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ABSTRACT

The polynomials Pn and Qm having degrees n and m respectively, with Pn monic, that

solve the approximation problem

Pn(z)e
�z +Qm(z) = O �zn+m+1

�

will be investigated for their asymptotic behaviour, in particular in connection with the

distribution of their zeros. The symbol O means that the left-hand side should vanish at the

origin at least to the order n+m+1. This problem is discussed in great detail in a series of

papers by Sa� and Varga. In the present paper we show how their results can be obtained

by using uniform expansions of integrals in which Airy functions are the main approximants.

We shall focus on the important diagonal case when n = m and the polynomials Pn and

Qn, as well as the remainder En;n(z) = Pn(z)e
�z +Qn(z) can be expressed in terms of

Hankel and Bessel functions. The approximate location of the zeros of Pn; Qn and En;n are

given in terms of the known zeros of certain Airy functions. An application is given in which

the asymptotic information on the zeros is used to obtain an estimate in an approximation

of the unit block function by means of the polynomials Pn; Qn.

1991 Mathematics Subject Classi�cation: 41A21, 30E15, 33C10, 30C15, 41A60.

Keywords & Phrases: Pad�e polynomials, asymptotic behaviour, uniform asymptotic methods,

exponential function, Bessel functions, Airy functions, zero and pole distribution.
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1. Introduction
It is well known (cf. Perron (1950, page 433)) that the solution of the Pad�e approximation

problem for the exponential function, namely,

Pn(z)e
�z +Qm(z) = O �zn+m+1

�
as z ! 0; (1:1)

where Pn and Qm are polynomials of degree n and m respectively, with Pn monic, is given

by

Pn(z) =
1

m!

Z 1

0

tm(t+ z)ne�t dt;

Qm(z) =
�1
m!

Z 1

0

tn(t� z)me�t dt:

Explicit forms are (cf. Perron (1950, page 436))

Pn(z) = n!

nX
k=0

�
m+ n� k

m

�
zk

k!
; (1:2)

Qm(z) = �n!
mX
k=0

�
m+ n� k

n

�
(�z)k
k!

: (1:3)

Let the remainder En;m be de�ned by

En;m(z) = Pn(z)e
�z +Qm(z) (1:4)

then

En;m(z) =
(�1)mzm+n+1

m!

Z 1

0

un(1� u)me�uz du:

The quantities Pn; Qm; En;m can be expressed in terms of (con
uent) hypergeometric func-

tions. We have

Pn(z) = U(�n;�n�m; z) = zn+m+1 U(m+ 1; n+m+ 2; z)

Qm(z) = � n!

m!
U(�m;�n�m;�z) = � n!

m!
(�z)n+m+1 U(n+ 1; n+m+ 2;�z)

En;m(z) =
(�1)m+1n!zn+m+1

(n+m+ 1)!
M(n+ 1; n+m+ 2;�z)

=
(�1)m+1n!zn+m+1

(n+m+ 1)!
e�z M(m+ 1; n+m+ 2; z):

(1:5)

In a sequence of papers Sa� and Varga investigated the polynomials Pn; Qm and the

remainder En;m, and the distribution of their zeros, for large values of n;m with �xed ratio

� = m=n (the �nal paper appeared in 1978). They used saddle point methods for the integrals

de�ning the U� and M�functions and found curves in the complex z�plane along which
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the zeros are cumulating. For m = 0 their results agree with the earlier results obtained by

Szeg�o on the distribution of the zeros of the exponential polynomial

en(z) =

nX
k=0

zk

k!
:

In this paper, we adopt a new approach for locating the zeros of Pn; Qm and En;m by

using uniform asymptotic approximations for these functions in terms of Airy functions.

Approximate values of the zeros of Pn; Qm and En;m are given in terms of the (known) zeros

of certain Airy functions. For all positive integers m and n, contour integral representations

of Pn; Qm and En;m can be given and uniform asymptotic methods applied to these contour

integrals (cf. Driver & Temme (1996a,b)). Our investigations here will focus on the

diagonal case n = m where certain simpli�cations occur. For n = m, the quantities Pn; Qn

and En;n can be expressed in terms of Hankel and Bessel functions which permit Airy-type

approximations to be done via Sommerfeld contour integrals, which seem not to be available

in the general non-diagonal case.

2. The relations with Bessel and Hankel functions
In the diagonal case n = m we have using the representations in (1.5) (cf. also Abramowitz

& Stegun (1964, pages 509, 510))

Pn(z) = ��
1
2 zn+

1
2 ez=2K

n+ 1
2
(z=2); En;n(z) =

1
2
(�1)n+1 �

1
2 zn+

1
2 e�z=2 I

n+ 1
2
(z=2): (2:1)

It follows immediately from (1.2) and (1.3) that, when m = n,

Qn(z) = �Pn(�z): (2:2)

Of course, since the [m=n] Pad�e approximant for e�z is �Qm(z)=Pn(z), the zeros of Pn(z)

are the poles of this Pad�e approximant and the above symmetry of Pn and Qn means that

knowledge about the zeros of either one of the polynomials su�ces for both. Nevertheless,

for our discussion, it is better to write Pn and Qn in terms of di�erent Bessel functions.

We have given in (2.1) the relations with modi�ed Bessel functions. For obtaining the

asymptotic expansions it is better to write the functions in terms of ordinary Bessel and

Hankel functions. We recall the expansions (cf. Watson (1944, page (201)) or Temme

(1996, page 239))

H
(1)

n+ 1
2

(z) =
p
2=(�z) e�(n+1)�i=2+iz

nX
m=0

(+i)m(n+ 1
2
;m)(2z)�m; (2:3)

H
(2)

n+ 1
2

(z) =
p
2=(�z) e+(n+1)�i=2�iz

nX
m=0

(�i)m(n+ 1
2
;m)(2z)�m; (2:4)
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where Hankel's symbol (�;m) is de�ned by

(�;m) =
�( 1

2
+ �+m)

m! �( 1
2
+ ��m)

; m = 0; 1; 2; : : : :

Since

(n+ 1
2
;m) =

(n+m)!

m!(n�m)!
for m = 0; 1; : : : ; n;

a simple comparison of (2.3) and (2.4) with (1.3) and (1.2) respectively yields the relations

Pn(2iz) = �i(2z)n
p
�z=2 eizH

(2)

n+ 1
2

(z);

Qn(2iz) = �i(2z)n
p
�z=2 e�izH(1)

n+ 1
2

(z);

En;n(2iz) = �i(2z)n
p
2�z e�iz J

n+ 1
2
(z);

(2:5)

where the third line in (2.5) follows from the relation

J�(z) =
1
2

h
H(1)
�

(z) +H(2)
�

(z)
i
: (2:6)

It is known where the zeros of these Bessel functions occur when n is large. For Jn+1=2(z)

they are located in the interval (n;1). For En;n(z) this gives an in�nite set of zeros along

the positive imaginary axis, in the interval (2in; i1); there is a conjugate set in (�2in;�i1).

The Hankel functions have zeros along curves in the complex plane which start also at z = n;

see Abramowitz & Stegun (1964, page 373). For Pn(z) this gives n zeros in the half-plane

<z < 0 along an arc from 2in to �2in. The arc cuts the real positive axis at z = �2na,
where a = 0:66274 : : : . The zeros of Qn(z) are located in the right half-plane, and they follow

from Qn(z) = �Pn(�z).
We give asymptotic representations of Pn; Qn and En;n for large values of n in terms of

Airy functions. In Olver (1974, Ch. 11. x10) Airy-type expansions of the Bessel functions
J�(�z) and H

(j)
� (�z) are considered, but in the present case we need similar representations

for J
n+ 1

2
(nz) and H

(j)

n+ 1
2

(nz).

3. Airy-type approximations for Bessel and Hankel functions
We give the main steps for deriving Airy-type approximations for Bessel and Hankel functions

by using the Sommerfeld contour integrals. Since uniform asymptotic approximations of

J�(�z);H
(1)
� (�z) and H

(2)
� (�z) can be found in Olver (1974, p. 423{425) we can use the

formulas in (2.5) to write down the corresponding approximations for Pn[2i(n+
1
2
)z]; Qn[2i(n+

1
2
)z] and En;n[2i(n + 1

2
)z] immediately. In Olver's book the results are derived by using

the di�erential equation of the Bessel functions, and the results are shown to hold in large

domains of complex parameters and are provided with error bounds for the remainders in

the expansions.

Because in the non-diagonal case, and also in Hermite-Pad�e approximations to the expo-

nential functions (both aspects are studied in our future papersDriver & Temme (1996a,b))
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these powerful results and methods are not available, we give in this preparatory paper the

standard procedure based on the Sommerfeld integrals. A similar procedure will be used in

the more general cases on more complicated integrals. In the Hermite-Pad�e case di�erential

equations are not known for the corresponding polynomials.

We have (Olver (1974, p. 58))

J�(z) =
1

2�i

Z
C
ez sinh t��t dt;

where C is a contour starting at 1� �i and terminating at 1+ �i. It follows that

J
n+ 1

2
(nz) =

1

2�i

Z
C
en�(t)�

1
2
t dt; �(t) = z sinh t� t:

Solving the equation �0(t) = 0, gives the saddle points

t� = ��; � = arccosh
1

z
: (3:1)

When 0 < z < 1, these points are real, when z > 1 they lie on the imaginary axis. In order

to obtain a standard form which can be used for obtaining a uniform expansion that is valid

when the saddle points are close together, or coincide, we use the cubic transformation

�(t) = 1
3
�3 � �� +A; (3:2)

where the saddle points t� should correspond with the saddle points �p� in the ��plane.
This transformation was introduced by Chester, Friedman & Ursell (1957). They

showed that the mapping is one-to-one and analytic for all z in a neighborhood of z = 1,

which is a local result. In fact, it can be shown (cf. Driver & Temme (1996b)) that the

mapping is one-to-one and analytic in a domain containing the path of integration.

The cubic transformation gives, upon substituting t = t�; � = �p� ,

2
3
�3=2 = � � tanh �; A = 0: (3:3)

If 0 < z < 1 then � and � are positive. We can also write for positive z:

2
3
�3=2 = arctanh

p
1� z2 �

p
1� z2 ; 0 < z � 1;

2
3
(��)3=2 =

p
z2 � 1 � arctan

p
z2 � 1 ; z � 1;

(3:4)

which gives a better insight in the relation between � and z. We can expand the arctanh-

function to obtain
2
3
�3=2 = 1

3
(1� z2)3=2 + 1

5
(1 � z2)5=2 + : : : ;

which gives

� = 21=3(1� z) [1 +O(1� z)] ; z ! 1: (3:5)
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This de�nes the relation near z = 1. For complex values of z this relation should be used

with analytic continuation to de�ne which branch of the multi-valued function �3=2 is used.

Using the cubic transformation we obtain

J
n+ 1

2
(nz) =

1

2�i

Z
C
en(

1
3
�
3���)f(�) d�; f(�) = e�

1
2
t
dt

d�
; (3:6)

where C is a contour running from 1 exp(��i=3) to 1 exp(�i=3), through the saddle point

at � =
p
� . The �rst order Airy-type uniform approximation is obtained by replacing f(�)

with
f0 =

1
2
[f(
p
� ) + f(�p� )]

= cosh 1
2
�
dt

d�

���
�=
p
�

=

r
z + 1

2z

�
4�

1� z2

�1=4

:

(3:7)

This gives (compare with Olver (1974, page 425) and Abramowitz & Stegun (1964, page

368))

J
n+ 1

2
(nz) � n�1=3 f0Ai

�
�n2=3

�
; n!1 (3:8)

and, by using the third line in (2.5),

En;n(2izn) � �i
p
� n�1=3 (2zn)n+1=2 e�iznf0Ai

�
�n2=3

�
: (3:9)

In a similar way we obtain for the Hankel functions

H
(1)

n+ 1
2

(nz) =
1

�i

Z 1+�i

�1
en�(t)�

1
2
t dt

=
1

�i

Z
C(1)

en(
1
3
�
3���)f(�) d�

� �2n�1=3 f0 e2�i=3Ai
�
�n2=3e2�i=3

�
;

Qn(2izn) � i
p
� n�1=3 (2zn)n+1=2 e�iznf0 e2�i=3Ai

�
�n2=3e2�i=3

�
;

(3:10)

H
(2)

n+ 1
2

(nz) =
�1
�i

Z 1��i

�1
en�(t)�

1
2
t dt

=
�1
�i

Z
C(�1)

en(
1
3
�
3���)f(�) d�

� �2n�1=3 f0 e�2�i=3Ai
�
�n2=3e�2�i=3

�
;

Pn(2izn) � i
p
� n�1=3 (2zn)n+1=2 eiznf0 e

�2�i=3Ai
�
�n2=3e�2�i=3

�
;

(3:11)
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where C(j) are contours running from �1 to 1 exp(j�i=3); j = �1; 1. The results for the

Hankel functions yield the Bessel function result because of the relation in (2.6) and (cf.

Olver (1974, page 414))

e�2�i=3Ai
�
ze�2�i=3

�
+ e2�i=3Ai

�
ze2�i=3

�
+Ai(z) = 0:

We can obtain more terms in the approximations given in (3.9) { (3.11) by using standard

methods for obtaining uniform expansion of integrals (cf. Wong (1989)). On the other

hand, as remarked at the beginning of this section, detailed information on this type of

uniform expansions can be obtained from Olver (1974).

4. Locating the zeros

Having available the asymptotic approximations in terms of the Airy functions we can obtain

approximations of the locations of the zeros of Pn; Qn; En;n. The only zeros of the Airy

function Ai(z) occur along the negative z�axis, and there are in�nitely many zeros (cf.

Olver (1974, p. 415)). When the argument of the Airy function in (3.9) is negative, we have

� = exp(�i�), and �3=2 = �i. Because the right-hand side of (3.4) is purely imaginary when

z > 1, we conclude that an in�nite string of zeros of En;n(2izn) occurs near the intervals

(�1;�1); (1;1) (in fact all zeros are real and inside these intervals). The zeros of the

polynomials Pn(2izn); Qn(2izn) are located along curves in the z�plane that are de�ned by

� exp(�2�i=3) < 0; � exp(+2�i=3) < 0, respectively, where, again, the relation between � and

z is given in (3.4).

To obtain a �rst approximation of these zeros, we use (3.9){(3.11). Let aj be the zeros

of Ai(z) (we have a1 = �2:3381 : : :; see Abramowitz & Stegun (1964, p. 478) for more

values). Then the zeros zs of Pn(2izn) follow from the single term estimate obtained from

the �nal line in (3.11)

�s � ase
2�i=3n�2=3; n!1;

and by inverting the relation between � and z (cf. (3.4)). More precise asymptotic estimates

follow from using more terms in the uniform asymptotic approximations in (3.9){(3.11) (cf.

Driver & Temme (1996b)). The zeros of Pn(2izn) near z = 1 satisfy (cf. (3.5))

zj � 1� aj2
�1=3e2�i=3n�2=3; n!1: (4:1)

4.1. The condition for the zeros

We compare the condition for the location of the zeros of the quantities Pn; Qn; En;n as

given in Saff & Varga (1978) with the condition that follows from the uniform Airy-type

asymptotic approximation. Sa� and Varga introduce the quantity

w1(z) =
2ize

p
1�z2

1 +
p
1� z2

; (4:2)
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where we translated their notation into ours (that is, we take � = m=n = 1 and change z

into iz). According to Sa� and Varga, the zeros of the three quantities Pn; Qm; En;m occur

along curves in the z�plane de�ned by

jw1(z)j = 1: (4:3)

By using z = 1= cosh � (cf. (3.1)), a straightforward computation shows that

lnw1(z) =
1
2
�i+ tanh � � � = 1

2
�i� 2

3
�3=2; (4:4)

where 2
3
�3=2 is de�ned in (3.3). The condition (4.3) can be read as: lnw1(z) is purely

imaginary. So an equivalent formulation of (4.3) reads: ��3=2 is purely imaginary, that is,

the phase of � equals �� or ��=3. In other words, � is located on the rays where the zeros

of Ai(z) and Ai(e�2�=3z) lie. This is in agreement with our description of the location of the

zeros given earlier in this section.

5. An application: approximating the block function
As an application we consider the approximation of the block function

f(t) =

�
1; if 0 < x < 1;

0; otherwise.
(5:1)

This function plays an important role in, for instance, the theory of electronics. We describe

a method to obtain approximations of the block function by using Pad�e approximants of the

exponential function. By using the estimates of the zeros of the polynomials Pn(z) given in

x4 we derive an asymptotic estimate of the error in the approximation of the block function.

By taking the Laplace transform of f and inverting we can write

f(t) =
1

2�i

Z
L
est

�
1� e�s

� ds
s
; (5:2)

where L is a vertical line in the half-plane <s > 0. To obtain smooth approximations of f we

can replace the exponential function exp(�s) with its Pad�e approximations, and we obtain

fn(t) =
1

2�i

Z
L
est

�
1 +

Qn(s)

Pn(s)

�
ds

s
; n = 1; 2; : : : : (5:3)

For example,

f1(t) = 2 e�2t; f2(t) = 4
p
3 e�3t sin(

p
3 t): (5:4)

From the results in the previous sections it follows that the polynomial Pn(s) in (5.3)

has n simple zeros sj in the left half-plane <s < 0. When we want to evaluate fn(t) of

(5.3) numerically we can split up the rational function into partial fractions and evaluate the

resulting integrals. By using residue calculus it is not di�cult to prove that

fn(t) =

nX
j=1

esjt
Qn(sj)

sj P 0n(sj)
: (5:5)
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= 10n

= 2n

1.0

1.0

0.5

0.5

1.5

1.5

2.0

Figure 5.1. The functions fn(t) of (5.3) that approximate the block

function n = 2; 3; : : : ; 10. The rate of approximation for large values of n

is described in (5.7), for t > 1.

In this way we obtained the �rst elements given in (5.4) and in Figure 5.1. Observe that

s = 0 is not a pole in (5.3).

It is of interest to know the asymptotic nature of the representation in (5.5) for large

values of n. When we order the zeros sj of Pn(s) with respect to their real parts, a sum

of residues as in (5.5) gives an excellent representation with respect to large values of t.

Surprisingly, the situation is di�erent in the present case for large values of n .

The zeros sj with the largest real part (whose corresponding terms in (5.5) dominate the

large t�behaviour) occur near �2in. The behaviour of the sj near s = 2in follows from (4.1):

sj � 2in� aj2
2=3e7�i=6n1=3; n!1: (5:6)

Similar approximations hold near s = �2in, the real axis being an axis of symmetry. From

(2.5) it follows that

Qn(sj)

sj P 0n(sj)
= e�sj

2iH
(1)

n+ 1
2

[sj=(2i)]

sj H
(2)0

n+ 1
2

[sj=(2i)]
= e�sjO

�
n�2=3

�
;

where we have used well-known estimates of the Hankel functions:

H(1)
�

(�z) = O
�
��1=3

�
; H(2)0

�
(�z) = O

�
��2=3

�
; � !1
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with z � 1 (cf. Abramowitz & Stegun (1964, pages 368{369)). Hence,

fn(t) = e(t�1)s1O
�
n�2=3

�
= O

h
n�2=3e�(t�1)ja1j2

2=3 cos(�=6)n1=3
i
; (5:7)

as n!1 (with a1 = �2:3381 : : :), which estimate holds if t > 1.

We see that the expected estimate fn(t) � 1 for 0 < t < 1 cannot be obtained in this

way. Apparently, if 0 < t < 1, all exponentially large contributions in (5.5) cancel against

each other. When we concentrate on the error in the approximation, that is, on

f(t)� fn(t) =
�1
2�i

Z
L
est

En;n(s)

Pn(s)

ds

s
; n = 1; 2; : : : ; (5:8)

we can use saddle point methods. We can write this in the form

f(t)� fn(t) =
(�1)n+1

2i

Z
L
e2w(t�1) I

n+ 1
2
(w)

K
n+ 1

2
(w)

dw

w
; (5:9)

where we used the modi�ed Bessel function representations given in (2.1). We are not pur-

suing this further, because it is outside the scope of this paper.

We conclude this section by stating an interesting property of the approximations fn(t)

de�ned in (5.3). We have Z 1

0

f2
n
(t) dt = 1; n = 1; 2; : : : ; (5:10)

which, on the one hand, says that the L2�norm of the approximant is the same as that of

the block function, but on the other hand, it means that the electronic system, based upon

these functions fn(t), is stable.

To show (5.10) we use (5.5):

I =

Z 1

0

f2
n
(t) dt =

nX
j=1

Qn(sj)

sj P 0n(sj)

Z 1

0

esjtfn(t) dt:

We know from the earlier literature on Pad�e approximations to the exponential function (cf.

Saff & Varga (1978) and their earlier papers) that all zeros sj of Pn(s) are in the left

half-plane <s < 0. Hence, inverting (5.3), we have

I = �
nX

j=1

Qn(sj)

s2
j
P 0
n
(sj)

�
1 +

Qn(�sj)
Pn(�sj)

�
= �

nX
j=1

Qn(sj)

s2
j
P 0
n
(sj)

;

because Qn(�sj) = �Pn(sj) = 0. It is not di�cult to verify that

I =
�1
2�i

Z
C

�
1 +

Qn(s)

Pn(s)

�
ds

s2
;
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where C is a vertical line in the left half-plane such that all zeros of Pn are at left of C; on C
we integrate from �i1 to i1. Using 1 +Qn(s)=Pn(s) = s+O(s2) as s! 0 (which follows

from the representations in (1.2) and (1.3) with n = m), we see that the integrand has a

simple pole at the origin, with residue equal to 1. We shift C across the pole at the origin,

picking up the residue, and observe that the remaining integral over C in the right half-plane

vanishes. Hence, I = 1.

6. Concluding remarks
We have shown how to obtain the location and asymptotic approximation of zeros of the

polynomials that constitute the diagonal Pad�e approximations to the exponential function.

By using uniform Airy-type asymptotic expansions it is possible to give a clear description

of the distribution of the zeros and their asymptotic approximation. We have compared our

method with Sa� & Varga's approach for locating the zeros of the polynomials.

We have used the asymptotic estimates of the zeros for obtaining an asymptotic estimate

of functions that are smooth approximations to the block function, and we have proven a

stability condition for these approximations.

In Driver & Temme (1996b) more details are given on the non-diagonal case. Again

we use Airy-type approximations to obtain the distribution of the zeros and the asymptotic

estimates for the zeros of the polynomials.
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