0), with increasing N for fixed €. However, these computed
fluxes Ph*(z) = P"*(z;¢, N) also do not converge e-uniformly. The error Q(e, N) is constant for any
value of N if the product eN is constant. Moreover, for any fixed N the error Q(g, N) tends to the
value | P(0) | =1 as € increases.

Table 6 gives the values of

PO:e)] | u(0se)

|
Ale, N) = -
(e,N) |Ph+(0;e,N)|  [652(0;¢e,N)|

which is the ratio of the exact normalised flux on the boundary z = 0 to the computed flux (or the
ratio of the first derivative of the exact solution at z = 0 to the computed first difference ).

From Table 6 we see that the value A(e, N) satisfies the relation A(e, N) ~ ¢~! N~! and increases
unboundedly for any fixed N and sufficiently small values of € satisfying e N — 0. Even for ¢ < 167 1A
the real flux differs from the computed flux by a factor of 10.

The relative error of the flux n(e, N), where

n(e, N) = % — Qe N),
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TABLE 6. Table of ratios normalised fluxes A(e, N) for the classical scheme
e\ N 4 16 64 256 1024
1 1.132e+00 1.032e+00 1.008e+00 1.002e+00 1.000e+00
272 1.618¢+00 1.133¢+00 1.032e+00 1.008¢+00 1.002e+00
24 4.236e+00 1.618e+00 1.133¢4+00 1.032e+00 1.008e+00
276 1.606e+01 4.236e+00 1.618e+00 1.133e+00 1.032e+00
278 6.402e+01  1.606e+01 4.236e+00 1.618e+00 1.133e+00
2710 | 2.560e+02 6.402e+01 1.606e+01 4.236e+00 1.618e+00
g-12 1.024e4+03  2.560e+02  6.402e+01  1.606e+01  4.236e+00

X(N) 1.024e403  2.560e+02 6.402e+01 1.606e+01 4.236e400

can be guaranteed to be no larger than 20 % only for N > N(¢) = 4e~L.

Thus, the results presented illustrate the statements of Theorem 1.1 and demonstrate the weaknesses
of classical difference schemes for the solution of problems of the form (1.4). Since |P(0)| = 1, the
results of table 5 show that if we use the classical difference scheme (1.5) for solving problem (1.4),
in the case where ag < ¢ < a1, @p = 2.4-107%, oy = 1.56 - 1072 (which corresponds to the diffusion
Fourier number F5 = 5.76 - 1078 — 2.43 - 10~ for the phenol diffusion process discussed above), we
cannot guarantee an error in the computed normalised flux through the boundary that is less than
50%, even when the number of nodes is N = 1024.

3. GRID APPROXIMATIONS OF SOLUTIONS AND DIFFUSIVE FLUXES

In this section, we construct special finite difference schemes for problems (1.2), (1.3) and computa-
tional formulae for the approximation of the normalised diffusion flux. We suppose that u € C*2(G)
for each fixed value of ¢, £ € (0, 1].

On the set G we introduce again the grid

éh =Wy X Wy, (31)

where now @; is a grid, generally nonuniform, on the interval [0,d] and @ is an uniform grid on the
interval [0,T]. Suppose ht = ztt! — 2t 2t zi*t! € @), h = max; h'. By N + 1 and Ny + 1 we denote
the number of nodes in the grids @; and @y respectively, h < M N~L.

On the grid G}, we define the following difference scheme for problem (1.2),

A(3.2)Z(m7t) = f(m’t)7 (‘T:t) € Gh7
2(z,t) = p(z,t), (z,t) € Sh.
Here G, :Gﬁ@h, S, = Sﬁ@h,
A@z.2)z(z,t) = e2a(z,t)b3 4 2(x,t) — c(z, t)2(z, t) — p(z, t)652(z, ).

To approximate the function P(z,t), that is the normalised diffusive flux, we use the grid function
h+
P(1.6;3.2)(m’ t)-
The difference scheme (3.2), (3.1) is monotonic for any arbitrary distribution of the nodes of the
grid w1 and hence of the grid G, (3.1). Using the maximum principle we establish convergence of the

difference scheme for a fixed value of the parameter
|u(m,t) - Z(il?,t)l < M[ s_lN_l + N(]_l ]7 (il?,t) € ah- (33)

In the case of the grid
GL={G, (3.1), Where @ is an uniform grid} (3.4)
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the estimate

|u($7t) - Z(.’E,t)l < M[ E_zN_Z + ‘ZVO_1 ]7 (.’E,t) € 6h(3.4) (35)
holds. From (3.5), the inequality

|P(z,t) — PM (z,t)| S M [e "N+ eN Nyt ], (2,t) € Gy 3.4 (3.6)

follows. A sufficient condition for convergence of the function P**(z,t) to the function P(z,t) for a
fixed value of ¢, is that

NN;' — 0 for N, Ny — oo. (3.7)

Thus, the difference scheme (3.2), (3.4), (3.7) allows approximation of the solution of boundary value
problem (1.2) together with the normalised diffusive flux for a fixed value of e. In particular, under
the condition

No = Ny(N) = N? (3.8)
the following estimate

M —
|P(z,t) — P (2,1)] < N (z,t) € G (3.0)- (3.9)

is valid.
In the case of boundary value problem (1.3), we use the difference scheme

Aza0)(2(z,t)) = 0, (z,t) € Gh,

(3.10)
z(z,t) o(z,t), (z,t) € Sh.

Here
A(3_10)(z(m,t)) ={ 52a(m,t)652 —p(z,t)6; }z(z,t) — g(=,t, 2(z,1)).
For the solution of (3.10) and for the flux P(z,t) the bounds (3.3), (3.5), (3.6) also hold. When the

condition (3.7) is violated then the function P"*(z,t), (z,t) € G;, does not, in general, converge to
the function P(z,t) for a fixed €. The main result is summarised in the following theorem.

THEOREM 3.1 Let the finite difference scheme (3.2), (3.1) (or (3.10), (3.1)) be used for the solution of
the boundary value problem (1.2) (respectively (1.3)). Then condition (3.7) is sufficient for convergence
of Ph*(z,t) for a fixed value of the parameter, if w € C*2(G) and the grid (3.4) is used. Moreover,
estimate (3.9) holds if (3.8) is satisfied.

Now we construct a special difference scheme for problem (1.2). On the grid G, we introduce a
special grid, condensed in the boundary layer, similar to the grid constructed in [26, 27],

Gh(z11) = Gr(zi)(0) = ©f x @y, (3.11a)

where @W;" = @, (o) is a piecewise uniform grid on [0,d]; o is a parameter depending on ¢ and N.
Step-sizes of the grid @;* on the intervals [ 0,0 ], [ d —o,d ] and on the interval [ 0,d — o | are constant
and equal to h(Y) = 46N~ and h(® = 2(d — 20)N~! respectively, ¢ < 471d. The value o is chosen
to satisfy the condition

0 = 0(3.11)(¢, N) = min| 4714, m~teln N |, (3.11b)

where m = m3.11) is an arbitrary number.
In a manner similar to that in [28]we establish the e-uniform convergence of the scheme (3.2), (3.11)

lu(z,t) — 2(z,t)| < M[ N"2In> N + Ny ], (2,t) € Gp. (3.12)
For the computed flux, we have

|P(z,t) — P* (2,t)] < Me[N"'In? N+ N Ng ' |, (2,t) € Gpz11)- (3.13)
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According to the estimate (3.13), we have e-uniform convergence of the function P"*(z,t), provided
the condition
F_‘NNO_I — 0 e-uniformly, for N, Ny — oo (3.14)

is fulfilled. In particular, under condition (3.8) the estimate
|P(z,t) — P*(2,t)] < MeN"'In® N < M N~ 'In® N, (z,t) € Gpi311)- (3.15)

is valid.

Note that estimates (3.12), (3.13), (3.15) are also fulfilled in the case of the boundary value problem
(1.3), when the scheme (3.10), (3.11) is used for solving of this problem. Thus we have the following
theorem [28].

THEOREM 3.2 Let u € C*2(G) for a fixed value of the parameter ¢, ¢ € (0,1]. Then the solution of
difference scheme (3.2), (3.11) (or (3.10), (3.11)) converges e-uniformly to the solution of the problem

(1.2) (respectively (1.3). If condition (3.14) also holds, P"t(z,t), (z,t) € Eh_(s.ll)a converges &-
uniformly to the function P(z,t). For the solution of the difference scheme the estimates (3.5), (3.12)
and, for computed flux P**t(z,t), the estimates (3.9) (if condition (3.8) is fulfilled) and (3.15) are
valid . For the flux the estimates (3.6), (3.13) also hold. Estimates similar to (3.6), (3.13) and (3.9),

(3.15) also hold if P(};._IS)(w,t) or P(}i.14)($a t) are used as approximations of P(z,t).

It is also interesting investigate numerically the influence of € and IV on the behaviour of E(3.19(e, V)
and Q(2.11)(¢, N) computed using the special difference scheme for problem (2.3), (2.9). We use the
difference scheme

Agaeyz(x) ={e*6z.—1}2(z) = 0, z € Dy,

Ax) = W(a), z €Ty, (3-16a)

on the grid -
Dy =81 (3.11), (3.16b)

where m3.11) = 1/2. In the Tables 7, 8 and 9 we give the values E(e,N), Q(e, N), E(N), Q(N),
A(e, N), computed with (3.16) for various values of € and N.

TABLE 7. Table of errors E(N,¢) for the special scheme
e\ N 4 16 64 256 1024

1 3.621e—04  2.296e—05 1.437e—06 8.982e—08 5.614e—09
272 1.395e—02 9.443e—04 5.934e—05 3.710e—06 2.319e—07
24 1.685e—02 1.409e—02 9.526e—04 5.985e—05 3.742e—06
276 4.050e—02 2.410e—02 4.041e—03 4.587e—04 4.492e—05
278 5.690e—02 2.406e—02 4.041e—03 4.587e—04 4.492e—05
2710 6.109¢—02 2.404e—02 4.041e—03 4.587e—04 4.492e—05
212 6.215e—02 2.404e—02 4.041e—03 4.587e—04 4.492e—05

E(N) 6.215e—02 2.410e—02 4.041e—03 4.587e—04 4.492e—05

From the Tables 7, 8 we can see that approximate solutions and computed normalised fluxes seem
to converge e-uniformly. For example, the guaranteed accuracy for the approximate solution is not
worse than 1.0 % ,when N = 64, and for the computed flux is not worse than 10% for N = 256. From
Table 9 we see that A(e, N) tends e-uniformly to 1 with increasing N.

4. A NUMERICAL EXAMPLE FOR THE DIFFUSION EQUATION

In order to illustrate computational problems which appear with employment of classical difference
schemes to solve singularly perturbed boundary value problems for a partial differential equation and
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TABLE 8. Table of errors of the normalised flux Q(N, ) for the special scheme
e\ N 4 16 64 256 1024
1 1.164e—01 3.071e—02 7.779e—03 1.951e—03 4.881le—04
272 3.818e—01 1.172e—01 3.076e—02 7.782e—03 1.951e—03
2—1 6.679e—01 3.820e—01 1.172e—01 3.076e—02 7.782e—03
26 6.473e—01 4.764e—01 2.267e—01 8.290e—02 2.671e—02
28 6.413e—01 4.763e—01 2.267e—01 8.290e—02 2.671e—02
2719 | 6.398e—01 4.763e—01 2.267e—01 8.290e—02 2.671e—02
2-12 6.395e—01 4.763e—01 2.267e—01 8.290e—02 2.671e—02

Q(N) 6.679¢—01 4.764e—01 2.267e—01 8.290e—02 2.671le—02

TABLE 9. Table of ratios of the normalised fluxes A(NNV, e) for the special scheme

e \ N 4 16 64 256 1024

1 1.132e+00 1.032e+00 1.008e+00 1.002e+00 1.000e+00
272 1.618e+00 1.133e+00 1.032e4+00 1.008e+00 1.002e+00
24 3.012e+00 1.618¢+00 1.133e+00 1.032e+00  1.008e+00
276 2.835¢+00 1.910e+00 1.293e+00 1.090e+00 1.027e+00
2-8 2.788¢+00 1.910e+00 1.293e+00 1.090e+00 1.027e+00
2-10 2.776e4+00 1.910e4+00 1.293e+00 1.090e+00 1.027e+00
g-12 2.774e4+00 1.910e4+00 1.293e4+00 1.090e+00 1.027¢4-00

A(N) | 3.012e4+00 1.910e4+00 1.293e4+00 1.090e+00 1.027e+400

to find normalised fluxes, and in order to show the efficiency of special difference schemes we shall
consider the simplest boundary value problem for the diffusion equation. The function

x? 1 x? mx/f

W(z,t) = erfc(%ﬁ)(g +1)— ﬁexp(—E)T,

0<z<oo,t>0

is the solution of the singularly perturbed diffusion equation
L ( t)—62—2 ( t)——( t)—_O Oz < t>0 (41)
u\x = u\x ulx T oo .
(4.1) ’ ) ’ 5t ’ s )

and satisfies the boundary conditions
W(z,0)=0,0<z <00, W(0,t)=t, t>0.
For the function W(z,t) the following bounds hold

max Wi(z,?) <t,
0<z<oo,
0<¥<t

0 0
9 <2 —or1/24/2 s>
Ogixmd 6mW(m,t) | <el 8mW(0’t) |=27 e, t>0

Forz > zy > m, 0 <t < T, the function W (z,t) decays more rapidly than any power of the parameter
€ that is
| W(z,t) | <Me™, >zo>m, 0<t<T,

where n is an arbitrary large number.
Let us consider the boundary value problem

L(4_1)u(m,t) =0, (mat) € G:

u(z,t) =W(z,t), (z,t) €S, (4.2)
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where G=D x (0,T], D=(0,d), d=1, T =1.
The difference scheme (3.2), (3.1) for problem (4.2) is

Aazyz(x,t) = €26z ,2(,t) — b2(x,t) =0, (x,t) € Gy,

z(z,t) = W(z,t), (z,t) € Sp. (43)

Here G}, is one of the grids considered previously, either the uniform grid Eh(3_4) or the special grid
Gr(3.11) = Gr(3.11) with m(z.11) = 1/2. Using the solutions of the difference schemes on these meshes,
we calculated the values
E(e,N) = max |u(z,t) — z(z,t)],
G
which are the errors of the approximate solution (I *°-norm) for various values of € and N = Ny, and
also the values

_ _ _ pht(, _
Qe,N) = max | P(z=0,t) - P* (2 =0,1) |,

which are the errors in the computed normalised flux on the boundary z = 0, where P(z,t) =
e(8/0x)u(z,t), Pt (z,t) = b, 2(x, t).

In the Tables 10 and 11 we show the values of E(e, N) and Q(e, N) computed with the uniform grid
éh(3_4) for various values of € and N = Ny. In the Tables 12, 13 results for the special grid G, (3.11)

are given.

TABLE 10. Table of errors E(e, N) for the classical scheme

e\ N

4

16

64

256

1024

o

1.
9
o
o
o

@ O = N

2—10
2—1

[V

1.630e—02
4.374e—02
3.601e—02
2.432e—-03
1.526e—04
9.537e—06
5.960e—07

6.144e—03
8.624e—03
2.558e—02
3.095e—02
2.069e—03
1.297e—04
8.106e—06

1.780e—03
1.960e—03
3.131e—03
2.061e—02
2.966e—02
1.978e—03
1.240e—04

4.651e—04
4.769e—04
5.507e—04
1.728e—03
1.934e—02
2.934e—02
1.956e—03

1.176e—04
1.184e—04
2.484e—04
2.444e—04
1.376e—03
1.902e—02
2.926e—02

EN)

7

4.374e—02

3.095e—02

2.966e—02

2.934e—-02

2.926e—02

TABLE 11. Table of errors of the normalised flux Q(e, N), Q(N) for the classical scheme

e\ N 4 16 64 256 1024
1.0 1.620e—01 6.123e—02 2.362e—02 9.946e—03 4.496e—03
2-2 4.516e—01 1.328¢—01 4.345e—02 1.535e—02 5.904e—03
24 8.876e—01 4.332e—01 1.228¢—01 3.321e—02 1.086e— 02
2-6 1.066e+00 8.863e—01 4.282e—01 1.211e—01 3.111e—02
2-8 1.113e+00 1.066e+00 8.860e—01 4.270e—01 1.207e—01
2710 | 1.124e4+00 1.113e4+00 1.066e+00 8.859e—01 4.267e—01
2712 | 1.127e+00 1.124e+00 1.113e+00 1.066e+00 8.859e—01
Q(N) | 1.127e+00 1.124e+00 1.113e+00 1.066e+00 8.859e—01

From tables 10, 11 we can see that the solution of the difference scheme (4.3), (3.4) for N =
Ny and also the computed normalised flux for = 0 converge for a fixed value of the parameter.
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However, approximate solutions and normalised fluxes do not converge e-uniformly. For the E(N) =
max E(e,N), m=0,1,...,6, we find
g=4—m

E(N)>29-1072

The ratio of the exact normalised flux on the boundary z = 0 for t = T' and the computed flux (that
is P(0,T)/P"*(0,T)) increases unboundedly with decreasing ¢, for fixed values of N.

TABLE 12. Table of errors E(e, N) for the special scheme

e\ N 4 16 64 256 1024
1 1.630e—02 6.144e—03 1.780e—03 4.651le—04 1.176e—04
272 4.374e—02 8.624e—03 1.960e—03 4.769¢—04 1.184e—04
24 3.976e—02 2.558e—02 3.131le—03 5.507e—04 2.484e—04
26 4.494e—04 4.156e—02 7.214e—03 1.077e—03 2.478e—04
2-8 9.440e—03 4.156e—02 7.214e—03 1.077e—03 2.478e—04

210 1.207e—02 4.156e—02 7.214e—03 1.077e—03 2.478e—04
2-12 1.273e—02 4.156e—02 7.214e—03 1.077e—03 2.478e—04

7

E(N) 4.374e—02 4.156e—02 7.214e—03 1.077e—03 2.478e—04

From the Tables 12 and 13 we see that approximate solutions and computed normalised fluxes (for
z = 0) seem to converge e-uniformly.

TABLE 13. Table of errors of the normalised flux Q(e, N), Q(N) for the special scheme
e\ N 4 16 64 256 1024
1 1.620e—01 6.123e—02 2.362e—02 9.946e—03 4.496e—03
2 ] 4.516e—01 1.328e—01 4.345¢—02 1.535e—02 5.904e—03
4 | 7.867e—01 4.332e—01 1.228¢—01 3.321e—02 1.086e—02
=6 | 7.727e—01 5.505e—01 2.428¢—01 8.507e—02 2.70le—02
8 | 7.690e—01 5.505e—01 2.428¢—01 8.507e—02 2.701e—02
2710 | 7.680e—01 5.505e—01 2.428e—01 8.507e—02 2.701e—02
2712 | 7.678¢—01 5.505e—01 2.428e—01 8.507e—02 2.701e—02

Q(N) | 7.867e—01 5.505e—01 2.428e—01 8.507e—02 2.701e—02

5. BOUNDARY VALUE PROBLEM ON A RECTANGLE

In this section we consider a quasi-linear parabolic equations on a rectangle. We shall point out
computational problems accompanying the flux computation, and shall construct special difference
schemes whose approximate solutions and computed normalised fluxes converge e-uniformly.
On the rectangle
D={z: 0<z,<d;, s=1,2}

we consider the boundary value problem for the quasi-linear equation of parabolic type

L(5.1)(u($at)) = 0, (.’E,t) € G, (5.]-&)
u(z,t) = p(z,t), (z,t) €8S.
Here
G=Dx(0,T], S=G\G, (5.2)
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L(5,1)(u(:v,t)) ={ €2L?5.1) —p(z,t)5; tu(z,t) — g(z,t, u(z,t)),

0 0
L(25.1) = Z a-i("l%t)@ + Z bs(mat)am —CO(I,'L’),

s=1,2 s s=1,2

the functions a,(z,t), bs(z,t), *(z,t), p(z,t), s = 1,2, and also the functions g(z,t,u), ¢(z,t) are
sufficiently smooth functions on the sets G, G x R and S respectively. In addition, we shall assume
that

ag S al(mat)a a2(m)t) S aO’ CO(CE,'L‘) 2 Oa p(.’E,t) 2 Do, (l‘,t) € 65 ap, po > 0;

—M5.q) < % (z,t,u) < 00, (z,t,u) € G x R. (5.1b)
The parameter ¢ takes arbitrary values in the interval (0,1]. Let I' = D\ D and I'* be the set of corner
points of the rectangle D, then assume that on the set S* = S§ U Sy, S5 = {(z,t): z €T, ¢t =0},
St ={(z,t): x €T*, 0 <t < T}, the usual compatibility conditions are satisfied so that smoothness
of the solution is ensured for each fixed value of the €.

The solution of the boundary value problem is the function u(z,t), (z,t) € G such that u €
C?1(G) N C*O(@), and also this function is assumed to satisfy an equation on G at t = 0, and a
boundary condition on S. As ¢ tends to zero, a parabolic boundary layer appears in the neighbourhood
of the set S}

It is required to find the solution of the boundary value problem and also its normalised gradient

P,(z,t) = 588 u(z,t), (z,t)€G, s=1,2.

Zs

One-sided differences are used for approximation of the first order spatial derivatives. For these
schemes the accuracy of the approximate solution is normally not greater than first order. In the
presence of corner points (or edges) the solution smoothness is reduced, thus causing a decrease in the
convergence order for the numerical methods. It can be found that second order spatial derivatives
are bounded in a neighbourhood of corner points (for a fixed value of the parameter), however in this
case also the order of convergence is not greater than one with respect to the spatial variables.

For difference schemes for which the convergence order is no higher than one (with respect to the
spatial variables), the first order difference derivatives do not necessarily converge with increasing the
number of grid nodes. Therefore the difference derivatives of the computed solution cannot be used
for the approximation of fluxes. Thus, in this case, the issue of constructing acceptable difference
approximations of the diffusive fluxes appears.

On the set 6(5_2), we introduce the grid

éh :Eh X Wy = w1 X W X Wy, (53)

where W, is a grid, in general nonuniform, on the interval [0,d;] on axis z,, s = 1,2, and @y is
an uniform grid on the interval [0,7'] on axis ¢t with a step-size 7 = TNO_I. We denote by hi =
zitt —gf 2l 2t € &, h, = max; hi, h = maxh,, s = 1,2. By N, + 1 we denote the number of
nodes of the grid @,; N = min, N,, s = 1,2, h < M N~!. For problem (5.1) we consider the difference
scheme on the grid G}, given by

Ais.ay(2(z,t) = 0, (z,t) € Gp,

(5.4)
2(z,t) = p(z,t), (z,t) € Sh.

Here Gh:Gﬂah, Sh:Sﬂ@h,

Ay (2(@, 1) = €™ Af5 4y 2(2, 1) — pla, )852(x, ) — g(a,t, (2, 1)),
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A>(k5.4) = Z aS(mat)éﬁzs + Z [ bj(wat)éws + bs_(mat)éﬁ ] - CO(.’E,t),

s=1,2 s=1,2

where b} and b, are respectively the positive and the negative part of b,. The approximation of
normalised diffusive fluxes is constructed below.

Considering the difference scheme (5.4), (5.3), we assume that the estimates of Theorem 5.1 are
fulfilled. Using the maximum principle [17], the estimate

lu(z,t) — 2(z,t)| <K M [e "N~ '+ N1, (z,t) € Gh. (5.5)

can be proved.
To construct a e-uniformly convergent difference scheme, we apply a special grid condensed in the
boundary layer [27]. On the set G we introduce the grid

Gh (5.6) = ah(5.6)(‘7) =D, (5.6)(0) X Wo, (5.6)

where
;=0 (0) =w;(0,ds), s=1,2,

s

Do) =w} xwy, ©
the grid ws*(m) is the grid 51*(3_11) with d and N equal to ds; and N, respectively. For this grid, the
following estimate is valid

|u(z,t) — z(z,t)| < M[N"'InN + Ny * ], (2,t) € Gh(s.6)- (5.7)

We now construct the approximation of the normalised fluxes Pi(z,t), Pa(z,t) for the special
difference scheme (5.4), (5.6). For this purpose we need to modify the standard difference derivatives
with respect to variables z; and zs. Let the estimate

|u(m7t) - Z(:E,t)| < ,@(N, NO)v (Z,t) € 6h(5.6)7 (5-83)

hold, where B(N, Ny) tends to zero e-uniformly for N, Ny — co. The computational parameter h* is
defined by the relation

h: = h¥(e, B(N,Ny)) = min [ 47'd,, MeS'/2(N,Ny) ], (5.8b)

where M = M5 ) is an arbitrary number. We introduce grid sets 6;_, é,f_

s

G, =GreeN{(zt): o, <d,—h}}, s=1,2.

By using linear interpolation along z, for the grid function z(z,t) we construct functions z°(z,t)
which are continuous functions along z; and grid functions along variables ¢, z3_,, s = 1,2. Then we
form modified difference derivatives

85 2(z,t) = (W) Z (@1 + hE, 20,8) — 2(2,1) ], (2,8) € Gy,

61r2(@,t) = (h3) [ F2(@r, 02 + 13, 0) — 2(2,0) ], (2,6) €T, .
We emphasise that in order to construct the modified difference derivatives we use the function
B(N, Ng), that is the right-hand side in the estimate (5.8a) . In this case the function S(IV, Ny) can
be taken to be the right-hand side in the inequality (5.7).

The normalised diffusive fluxes Pi(z,t), Pa(z,t) are approximated by the grid functions
Pfh+(mat)7 Pz*h+($,t), where

Py (,t) = e61,2(x,1), (2,t) €G, , s=1,2.

Using the estimate (5.7) we establish e-uniform convergence of the functions P} "*(z,t), Py " (x,t),
that is the computed normalised fluxes,

|P,(z,t) — P*"(2,t)| < M[ N~'In N + Ny |'/2,

s 5.9
(z,t) € G, , s=1,2. (59)
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THEOREM 5.1 Let a,, by, &, p € CT(G), s = 1,2, g € CH*(G x R), p € C*¥(8), U €
C!=2+2(@) (where U(z,t) is the regular part of the solution of the boundary value problem (5.1)),
I > 6, a > 0. Then the solution of the difference scheme (5.4), (5.6) and the computed diffusive fluxes
Prit(zt), (z,t) € @,f_, s = 1,2 converge e-uniformly. For the solution of the difference scheme and
the computed fluxes Py " (z,t), Py"*(z,t) the estimates (5.5), (5.7), (5.9) hold.
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Part IV
Boundary value problem for elliptic
equation with mixed boundary condition

1. INTRODUCTION

In this part we sketch a variety of special methods which are used for constructing e-uniformly conver-
gent schemes. We shall demonstrate a method which achieves improved accuracy for solving singularly
perturbed boundary value problem for elliptic equations with parabolic boundary layers.

In Section 4 we shall introduce a natural class, B, of finite difference schemes, in which (by the
above mentioned approaches (a) and (b)) we can construct (formally) the special finite difference
schemes with approximate solutions which converge parameter-uniformly to the solution of our initial
boundary value problem.

In this chapter we consider a class of singularly perturbed boundary value problems which arise
when diffusion processes in a moving medium are modeled. For such boundary value problems which
describe transfer with diffusion, we construct a special scheme that converges parameter-uniformly.
We shall show that for the construction of such schemes from class B, the use of a special condensing
grid (or an adaptive mesh) is necessary. It means that the choice (to construct special parameter-
uniformly convergent schemes for our class of convection diffusion problems) is quite restricted. By
condensing (or adaptive) grids we can construct finite difference schemes which converge parameter-
uniformly. We shall present and discuss the results of numerical computations using both the classical
and the new special finite difference schemes.

2. THE CLASS OF BOUNDARY VALUE PROBLEMS
2.1. The physical problem

The diffusion of a substance in a convective flow of an incompressible fluid in a two-dimension domain
gives rise to an equation of the form

—eAu(z) + 9(z) - Vu(z) = F(z), = € Q, (2.1a)

where ¥(z) and F(z) are the velocity and source, respectively; 1/e is the Peclet number (Reynolds
number), if the substance is heat (diffusive matter or momentum) [5]. When the substance is heat
(diffusive matter or momentum) then u(z) is the temperature (density or velocity) at the point z.
On the boundary of domain considered (that is the wall of the container holding the fluid) we have a
boundary condition that describes the exchange of the substance with the surrounding environment

—a(u(z) —U(z)) — %u(x) =0, z € 8°Q. (2.1b)

Here 8°Q) is the boundary of the domain (the wall of the container), % is the outward normal derivative
at the boundary, a characterises intensity of exchange of the substance between the medium and the
wall, where the value is given by U(z). When « tends to infinity the condition (2.1b) becomes the

Dirichlet condition

u(z) =U(z), = € 8°Q.

The inflow boundary, that is the part of the boundary 9Q \ 8°Q2 where the stream enters the domain,
we denote by tQ, and the outflow boundary by 8=

(z)-¥(z) <0, z €0TQ; di(z) ¥(z) >0, z€d Q.

Si
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Here 7i(z) is a unit vector in the direction of the external normal. On the boundary 8°Q2 we have
condition

ii(z) - (z) =0, = € 8°Q.

On 870 the value of u(z) is given, and on outflow boundary 8~ we assume the flux to be known

u(z) = Ut (z), z € 0+Q, (2.1¢)
%u(m) = \I/(:L'), z €0 . (2.1d)

Problem (2.1) describes a general diffusion process into moving medium. For sufficiently large Peclet
number (Reynolds number), € can be very small. As ¢ tends to zero a boundary layer appears in the
neighbourhood of the boundary 8°.

2.2. The class of boundary value problems

Now we describe the class of two-dimensional convection-diffusion problems with mixed boundary
conditions, for which we shall study the convergence behaviour. Notice that we consider here mixed
boundary conditions, where usually only Dirichlet boundary conditions are studied.

On the rectangular domain D = {z: 0 < z; < d;, © = 1,2} we consider the elliptic boundary value
problem

) s 02 ]
Lis.2yu(z) = {E Z as(m)w — b(a;)a—w1 — c(m)} u(z) = f(z), z € D, (2.2a)

u(z) = p(z), z € TT, (2.2b)
lia.2yu(z) = —saginu(m) — (1 —a)u(z) = ¥(z), €T, (2.2¢)
%u(m) =n(z), z €. (2.2d)

Here a,,b,¢c, f,p,9, and 7 are sufficiently smooth functions, a € [0, 1], € € (0,1], ap < a1(z), az(z) <
a%; b(x) > by; e(x) > 0; = € D; ag, by > 0, and

rt=rn{z|z =0},
F_:Fﬂ{m|m1:d1},
M=rn{z|0<z; <d}.

This class of problems includes, for example, the following boundary value problem for a regular
differential equation

02 7]
L \U(y) = As(y)= — B(y)=—}U(y) = F(y), 2.3a
23U () {5221;2 () oy () 8y1} (y) = F(y) (2.3a)
Y€ l~7, with regular boundary conditions
Uly) = 2(y), yel™,
los)U(y) = —agmU(y) —(1—a)U(y) = ¥(y), yel’, (2.3b)
2 U(y) =0, yel,

on the rectangular domain D= {y: 0<y; < CT,', i =1,2}, di = ¢! d;, if the size of domain D is
sufficiently large.

24



2.3. The construction of e-uniformly convergent schemes

When ¢ tends to zero in the neighbourhood of I'°, boundary layers appear which are described by
parabolic equations. Hence these layers are known as parabolic boundary layers.

Although classical difference approximations (see, for example, [16, 17] | ) converge for (2.2) to the
solution of the boundary value problem for each fixed value of € (see Theorem 3.1), the accuracy of the
numerical solution depends on the value of ¢ and decreases, sometimes to complete loss of accuracy,
when ¢ is less or comparable with the step-size of the uniform grid. This means that classical finite
difference schemes do not converge uniformly with respect to the parameter €, (see theorem 3.2).
Therefore, for the boundary value problem (2.2) it is of interest to construct special schemes the
solution of which does converge e-uniformly.

For the case of the Dirichlet problem (2.2a), an e-uniformly convergent finite difference scheme is
found in [22, 23].

3. CLASSICAL DIFFERENCE SCHEME
To solve the problem (2.2) we first use a classical finite difference method. On the set D we introduce

the rectangular grid
Dy, =w; x Wa, (3.1)

where @, is a , in general non-uniform, grid on the interval [0,ds] and N; is the number of nodes
of the grid w,, s = 1, 2. Define Eg = gitl — mi, h, = max; ki, h < M N7, where h = max, h,,
N =ming Ny, s =1,2; D), = DN Dy, Ty, =T'N Dy,. For problem (2.2) we use the difference scheme

Az2)2(z) = f(z), = € Dp, (3.2a)
z(z) = p(z), T €T}, (3.2b)
/\(32)2(1‘) = w(w)a T € P?n (320)
6HZ($) = 77(3?); z € FI:: (32d)

where

A@zg)z(z) = g2 Z as(m)éz_saz(m) — b(z)bz72(z) — c(z)2(z),
s=1,2

B eabg,z(z) — (1 —a)z(z), =z =0,
Aaz2(@) = { —eabzz(z) — (1 — a)z(z), z9=da,

6~ z(z) is the second divided difference on a non-uniform grid, and é,,z(z) and éz-z(z) are the first
forward and backward divided differences.

The difference scheme (3.2), (3.1) is monotone (that is the maximum principle holds) [17]. By
means of the maximum principle, and using the estimates of the derivatives (see [11]), we find that
the solution of the scheme (3.2)-(3.1) converges (for a fixed value of the parameter ¢) as

|u(z) — z(z)] < Me™*N~' | zeD,. (3.3)

THEOREM 3.1 Let u € C*(D). Then, for a fixed value of the parameter ¢, the solution of the scheme
(3.2)—(3.1) converges to the solution of the boundary value problem (2.2) with an error bound given

by (3.3).
Clearly (3.3) does not imply e-uniform convergence of the difference scheme. In fact it can be shown

that it is impossible to obtain e-uniform convergence for the difference scheme (3.2)-(3.1) on a fixed
e-independent mesh. The proof is found in [21]. We summarise this result in the following theorem.
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THEOREM 3.2 (see [11]) On an e-independent grid of type (3.1), the solution of the classical finite
difference scheme (3.2),(4.2) does not converge e-uniformly to the solution of the boundary value
problem (2.2).

We want to make the following interesting observation. We consider problem (2.2). If we take in
l(2.2) the parameter € = 1 (leaving € unchanged in (2.2a) and A(3.4), but adapting it in A(3) ), then
no singular part will appear as a first term in the expansion w.r.t. €. Hence, the classical scheme will
be e-uniform convergent in this case.

4. THE FITTED DIFFERENCE SCHEME

For parabolic problems with parabolic layers, it was shown in [11] that there does not exist a difference
scheme only based on fitting of the coefficients, for which the solution converges e-uniformly to the
solution. Here we show a similar result for the elliptic boundary value problem (2.2). Let us consider

the problem
0

Lsyu(z) = *Au(x) — Du(a) =0, z €D, (4.12)
1
u(z) =0, z €Tt (4.1b)
lo.oyu(z) = P(z), z € o, (4.1¢)
3} -
%u(m) =0, z€I'7, (4.1d)

where () o
_ Po(xr), x €T, xz2=0,
w(@) = { 0, z €TI0 z,#0,

and the function v¥g(z1), z1 € [0,d;1] is sufficiently smooth. The solution of problem (4.1) is the
singular solution.

Let us introduce a class, called class A, of finite difference schemes for problem (4.1), for the
construction of which we use uniform meshes:

ﬁ: = {Eh(?,_l),where Ws = w," are uniform grids, s =1,2}. (4.2)

and also (for the approximation of equation (4.1a)) a standard five-point, fitted finite difference oper-
ator
Asyz() ={ Y (Aubo,z + Bubs, — C}2(z) = E, x € Dy (4.3)

s=1,2

Here the coefficients A,, B,, C, E are functionals of the coefficients of equation (4.1a) and also depend
on z, hy, hs, and . We suppose that for hy ™! — 0 and h; — 0 these coefficients A;, B,, C, E
approximate the data of equation (4.1a), in the uniform norm, in the neighbourhood of at least one
point the boundary layer region.

THEOREM 4.1 In the class A of finite difference schemes there does not exist a difference scheme of
which the solution converges e-uniformly to the solution of the boundary value problem (4.1).
The proof of this theorem is rather complex. An outline of the principle steps is found in [24, 28].

Remark 1. A statement similar to Theorem 4.1 is also true in the case when the difference schemes
are constructed on a more general stencil with a finite number of nodes.

The results of Theorem 4.1 and Remark 1 can be explained as follows. All solutions of problem (4.1)
(defined by different functions 1 (z)) are singular solutions. Those solutions can not be represented
as linear combinations of a finite number of fixed functions of boundary layer type (boundary layer
functions).
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Let us introduce class B of finite difference schemes for problem (2.2), for the construction of which
we use rectangular grids Eh(&l), which are generally non-uniform and a five-point finite difference
operator (in general a fitted operator) of the standard form. The coefficients of the difference operator
are, as before, functionals of the coefficients of the equation (2.2a) and also depend on z, £ and on the
distance between the nodes of the stencil used. Again, we suppose that for h — 0 the coefficients of
the difference operator approximate (in the uniform norm) the coefficients of equation (2.2a) on the
set -Dh(3.1)-

We remark that class B is a natural class for constructing finite difference schemes for problem (2.2)
as it includes both fitted methods and methods with special condensing grids. This is in contrast
to class A, which contains only schemes on uniform meshes. Consequences of Theorem 4.1 include
results such as:

COROLLARY 4.2

In the case of boundary value problems of type (2.2), class B of finite difference schemes does not
contain any difference scheme which, on grids with arbitrary distribution of nodes, can achieve e-
uniform convergence of the solution to solution of boundary value problem (2.2) by the use of a fitted
method.

COROLLARY 4.3
In the case of boundary value problems of type (2.2), the use of special condensing grids (or adaptive
meshes) is necessary for the construction of € -uniformly class B finite difference schemes.

5. DIFFERENCE SCHEME OF METHOD OF SPECIAL CONDENSING MESH

We now construct an e-uniformly convergent scheme for the boundary value problem (2.2). We use
a special condensing mesh (in the neighbourhood of the boundary layers), where the distribution of
the nodes is defined by a-priori estimates of the solution and its derivatives. This approach is similar
to that in [24, 25, 28], where the Dirichlet problem was studied.

Consider the special grid

D, =w x @, , (5.1)

where W,* = ©Wy"(0) is a special piecewise uniform mesh, @; is a uniform mesh, ¢ is a parameter
which depends on e and N,. The mesh @,*(0) is constructed as follows. The interval [0,d3] is
divided into three parts [0,0], [0,d2 — 0], [d2 — 0,d2], 0 < 0 < d2/4. Each subinterval [0,0] and
[do — 0,d2] is divided into N3/4 equal cells and the subinterval [o,d2 — o] into N2/2 equal cells.
Suppose 0 = g(e, N3) = min[dy /4, meln Ny | where m is arbitrary number.

The difference scheme (3.2), (5.1) belongs to class B. The scheme is constructed using an a priori
adapted mesh. Distribution of the nodes on grid ﬁh* ensures ¢ -uniform approximation of the boundary
value problem. This is formalised in the following theorem (see also [11]).

THEOREM 5.1 The solution of difference scheme (3.2), (5.1) converges e -uniformly to the solution of
boundary value problem (2.2). The following bound holds for the error

lu(z) — 2(z)] < MN~'Y3 | zeD, . (5.2)

The proof of this theorem will appear in a future paper.

6. NUMERICAL RESULTS

Theoretically (see Theorem 3.2) it has been shown that the classical difference scheme (3.2) on the
uniform grid (4.2) does not converge e-uniformly in the [*°-norm to the solution of the boundary value
problem (2.2). But it could be the case that the error maxy, |2(z) — u(z)| is relatively small for the
classical scheme, which would reduce the need for a special scheme.
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On the other hand, Theorem 5.1 shows that the special scheme (3.2),(5.1) converges e-uniformly,
but no indication is given about the value of the order constant M in (5.2) and the order of convergence
is rather small. It might be that the error is relatively large for any reasonable values of Ny, Ny. This
would reduce the practical value of the special scheme. The following numerical experiments address
these issues.

6.1. The model problem

To see the effect of the special scheme in practice, for the approximation of the model problem we
study the singularly perturbed elliptic equation with a mixed boundary condition

Ligayul(e) = *Au(e) - 5 u(a) = -1, weD , (6.1)

lie.yu(z) = ¥(z), zel |
3}
— + — -
u(z) =0, zel™ o2 u(z) =0, zel'™,

where
_ ae(8/0z)u(z) — (1 — a)u(z), z9=0,
leyule) = { —ae (8]0 ulz) — (1 — a)u(z), zp=1.

We compare the numerical results for the classical scheme (3.2), (4.2) and the special scheme (3.2),
(5.1). Here D = {z : 0 < @1, 29 < 1},

. 1, :EEFO,:B2=0,
¥(z) = { 0, zel®azy=1.

For the solution of problem (6.1), we have the representation
u(z) =U(z) + W(z), zeD,

where U(z) = z1, 2€D, is the outer solution, and W(z) represents the parabolic boundary layer in
the neighbourhood of the edges at xo = 0 and 2 = 1. We have the following bounds on the solution

—1<u(z) <1, zeD.

Due to Theorem 5.1 the solution of the discrete problem with the adapted mesh converges e-
uniformly to the solution of our model problem (6.1). The function up(z), which is the solution of
the special scheme (3.2),(5.1) is shown in Figure 1

6.2. The behaviour of the numerical solution of the classical scheme

To see the difference between the use of the uniform and the adapted grid, for the approximation of
(6.1) we first use the classical scheme (3.2),(4.2). We solve the problem for different values of the
mesh width h; = hg = N~! and for different values of the parameters £ and o. The results for a set
of numerical experiments is given in Table 14. From Table 14 we can see that the solution of scheme
(3.2)-(4.2) does not converge e-uniformly. The errors, for a fixed value of N, depend on the parameters
€ and a. For € > 0.1 and @ = 0.0,0.1,0.5,1.0 the error behaviour is regular: when N increases, the
error decreases. For ¢ = 1073 and a = 0.0,0.1,0.5 and for ¢ = 1072 and a = 0.0, for some values
of N the error increases with increasing N. For a = 0.5,1.0 and a fixed N the error increases with
decreasing ¢. In particular, for e = 1073 and a = 0.5, 1.0 the errors for N < 128 are of the same order
or larger than (in £*°-norm) the solution of the BVP. Thus, the numerical results illustrate that the
lack of e-uniform convergence leads to large errors indeed.
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FIGURE 1. Solution computed with the adapted mesh, ¢ = 0.01, « = 0.5, N = 32 and m = 1.0.

TABLE 14. Table of errors E(N, e, ) for the classical scheme

N 4 8 16 32 64 128

€ a

1 000 | 0105 0633(1) 0329(-1) 0.158(1) 0.696(-2) 0.241(-2)
107! 0.305 0.144  0.655(-1) 0.291(-1) 0.122(-1) 0.403(-2)
102 0.247 0.127  0.822(-1)  0.107  0.882(-1) 0.246(-1)
10-2 0.246 0.121  0.588(-1) 0.283(-1) 0.157(-1) 0.200(-1)

1 | 010 | 0.691(-1) 0.381(-1) 0.170(-1) 0.744(-2) 0.314(-2) 0.104(-2)
1071 0.312 0.149  0.701(-1) 0.310(-1) 0.129(-1) 0.423(-2)
1072 0.247 0.194 0.185 0.156 0.109 0.583(-1)
1073 0.246 0.209 0.216 0.216 0.211 0.197

1 | 05 | 0.852(1) 0401(1) 0.183(1) 0842(2) 0359(2) 0.119(-2)
107! 0.706 0.473 0.254 0121  0.526(-1) 0.176(-1)
1072 1.20 1.26 1.15 0.893 0.557 0.279
1073 1.28 1.43 1.49 1.48 1.41 1.27

1 | 1.0 | 0123  0610(1) 0288(1) 0.132(1) 0562(2) 0.187(-2)
10! 1.52 0.752 0.344 0.154  0.643(-1) 0.211(-1)
1072 18.2 10.3 5.19 2.40 1.02 0.408
107? 187. 109. 57.9 29.5 14.6 7.01

In this table the error E(N, ¢, o) is defined by
E(N,e,0) = max |e(z; N, g, )|, (6.2a)
2€EDy,
e(z;N,e,0) = z(z) — u*(z), (6.2b)

where u*(z) is the piecewise interpolation of 232°(z), m = ms.1) = 1 (see Table 15), and

z(x) = 2" () is the solution of (3.2),(4.2) with h1 = he = N~'. Notice that u*(z) is an
accurate approximation of u(zx).
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TABLE 15. Table of errors E(N, ¢, a) for the special scheme

N 4 8 16 32 64 128

€ a

1 | 00| 0105 0633(-1) 0329(-1) 0.158(-1) 0.696(-2) 0.241(2)
10! 0.262 0.144  0.655(-1) 0.291(-1) 0.122(-1) 0.403(-2)
10-2 0.246 0.147  0.807(-1) 0.361(-1) 0.148(-1) 0.497(-2)
10~3 0.246 0.147  0.807(-1) 0.361(-1) 0.148(-1) 0.497(-2)

1 |01 ]0691(1) 0381(1) 0.170(-1) 0.744(-2) 0.314(-2) 0.104(-2)
107! 0.276 0.149  0.701(-1) 0.310(-1) 0.129(-1) 0.423(-2)
10-2 0.246 0.170  0.887(-1) 0.461(-1) 0.240(-1) 0.924(-2)
10-2 0.246 0.160  0.887(-1) 0.461(-1) 0.241(-1) 0.925(-2)

1 |05 ] 0852(-1) 0.401(-1) 0.183(-1) 0.842(-2) 0.359(-2) 0.119(2)
10! 0.611 0.473 0.254 0121 0.526(-1) 0.176(-1)
1072 0.539 0.511 0.361 0.217 0.111 0.420(-1)
1073 0.535 0.511 0.361 0.217 0.111 0.420(-1)

1 | 10| 0123 0610(1) 0.283(1) 0.132(1) 0.562(2) 0.187(2)
10! 1.14 0.752 0.344 0.154  0.643(-1) 0.211(-1)
10-2 0.977 0.889 0.554 0.301 0.144  0.521(-1)
1073 0.963 0.888 0.554 0.301 0.144 0.521(-1)

In this table the function E(N,e,a) is defined by (6.2), but now z(z) = z:Y (z) in (6.2) is

the solution of (3.2),(5.1) with m =m.1) =1 and Ny =N =N

6.3. The behaviour of the numerical solution of the special scheme

In Table 15 we show the behaviour of (3.2),(5.1), with m = m5.1) = 1, applied to the model problem
(6.1) From Table 15 we can see that the solution of the scheme (3.2)-(5.1) does converge e-uniformly
indeed. The errors for a fixed value of e = 1.0,107%,1072,1072 and o = 0.0,0.1,0.5,1.0 have all a
regular behaviour and decrease for increasing N. For a fixed value of o and N the error stabilises for
decreasing ¢: the errors for ¢ = 1072 and & = 103 are practically the same. For ¢ < 1072 and a fixed
value of N we find the largest error for & = 1.0. In particular, for ¢ < 1072, o = 1.0 and N = 128 the
error is less than 6%. Also here, the numerical results illustrate the practical value of e-convergent
methods.

CONCLUSION

For the elliptic boundary value problem (2.2), where a small parameter multiplies the highest deriva-
tive, we have analysed different approaches for the construction of discrete methods. We present
methods for which the accuracy of the discrete solution does not depend on the value of the small
parameter, but only on the number of points in the discretisation.

We show that in a natural class of finite difference schemes, for the problem considered, no e-uniform
methods exist on a uniform grid (Theorem 4.1). As a consequence, for the construction of e-uniform
methods the use of an adapted non-uniform mesh is necessary. With a special, adapted, non-uniform
mesh and a simple classical difference scheme, we are able to construct an e-uniform approximation

To illustrate the practical importance of our study, for a model problem we show by a numerical
example that, on a uniform grid, the classical difference scheme is not e-uniformly convergent. In
our example, the error (with a Neumann boundary condition) is not less than 700% of the solution,
for N=128 and ¢ = 1073, The same example shows that we might obtain an e-uniformly convergent
solution if we use the adapted mesh. Now the error is not larger than 6% of the solution, for any value
of the parameter . Thus, the numerical example illustrates that the theoretical considerations have
practical implications indeed.
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Part V

Parabolic equations with a discontinuous
boundary condition

1. INTRODUCTION

The solution of partial differential equations that are singularly perturbed and / or have discontinuous
boundary conditions generally have only limited smoothness. Due to this fact difficulties appear when
we solve these problems by numerical methods. For example for regular parabolic equations with
discontinuous boundary conditions, classical methods (FDM or FEM) on regular rectangular grids
do not converge in the £*°-norm on a domain that includes a neighbourhood of the discontinuity
[19, 20, 11].

If the parameter multiplying the highest-order derivative vanishes, boundary- and interior layers
generally appear. When a discontinuity is present in the initial function (given at ¢t = 0), an interior
layer is generated. Outside a neighbourhood of the discontinuity classical difference schemes converge
in the £*°-norm for each fixed value of the small parameter, but they do not converge in the £*°-norm in
the neighbourhood of the discontinuity. Neither do they converge uniformly in ¢ in any neighbourhood
of the interior layer [19, 20]. Therefore, it is interesting to construct special methods which are £°-
convergent for parabolic PDEs with discontinuous initial functions, both in the regular and in the
singularly perturbed case. In the latter case it is important to see if and when such convergence can
be uniform in the small parameter on the whole domain of definition.

In [19, 20] singularly perturbed parabolic equations with discontinuous boundary conditions were
studied. There, special difference schemes were constructed for these problems. In order to be able to
construct a method that was uniformly convergent (in the small parameter ¢), special variables were
used in the neighbourhood of the discontinuity. By introducing the variables 8 = m/(25\/f) and t, the
singularity was removed from the boundary value problem and the solution became a smooth function
in the new variables. This behaviour of the transformed solution allows the use of a classical scheme
in the transformed variables in the neighbourhood of the singularity. Away from the singularity the
classical scheme can be used with the original variables.

This transformation in the neighbourhood of the singularity implied the use of a specially condensed
grid in the neighbourhood of the boundary and interior layers. So we can say that the technique is
based on: (i) fitted methods in which the coefficients of the difference equations are adapted to the
singularities; (ii) methods that use special, refined meshes in the neighbourhood of singularities. For
these schemes £*°-convergence on the whole domain is proved, uniformly in the small parameter, but
a disadvantage of these schemes is that they are very hard to realise in practice.

Because fitting of the coefficients, combined with fitting of the mesh is generally too complex for
practical application, in the present paper we propose a new method in which only the coefficients are
adapted. We use a uniform rectangular grid and a special difference equation with fitted coefficients.
This method is much easier to realise.

For the construction of the new scheme the coefficients are selected such that the solution of a model
problem with a piecewise constant, discontinuous initial function is the exact solution of the difference
equations. This difference scheme with adapted coefficients is studied in this paper and it is compared
with the classical scheme.

As was shown in [19, 20], no scheme exists that converges uniformly on a uniform grid for the
general problem with a parabolic layer. However, for problems with an interior layer, the present
method has this favourable property, and, in addition, numerical examples show that the method has
practical value for far more general equations with discontinuous boundary conditions.
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2. PROBLEM FORMULATION

We consider the Dirichlet boundary value problem for the following singularly perturbed equation of
parabolic type

Ly nyu(z,t) = f(z,t), (z,t)€q,
uet) = o), (m0)es, (212)
where
G={(z,t) —1<2<1,0<t<T}, S=G\G, (2.1b)
? 15}
L(2_1) = E2W — p(t)a — C(t) . (21C)

The parameter € may take any value e€(0,1]. The coefficients ¢(t), p(t) and the source f(z,t) are
sufficiently smooth functions on G and the coefficients are positive:

«(t) 20, p(t)>po>0, (,0)eC. (2:2)
The boundary function ¢(z,t) has a discontinuity? of the first kind on the set S*:
S* = {(z,t)|]z = 0,t = 0}.

For simplicity S* consists of a single point only. Outside S* the function ¢(z,t) is sufficiently smooth
on S.

Such boundary value problems with discontinuous boundary condition describe for example the
temperature in a heat transfer problem, when two parts of a material with different temperatures are
instantaneously connected [15]. Then, the small parameter ¢ corresponds to a small heat conduction
coeflicient.

The solution of the boundary value problem (2.1) is a function ueC(G\S*) N C?1(G), that is on
G it is C? in z and C! in t.

We say that the discrete approximation converges e-uniformly (or uniformly in €) on G if the £>-
norm of the error converges to zero on G, uniformly in e.

For the construction of a special difference scheme we shall use the standard function wg(z, t), which
is discontinuous on S*,

wo(z,t) = wo(z,t;p1) = %v( z \/E), (z,t)eG\S*, (2.5)

2\ ¢t

where p; = p(0) and v(§) = erf(¢§) = 2= fog exp(—a?) da is the error function. For ¢t = 0, at the point
z = 0 the function (2.5) is defined by continuous extension. The function wq(z,t) is the solution of

the constant coefficient equation

2
L(2.6)u($, t) = (5267 _plg) u(m,t) = 07 (ZE,t)GG. (26)

2 A piecewise continuous function v(z,t), (z,t)€S\S*, is redefined at the discontinuity by

v(z,t) = % {sl{rhv(z +s,t) + sli/rr(l)v(.z + s,t)} , (z, t)ES™, (2.3)

and the jump in the discontinuity is defined by

[v(z,t)] = {81{1}] v(z + s,t) — sl% v(z + s,t)} ,(z, t)ES™. (2.4)
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This function is piecewise constant on S at ¢ = 0 and has a discontinuity of the first kind in S™* :
[wo(0,0)] =1.
Suppose

=exp|{— t@ wo (2 ; wi = tp—l
Wo(a, ) = p( / o ds) o, m(t);pr), with n(t) = / B de. (2.7)

Then the function Wy(z,t) is continuous on G'\S*, it is a solution of the homogeneous equation
L(Qll)u(m,t) = 0, (.'E,t)GG (28)

On S the function u(z,t) is continuous and piecewise smooth. For simplicity we suppose that
u(z,t) is sufficiently smooth on the boundary of G, and that a compatibility condition is satisfied at
the corner points. We are interested in the solution of problem (2.1) in the neighbourhood of the point
of discontinuity and in the neighbourhood of the generated interior layer. Therefore, we suppose that
the boundary conditions at £ = 41 are such that no boundary layers appear.

3. AN e-UNIFORMLY CONVERGENT SCHEME

On the set G we introduce the rectangular grid
Gh=wXuwp. (3.1)

Here w and wy are uniform grids on the segments [—1, 1] and [0, 7] respectively. For some N, Ny > 0
we take z; = ih, i€Z; -1 < x; <1; h=2/N; t = jr; 7 =0,1,2,..., Ny, 7=T/Np; and

Gh:Gﬂ@h; Sh:Sﬂ@h; S,’{:S*ﬂ@h.

On the set Sj the boundary function ¢(z,t) is defined by

oet) = 5 { lim 6(s,) + lim ¢(s,t)} . (@0)est. (3.2)

For the numerical approximation of (2.1) we may use classical difference approximations (see [16,
17]). For example, in the case of the implicit central difference scheme we have

A@z.a)z(z,t) = f(z,t), (z,t)eGh,
z(z,t) = ¢(x,t),  (x,t)€Sh, (3.3a)
where
A@.3) = €6z — p(t)é7 — c(t), (3.3b)

with 6;z(z,t) and éyzz(z,t) the usual first and second difference of z(z,t) on the uniform grids wy
and w respectively; the bar denotes the backward difference. It is well known that the operator A (3.3
is monotone [17], which implies that the maximum principle holds for (3.3).

Nevertheless, the classical difference scheme (i) does not converge on the whole domain @Z = Gp\S;
for a fixed value of ¢, and (ii) outside a neighbourhood of the discontinuity it does not converge
uniformly with respect to £ in the interior layer (see Section 4). To obtain uniform convergence, in
the present paper we introduce a specially fitted scheme for the approximation of equation (2.1a),

mat)7 (m7t)€Gh7

(
Aot) = ¢(z.t),  (z.8)€Sh, (3.4a)



where
Az.a) = e2vy(x, )b,z — p(t)é; — c(t). (3.4b)
According to the principle mentioned in the introduction, here y(z,t) is a fitting coefficient or

fitting factor, which is chosen such that the singular solution, W(pz,t), is the exact solution of the
homogeneous difference equation (3.5):

A.ayWo(z,t) = {e2y(z,t)8,z — p(t)67 — c(t)} Wo(z,t) =0, (z,t)eGh. (3.5)

More generally we can select y(z, t) such that (3.5) is satisfied by v(z,t) = Wy(z,t)+uo(z,t), where
Wy is the singular solution and ug is some smooth solution of the homogeneous equation

L(Z.l)u(ma t) =0, (CB’ y)EG . (36)
This leads to the following expression for ~:

_ p(t) (=, t) + c(t)v(z, t)
V(@) = €2 8,zv(z,t)

, (z,t)eGh, (3.7)

for any point (z,t) where §,zv(z,t) # 0.

We notice that for ug(z,t) = 0 the differences é6,zv(x,t) and 6;v(z,t) can be very small because of
the exponentially small derivatives of Wy (z,t) for large z/(ev/t). To improve the numerical behaviour
in the computation of vy(z,t), we choose the function ug such that the differences §,zWy and 8,zuo
have the same sign, for (z,t)€Gp. In particular, in the remaining part of this paper we take, for

example,
’ wo(@, ) = —{w3+652x/0t1%d5} exp (_ /Ot;%du) | (2,4)eC, (3.8)

so that, for example for ¢(t) = 0 and p(t) = 1, we obtain
ug(z,t) = uez.g)(z,t) = —z® —62xt, (x,t)eC. (3.9)
Then, for y(z,t) we have the general representation

(2,1) = p(t)(5:Wo(z, t) + bquo(z,t)) + c(t)(Wo(z,t) + uo(z,t))
&= e28,zWo(z,t) + e26,zu0(z, t)

T #0, (3.10)

where the functions Wy and wg are defined by (2.7) and (3.8) respectively. Note that §,zv = év =
v=0,at z =0, t > 0. Therefore, for definiteness, we set y(z,t) = 1 at £ = 0. 3 Now we define the
resulting difference scheme as (3.4), where v(z,t) is determined by (3.10).

Under the condition that

73/2
o < ¢(h,T) (3.11)
where ¥ (h,7) > 0 and ¢¥(h,7) — 0 for h,7 — 0, then the scheme (3.4,3.10) converges uniformly in e:
max |u(z,t) — z(z,t)| < M {(h+7)" +¢(h,7)}, (3.12)
Gp
for any v€(0,1/3).
If, for instance,
3
h > O(r20+7) (3.13)
then
max |u(z,t) — z(z,t)| < M(R"* + 1), (3.14)

Gh
for any v1€(0,1/3). Thus, we have the following theorem [10]

3According to (2.7) to compute §,zWo(z,t) on time layer ¢t = jT we use the difference derivative §,zwo(z,n(t)).
The difference derivatives §;Wo(z,t), 8,zWo(z,t), 6;uo(z,t), 6,zuo0(x,t) can easily be found, for example when the
functions p(t) and c(t) are analytical.
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THEOREM 3.1 Under condition (3.11), the solution of the difference scheme (3.4,3.10) converges on
G}, in the discrete £°°-norm to the solution of problem (2.1) uniformly in e. Under the conditions (3.11)
or (3.13) respectively, the estimates (3.12) or (3.14) hold for the solution of the difference problem.

4. NUMERICAL RESULTS

By theory [19, 20] and by numerical experiments [9] it is shown that, for discontinuous initial con-
ditions, classical difference schemes do not converge in the £*°-norm everywhere on the set G} \S*,
even for a fixed value of €. Neither do they converge uniformly in e in the neighbourhood of the
interior layer, outside a neighbourhood of S*. However, both the true solution u(z,t) and the nu-
merical approximation z(z,t) are bounded, uniformly in £ and it may be the case that the error
maxg, |2(z,t) — u(z,)| is relatively small for the classical difference scheme. That would reduce the
need for a special scheme.

On the other hand, the above theorem shows that the fitted scheme converges uniformly in & on G,
but no indication is given about the value of the order constant M in (3.14). Moreover, the order of
convergence is rather small. It might be possible that the error is rather large for any reasonable value
of h or 7. This might also reduce the practical value of our fitted scheme. To decide on the practical
value of the new scheme numerical experiments are necessary to provide a more detailed comparison.

4.1. The model problem

To see the effect of the fitted scheme in practice, for the approximation of the model problem for a
singularly perturbed heat equation with a discontinuous initial condition

Lgyyu(z,t) = 523‘9—; - %u(z,t) =0, (z,t)eq,
(4.1)
u(z,t) = ¢(z,t), (z,t)es,

we compare the numerical results for the classical scheme (3.3) and the fitted scheme (3.4, 3.10). For
problem (4.1) we have
v(z,t) = wo(z,t; 1) + us.g)(z,t),

so that the coefficient v(z,t) in (3.4) takes the form

6;w0(z,t)—652z

A~ for (z,t)€Gp,z #0
e26_—wo(x,t)—6e2x ’ ’ ’

(e, t) = =l (4.2)
1 for (z,t)eGh,z =0.

For e = 1/8, N = 32, Ny = 40 the solution of the model problem (4.1), with
5
o(z,t) = §w0(fﬂ,t) + ua(z, t), (z,t)€S, (4.3)

ug(z,t) = —(z + 0.5)% — 2%, (4.4)
for which we have the representation
5 A\ Qx
u(z,t) = ug(z,t) + 5w0(m, t), (z,t)eG\S™, (4.5)
is shown in Figure 1. The fitting coefficient (4.2) is shown in Figure 3. We can see that the solution
has a jump at S* for t = 0, and for ¢t > 0 it is smooth. The space derivatives of the solution are large

in the neighbourhood of the interior layer. The fitted coefficient varies strongly in the neighbourhood
of the set S* and becomes almost constant (equal to 1) away from S*.
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Computed solution

FIGURE 2. Computed solution with the fitted scheme.

The solution of problem (4.1,4.3) with w4 qy(z,t) = %wo (z,t) + ua(z, t);
e=1/8 N = 32; N, = 40.

Coefficients

,,,",i;; 00
W%
///4////%""' gy

FI1GURE 3. Coefficients y(z,t) in the fitted scheme.

Scheme (3.10), for the same problem as used in Figure 1.
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4.2. Results with the classical difference approzimation for the model problem

We show the behaviour of the classical difference scheme (3.3), central in 2 and backward in ¢, for the
model problem (4.1,4.3). We know that this scheme converges for a fixed parameter € on each smooth
part of the solution of (4.1,4.3). Therefore we are primarily interested in the singular part of the
solution for problem (4.1,4.3). Hence, we select the boundary conditions such that u(z,t) = wo(z,t),

o(z,t) = wo(z,t), (z,t)eS. (4.6)

For the approximation of problem (4.1,4.6) we use the classical scheme (3.3). We solve the problem
for different values of the mesh, h = 2/N, and the time step, 7 = 1/Np, and for different values of
the small parameter €. The results for a set numerical experiments are summarised in Table 16 and
Table 17.

TABLE 16. Table of errors E(N, Ny, ) for the classical scheme.

No N
8 16 32 64 128 256
10 e=1 | 576(2) 6.08(2) 6.16(2) 6.25(2) 6.26(2) 6.26(-2)
40 2.48(-2) 5.69(-2) 6.01(-2) 6.10(-2) 6.20(-2) 6.20(-2)
160 2.93(-2) 247(-2) 5.69(-2) 6.01(-2) 6.10(-2) 6.20(-2)
640 3.18(-2) 293(-2) 247(-2) 5.69(-2) 6.01(-2) 6.10(-2)
10 c=1/8 | 3.18(2) 2.03(2) 247(2) 569(2) 6.01(2) 6.10(2)
40 3.27(-2) 3.18(-2) 293(-2) 247(-2) 5.69(-2) 6.01(-2)
160 3.20(-2) 3.27(-2) 3.18(-2) 2.93(-2) 247(-2) 5.69(-2)
640 3.29(-2) 3.29(-2) 3.27(-2) 3.18(-2) 2.93(-2) 2.47(-2)
No = 40 1 2.48(-2) 5.69(-2) 6.01(2) 6.10(2) 6.20(-2) 6.20(-2)
0.5 | 293(-2) 247(-2) 5.69(-2) 6.01(-2) 6.10(-2) 6.20(-2)
272 | 3.18(-2) 2.93(-2) 247(-2) 5.69(-2) 6.01(-2) 6.10(-2)
273 | 3.27(-2) 3.18(-2) 2.93(-2) 247(-2) 5.69(-2) 6.01(-2)
2=t | 2.70(-2) 3.27(-2) 3.18(-2) 2.93(-2) 2.47(-2) 5.69(-2)
275 | 7.69(-3) 2.70(-2) 3.27(-2) 3.18(-2) 2.93(-2) 2.47(-2)
276 | 1.95(-3) 7.69(-3) 2.70(-2) 3.27(-2) 3.18(-2) 2.93(-2)
2-7 | 4.88(-4) 1.95(-3) 7.69(-3) 2.70(-2) 3.27(-2) 3.18(-2)
278 | 1.22(-4) 4.88(-4) 1.95(-3) T7.69(-3) 2.70(-2) 3.27(-2)
27 | 3.05(-5) 1.22(-4) 4.88(-4) 1.95(-3) 7.69(-3) 2.70(-2)
In this table E(N, No, &) = max. .\ cg, le(z,t; N, No, &)|, e(z, t; N, No, &) = z(z,t) —wo(z,t)

with h = 2/N and 7 = 1/No.
The solution wyg is as defined in (2.5) with p; = 1.

We notice that asymptotically for larger N or Ny and smaller £, the £°°-norm of the error does not
depend on £, N and N; independently , but behaves as depending on a single parameter Nye~? or
Ne=1 for Table 16, and Nye—2 or N for Table 17. Note that |w0(a:,t)l§ 0.5. From Table 16 we see

that for no value of the parameter € we can guarantee the error on G to be less than 12% for any
sufficiently large N, Np:

= -1 >
m(K,e) N’%gK{[(gfgalwo(w,t)l] E(N,No,e)} > 12%

when K is sufficiently large. From the results in Table 17 we see that for no values of Ny, N we can
guarantee the error on G, t > 0.2 to be less than 6% for €€(0, 1]:

12(N,No) = max{[ max |wo(z,t)]]" E(N, No,e)} > 6%.
€ (z,t)EG,t>0.2
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TABLE 17. Table of errors Eg 2(N, Ny, ) for the classical scheme.

No N
8 16 32 64 128 256

10 e=1 | 3.08(-2) 3.39(-2) 3.40(-2) 3.40(-2) 3.40(-2) 3.40(-2)
40 1.01(-2) 9.37(-3) 9.28(-3) 9.22(-3) 9.21(-3) 9.21(-3)
160 3.77(-3)  2.73(-3) 2.45(-3) 2.38(-3) 2.37(-3) 2.36(-3)
640 2.12(-3) 9.97(-4) 6.98(-4) 6.22(-4) 6.02(-4)  5.98(-4)
10 e=1/8 | 3.18(-2) 2.05(-2) 2.47(-2) 3.01(-2) 3.32(-2) 3.33(-2)
40 3.27(-2) 2.45(-2) 7.67(-3) 8.62(-3) 8.59(-3) 8.65(-3)
160 3.29(-2) 2.56(-2) 7.40(-3) 2.59(-3) 2.29(-3) 2.20(-3)
640 3.29(-2) 2.50(-2) 7.57(-3) 2.17(-3) 7.35(-4) 5.89(-4)
No =40 1 1.01(-2) 9.37(-3) 9.28(-3) 9.22(-3) 9.21(-3) 9.21(-3)
0.5 7.67(-3) 8.62(-3) 8.59(-3) 8.65(-3) 8.62(-3) 8.61(-3)
27?2 2.45(-2) 7.67(-3) 8.62(-3) 8.59(-3) 8.65(-3) 8.62(-3)
273 3.27(-2) 2.45(-2) 7.67(-3) 8.62(-3) 8.59(-3) 8.65(-3)
27* 2.66(-2) 3.27(-2) 2.45(-2) 7.67(-3) 8.62(-3) 8.59(-3)
275 7.50(-3) 2.66(-2) 3.27(-2) 2.45(-2) 7.67(-3) 8.62(-3)
27° 1.90(-3) 7.50(-3) 2.66(-2) 3.27(-2) 2.45(-2) 7.67(-3)
277 | 4.76(-4) 1.90(-3) 7.50(-3) 2.66(-2) 3.27(-2) 2.45(-2)
278 1.19(-4) 4.76(-4) 1.90(-3) 7.50(-3) 2.66(-2) 3.27(-2)
27° 2.98(-5) 1.19(-4) 4.76(-4) 1.90(-3) 7.50(-3) 2.66(-2)

In this table Eo.2(N, No,e) = max .eF, +>0.2 le(z,t; N, No, €)|, e(z,t; N, No, &) = z(z,t) —

wo(z,t) with h = 2/N and 7 = 1/No.
The solution wp is as defined in (2.5) with p; = 1.

Thus, the computations also confirm that: (i) the classical scheme converges on the set G}, with
t > tp > 0 for a fixed value of € (ii) on G\S* the classical scheme does not converge for any fixed ¢;
(iii) on the set G, with t > to > 0 the scheme does not converge uniformly in €.

4.8. A fitted difference approzimation

Let us study the behaviour of the fitted scheme applied to model problem (4.1,4.3), where the function
u(z,t) is the sum of a smooth and a singular part

w(z, ) = us(z, ) + gwo(m,t), (2, £)€C\S* . (4.7)

Because the problem is linear, we can study both parts of the error independently. First we consider
the behaviour of the fitted scheme for the singular part, that is for the model problem with

¢($:t) = wO(wa t) ) (m,t)eé\S*, (48)

as we did for the classical scheme. This initial function wg(z,t) is a representative example from the
class of initial functions with a discontinuity. For problem (4.1,4.8) we have the solution

u(z,t) = wo(z,t), (z,t)eG\S*. (4.9)

Then, considering the smooth part of the solution in the expression (4.7) we study problem (4.1) with

d(z,t) = uz(x,t) = —(z +0.5) — 2%, (z,t)eCG. (4.10)
For problem (4.1,4.10), we have the solution

u(z,t) = ug(z,t), (z,t)eqG. (4.11)
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TaABLE 18. Table of errors E(N, Ny, ) for the new scheme.

No N
8 16 32 64 128 256

10 e=1 | 226(-2) 1.96(-2) 1.89(-2) 1.87(-2) 1.87(-2) 1.87(-2)
40 1.27(-2) 1.06(-2) 1.01(-2) 1.01(-2) 1.00(-2) 1.00(-2)
160 7.74(-3) 5.30(-3) 4.30(-3) 4.16(-3) 4.08(-3) 4.07(-3)
640 6.13(-3) 3.01(-3) 1.79(-3) 1.43(-3) 1.34(-3) 1.31(-3)
10 c=1/8 | 546(-3) 3.01(-:3) 1.79(-3) 143(-3) 1.34(-3) 1.31(-3)
40 5.56(-3) 2.30(-3) 9.47(-4) 5.28(-4) 4.17(-4) 3.88(-4)
160 557(-3) 2.12(-3) 7.00(-4) 2.64(-4) 1.44(-4) 1.12(-4)
640 5.58(-3) 2.07(-3) 6.36(-4) 1.92(-4) 6.90(-5) 3.66(-5)
No = 40 1 1.27(-2) 1.07(-2) 1.01(-2) 1.01(-2) 1.00(-2) 1.00(-2)
0.5 | 7.74(-3) 5.30(-3) 4.30(-3) 4.16(-3) 4.08(-3) 4.07(-3)
272 | 6.13(-3) 3.01(-3) 1.79(-3) 1.43(-3) 1.34(-3) 1.31(-3)
273 | 5.56(-3) 2.30(-3) 9.47(-4) 5.28(-4) 4.17(-4) 3.88(-3)
2% | 448(-3) 1.70(-3) 6.56(-4) 2.60(-4) 1.44(-4) 1.12(-4)
275 | 1.23(-3) 6.55(-4) 3.69(-4) 1.46(-4) 5.90(-5) 3.27(-5)
276 | 3.08(-4) 1.79(-4) 837(-5) 5.67(-5) 2.63(-5) 1.12(-5)
277 | T.71(-5) 4.47(-5) 2.28(-5) 1.05(-5) T.77(-6) 4.25(-6)
278 | 1.93(-5) 1.12(-5) 5.71(-6) 2.86(-6) 1.34(-6) 1.15(-6)
27° | 4.82(-6) 2.80(-6) 1.43(-6) 7.15(-7) 3.58(-7) 2.09(-7)

In this table the scheme (3.4) is used to solve a problem (4.1,4.8) with an interior layer.
E(N, No,¢e) = max. . e@, le(z,t; N, No, )|, e(z,t; N, No,e) = z(z,t) — wo(z,t) with h =
2/N and 7 = 1/Ny; the solution wy is as defined in (2.5) with po = 1.

TABLE 19. Table of errors E(N, Ny, ¢).

No I N
8 16 32 64 128 256

10 e=1 | 5.10(-2) 872(2) 1.16(-1) 1.36(-1) 1.47(-1) 1.53(-1)
40 1.46(-2) 2.27(-2) 3.15(-2) 3.89(-2) 4.50(-2) 4.87(-2)
160 7.19(-3) 5.87(-3) 7.00(-3) 8.44(-3) 9.83(-3) 1.10(-2)
640 7.32(-3) 4.05(-3) 2.74(-3) 2.22(-3) 2.08(-3) 2.32(-3)
10 e=1/8 | 7.32(-3) 4.05(-3) 2.74(-3) 2.22(-3) 2.08(-3) 2.32(-3)
40 7.44(-3) 3.17(-3) 1.64(-3) 1.03(-3) 8.52(-4) 8.00(-4)
160 7.46(-3) 2.94(-3) 1.25(-3) 6.06(-4) 3.74(-4)  3.04(-4)
640 7.46(-3) 2.89(-3) 1.15(-3) 4.63(-4) 2.09(-4) 2.55(-4)
No = 40 1 1.46(-2) 2.27(-2) 3.14(-2) 3.89(-2) 4.50(-2) 4.87(-2)
0.5 7.19(-3) 5.87(-3) 7.00(-3) 8.44(-3) 9.83(-3) 1.10(-2)
272 | 7.32(-3) 4.05(-3) 2.74(-3) 2.22(-3) 2.08(-3) 2.32(-3)
273 | 7.44(-3) 3.17(-3) 1.64(-3) 1.03(-3) 8.52(-4) 8.00(-4)
27% | 5.98(-3) 2.39(-3) 1.25(-3) 6.06(-4) 3.74(-4)  3.04(-4)
27° 1.64(-3) 1.75(-3) 1.00(-3) 4.59(-4) 2.09(-4) 1.26(-4)
276 | 4.11(-4) 4.77(-4) 4.47(-4) 3.04(-4) 1.47(-4) 6.90(-5)
277 | 1.03(-4) 1.19(-4) 1.22(-4) 1.12(-4) 8.30(-5) 4.45(-5)
278 | 2.57(-5) 2.98(-5) 3.04(-5) 3.05(-5) 2.80(-5) 2.17(-5)
279 6.42(-6) 7.45(-6) 7.61(-6) 7.63(-6) 7.63(-6) 7.01(-6)

In this table the scheme (3.4) is used to solve a problem (4.1,4.10) with a smooth solution.
In this table E(N, Ng, &) = max., ez, le(z, t; N, No, €)|, e(z,t; N, No, &) = z(z,t) —ua(z, t)
with A = 2/N and 7 = 1/Np; the solution u; is as defined in (4.9).
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The results of these numerical experiments are given in Tables 18 and 19.

From the results in Tables 18 and 19 we see that the errors for singular and regular parts, wo(z,t)
and uz(z,t) respectively, decrease for N, Ny large enough, and a fixed value of the parameter ¢ = 27K
K =0,1,.... Also the errors decrease with increasing N uniformly in . The relative error is less
than 1% for N > 8, Ng > 160, ¢ = 275 K > 0 when u(z,t) = wo(z,t). The relative error is also less
than 1% for the same parameters when u(z,t) = ua(z,t).

The functions Swq(x,t) and us(z,t) are components of the solution of the problem (4.1), (4.3).
Thus we have: (i) for the model problem (4.1), (4.3) the numerical scheme converges for a fixed ¢ in
the discrete £°-norm on Gj; (ii) we observe e-uniform convergence for the model problem (4.1, 4.3);

(iii) the relative error for the model problem is less than 2% for N, Np sufficiently large.

4.4. The error analysis for the fitted difference scheme

To determine the quality of the convergence, using the data from the Tables 18 and 19 we can examine
the experimental order of convergence of the fitted scheme.

When we use the classical scheme (3.3) for problem (4.1,4.11) then, according to the classical theory,
we typically find an estimate of the form

_mz\nc |uz(z,t) — 2(3.3)(z,t)| < Q(e)(h? + 1), (z,t)eCh. (4.12)
Gr\S*

This estimate means that the function z(3.3)(,t) converges to the function ua(z,t) for each fixed value
of £. The constant Q(g) tends to infinity for € — 0.

From theory we know that the solution of the fitted difference scheme (3.4, 3.10) z(z,t) converges e-
uniformly to the solution of problem (4.1,4.11). To investigate the e-uniform convergence of a function
z(z,t) = z(z,t;e, h,T), it is natural to express an error estimate in the form

max max |u(z,t,e) — z(x,t;e,h,7)| < M(R? + 1), (4.13)
€ Gh\S"

where v does not depend on the parameters €, h or 7. To compute v we shall use an inequality of the

form
‘max |u(z,t,e) — 2(z, t;e,h, 7)| < M(h2 + 7)) (4.14)
Gh\S*

We call v(g) in expression (4.14) the generalised order of convergence for a fized value of the pa-
rameter €, and v in expression (4.13) the generalised order of e-uniform convergence.
We determine the experimental generalised order at the point (N, Ng) by

(N, No,e) = (In E(N, No,e) —1ln E(2N,4Ny,€))/In4, (4.15)

where E(N, Ny,¢) = maxg, \ g« |u(z,t,e) — z(z,t;e,h,7)|, AN = 2 and 7Ny = 1. We introduce the
experimental generalised order of convergence for fixed e as

7(6) = IrVn}\%) D(N, Nﬂys) s (416)

and the experimental generalised order of e-uniform convergence as

7 = min 7(e). (4.17)

g

Similarly the the ezperimental e-uniform generalised order at the point (N, Ny) is
(N, Nyg) = min (N, Ny, ). (4.18)
€

The results are given in the Tables 21 and 20.

40



TABLE 20. Experimental generalised order of convergence 7(N, Ny, €).

No N
8 16 32 64 128
10 e=1 0.544 0479 0.454 0.450 0.450
40 0.631 0.653 0.640 0.650 0.651
160 0.681 0.782 0.792 0.818 0.818
10 e=1/8 | 0.625 0.834 0.882 0.891 0.892
40 0.696 0.858 0.922 0.938 0.945
160 0.714 0.868 0.932 0.967 0.987

€

No =40 1 0.631 0.653 0.640 0.650 0.651
0.5 0.681 0.782 0.792 0.818 0.818
272 0.708 0.834 0.882 0.891 0.892
273 0.854 0904 0.934 0.939 0.946
274 1.387 1.104 1.084 1.070 1.067
275 1.391 1.484 1.351 1.237 1.195
276 1.392 1.485 1.498 1.433 1.314
277 1.393 1.485 1.498 1.486 1.378
278 1.393 1.485 1.498 1.500 1.340

The fitted scheme (3.4,3.10) for the problem (4.1,4.8), applied to the solution u(z,t) =
wo(z,t) with the interior layer. (N, No, &) = (In E(N, No,&) —In E(2N,4No,€))/1In 4,

E(N, Ng,¢) from Table 18.

TABLE 21. Experimental generalised order of convergence 7(N, Ny, ).

N() 13 N
8 16 32 64 128
10 e=1 0.583 0.736 0.789 0.795 0.798
40 0.656 0.850 0.949 0.992 1.016
160 0.413 0.551 0.828 1.012 1.041
10 | e=1/8 | 0.604 0.652 0.702 0.691 0.687
40 0.668 0.669 0.719 0.733 0.744
160 0.685 0.676 0.718 0.769 0.276
€ N
Ny =40 1 0.656 0.850 0.949 0.992 1.016
0.5 0.413 0.551 0.828 1.012 1.041
0.25 0.603 0.652 0.702 0.691 0.687
0.125 0.820 0.669 0.719 0.733 0.744
24 0.887 0.627 0.724 0.769 0.783
275 0.891 0.984 0.859 0.820 0.799
26 0.892 0.985 0.998 0.938 0.863
277 0.893 0.985 0.998 0.999 0.966
28 0.893 0.985 0.998 1.000 1.000

7(N, No,£) = (In E(N, No, ) — In E(2N, 4Ny, ¢))/ In 4,

E(N, No,¢) from Table 19.

Computation with the new scheme (3.4,3.10) for the smooth solution u(z,t) = uz(z,t).
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From the results in the Tables 20 and 21 we see: (i) for wo(z,t) and ue(z,t) the experimental
generalised order of e-uniform convergence for the fitted scheme is approximately 0.413 and 0.450
respectively; (ii) for N > 16 and Ny > 40 the generalised orders of e-uniform convergence for wo(z, t)
and ua(z,t) are apparently not less than 0.50. This means that in practice

max |u(z,t) — z(z,t)| < M(h+7'/?)

Gh
for N > 16 and Ny > 40, 0 < € < 1, for each value of the parameter €. In accordance with the theory,
for each value of €, the experimental generalised order of convergence tends to 1 for decreasing h and
7. Thus, the experimental generalised order of convergence for the fitted scheme (3.4, 3.10) for the
full model problem (4.1, 4.3) is not less than predicted by the theory. The behaviour of the errors
e(z,t; N, Ny, €) = z(z,t) — u(z,t) for the fitted scheme (3.4, 3.10) and for the classical scheme (3.3)
are shown in the Figures 2 and 5. We can see that the largest errors are in the neighbourhood of the
set S* and that the errors for the classical scheme are significantly larger than for the fitted scheme.
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FIGURE 4. Discretisation error the fitted scheme.

Scheme (3.4,3.10) is used for the same problem as used in Figure 1.
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FIGURE 5. Discretisation error the classical scheme.

Scheme (3.3) is used for the same problem as used for Figure 1.
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5. CONCLUSION

For a singularly perturbed boundary value problem of parabolic type with discontinuous initial condi-
tion (2.1), we have constructed a specially fitted difference scheme that converges in G\ S* e-uniformly
in the £°°-norm.

Numerical experiments for a model boundary value problem with discontinuous boundary function
show that a classical difference scheme does not converge e-uniformly. Moreover, for a fixed value of
€ this scheme doesn’t converge in the £*°-norm in the neighbourhood of the discontinuity, and away
from the discontinuity it does not converge e-uniformly in the neighbourhood of the interior layer. In
the case of the constant coefficient problem and a simple discontinuity, for which the error-function
is the solution, an error of less than 6% on G, t > ¢ty = 0.2, and less than 12% on G\S* can not be
guaranteed for arbitrarily small h or 7.

Theoretically and numerically it is also shown, that the fitted difference scheme converges e-
uniformly in the £*°-norm on G}. Moreover in the case of the fitted scheme, for a model problem, an
experimental generalised order of convergence of not less than 0.5 is observed if » < 1/8 and 7 < 0.025
e.g. v(e,N,Ng) > 0.5 at N > 16, Ny > 40. The experimental generalised order of convergence is
substantially larger than the bound guaranteed by the theory. Both for the singular and for the regular
part of the solution an error less than 1% is guaranteed for N > 8, Ny > 40 and for any e€(0, 1].
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