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ABSTRACT

Airy-type asymptotic representations of a class of special functions are considered from a nu-

merical point of view. It is well known that the evaluation of the coe�cients of the asymptotic

series near the transition point is a di�cult problem. We discuss two methods for computing

the asymptotic series. One method is based on expanding the coe�cients of the asymptotic

series in Maclaurin series. In the second method we consider auxiliary functions that can be

computed more e�ciently than the coe�cients in the �rst method, and we don't need the

tabulation of many coe�cients. The methods are quite general, but the paper concentrates on

Bessel functions, in particular on the di�erential equation of the Bessel functions, which has a

turning point character when order and argument of the Bessel functions are equal.

1991 Mathematics Subject Classi�cation: 41A60, 34E20, 33C10, 65D20.

Keywords & Phrases: Uniform asymptotic expansions, turning points, Airy-type expansions,

Bessel functions, computation of special functions.

Note: Work carried out under project MAS2.8 Exploratory research.

1. Introduction

Writing e�cient algorithms for special functions may become problematic when several large

parameters are involved. In particular problems arise when functions suddenly change their

behaviour, say from monotonic to oscillatory behaviour. For many special functions of mathe-

matical physics powerful uniform asymptotic expansions are available, which describe precisely

how the functions behave, which are valid for large domains of the parameters, and which provide

tools for designing high-performance computational algorithms. An important class concerns the

functions having a turning point in their de�ning di�erential equation, in which case Airy-type

expansions arise.

Airy functions are solutions of the di�erential equation

d2 w

d z2
= z w: (1:1)

Two linearly independent solutions that are real for real values of z are denoted by Ai(z) and

Bi(z). Equation (1.1) is the simplest second order linear di�erential equation that has a simple
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turning point (at z = 0). More general turning point equations have the standard from

d2 w

d �2
=
�
u2 � +  (�)

�
w: (1:2)

and the problem is to �nd an asymptotic approximation of w(�) for large values of u, that holds

uniformly in a neighborhood of � = 0. A �rst approximation is obtained by neglecting  (�),

which gives the solutions

Ai
�
u2=3�

�
; Bi

�
u2=3�

�
:

For a detailed discussion of this kind of problems we refer to Olver (1974 & 1997, Chapter

11). Many physical problems and special functions can be transformed into the standard form

(1.2). Examples are Bessel functions, Whittaker functions, the classical orthogonal polynomials

(in particular Hermite and Laguerre polynomials), and parabolic cylinder functions. The existing

uniform expansions for all these functions are powerful in an analytic sense. In several cases

rigorous and realistic bounds are given for the remainders of the expansions; cf. Olver (1974

& 1997).

From a computational point of view the uniform character of the expansions causes a

di�culty. This is mainly due to the complexity of the coe�cients in the expansions. In all known

cases the coe�cients are di�cult to compute in the neighborhood of the turning point. Usually

this point is of special interest in the algorithms, since many other methods fail in the turning

point area when the parameters are large. In Amos (1986) uniform Airy-type expansions are

used for the evaluation of Bessel functions. Matviyenko (1993) discusses the implementation

of several kinds of asymptotic expansions of the Bessel functions. However, Matviyenko does not

use Airy-type expansions. For the turning point region he proposes numerical quadrature for

the Sommerfeld integral of the Hankel functions, after selecting contours of steepest descents.

It is of interest to compare the algorithms of Amos and Matviyenko with our algorithms, but

we expect to return to this in future publications, when we also want to consider the modi�ed

Bessel functions with purely imaginary order (cf. Dunster (1990) and Temme (1994)).

In this paper we discuss two methods for computing the asymptotic series. One method

is based on expanding the coe�cients in the series into Maclaurin series. We show how to

obtain the coe�cients of the Maclaurin series for the coe�cients of the asymptotic series. In the

second method we consider auxiliary functions that can be computed more e�ciently than the

coe�cients in the �rst method; in addition, we don't need the tabulation of many coe�cients.

In fact we consider di�erential equations for functions representing (in an exact sense) the

asymptotic series, and we base a numerical algorithm directly on these di�erential equations.

Extra features of the second method are:

� we deal with convergent expansions;

� we need only a small number of pre-computed tabulated numbers;

� the method is applicable for quite small values of the large parameter.

In some sense this method is similar to the one described for the computation of incomplete

gamma functions in Temme (1987). In that case the error function is the main approximant.
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The methods described in this paper are quite general, but we only treat the case of Bessel

functions, by using the di�erential equation of the Bessel functions, which has a turning point

character when order and argument of the Bessel functions are equal.

In the following section we summarize the Airy-type expansions for the Bessel functions

and their derivatives. In x3 we describe the method of obtaining Maclaurin series expansions

for the coe�cients in the expansions. In x4 we describe a second method based on an iteration

scheme to compute auxiliary functions that replace the asymptotic series. In a �nal section we

give details of numerical experiments.

2. Airy-type asymptotics of ordinary Bessel functions

The ordinary Bessel functions J�(z) and Y�(z) can be expanded in terms of Airy functions.

From Abramowitz & Stegun (1964, page 368) and Olver (1974 & 1997, page 425) we

obtain the following results,

J�(�z) =
�(�)

�1=3

h
Ai(�2=3�)A�(�) + ��4=3Ai0(�2=3�)B�(�)

i
;

Y�(�z) = ��(�)
�1=3

h
Bi(�2=3�)A�(�) + ��4=3Bi0(�2=3�)B�(�)

i
;

(2:1)

where

A�(�) �
1X
s=0

as(�)

�2s
; B�(�) �

1X
s=0

bs(�)

�2s
(2:2)

as � !1, uniformly with respect to z 2 [0;1). The expansions are valid for complex values of

� and z, but here we concentrate on real values of the parameters.

The parameter � is de�ned by

2

3
�3=2 = ln

1 +
p
1� z2

z
�
p
1� z2 ; 0 � z � 1;

2

3
(��)3=2 =

p
z2 � 1 � arccos

1

z
; z � 1:

(2:3)

Furthermore,

�(�) =

�
4�

1� z2

�1=4

; �(0) = 21=3: (2:4)

The �rst coe�cients as; bs are

a0(�) = 1; b0(�) = � 5

48�2
+
�2(�)

48�

�
5

1� z2
� 3

�
:

Higher coe�cients follow from the representations

as(�) =

2sX
k=0

�k �
�3k=2 u2s�k(t);

bs(�) = ���1=2
2s+1X
k=0

�k �
�3k=2 u2s+1�k(t);

(2:5)
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where t = 1=
p
1� z2 ; �0 = �0 = 1,

�k =
(2k + 1)(2k + 3) � � � (6k � 1)

k! (144)k
; �k = �6k + 1

6k � 1
�k; k = 1; 2; 3; : : : : (2:6)

The quantities uk are given by

uk+1(t) =
1
2
t2 (1� t2)u0

k
(t) + 1

8

Z
t

0

(1� 5�2)uk(�) d�; k = 0; 1; 2; : : : ; (2:7)

with u0(t) = 1.

Asymptotic representations for the Hankel functions follow from the relations

H(1)
�

(z) = J�(z) + iY�(z); H(2)
�

(z) = J�(z)� iY�(z);

and

Ai(z) + iBi(z) = 2e�i=3Ai
�
ze�2�i=3

�
; Ai(z)� iBi(z) = 2e��i=3Ai

�
ze2�i=3

�
:

This gives representations for the Hankel functions with the same structure as for the ordinary

Bessel functions, with the same functions A�(�); B�(�).

2.1. Representations for the derivatives

For the derivatives we have (cf. Abramowitz & Stegun (1964, page 369)0

J 0�(�z) = �b�(�) h��4=3Ai(�2=3�)C�(�) + ��2=3Ai0(�2=3�)D�(�)
i
;

Y 0�(�z) =
b�(�) h��4=3Bi(�2=3�)C�(�) + ��2=3Bi0(�2=3�)D�(�)

i
;

(2:8)

where

b�(�) = �d�
dz

�(�) =
2

z�(�)
;

C�(�) = �(�)A�(�) +A0�(�) + � B�(�);

D�(�) = A�(�) + ��2�(�)B�(�) + ��2B0�(�);
(2:9)

�(�) =
�0(�)

�(�)
=

4� z2[�(�)]6

16�
:

Primes denote di�erentiation with respect to �.

The functions C�(�);D�(z) have the expansions

C�(�) �
1X
s=0

cs(�)

�2s
; D�(�) �

1X
s=0

ds(�)

�2s
; (2:10)

where
cs(�) = �(�) as(�) + a0s(�) + � bs(�);

ds(�) = as(�) + �(�) bs�1(�) + b0
s�1(�);

(2:11)
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The �rst coe�cients cs; ds are

c0(�) =
7

48�
+
�2(�)

48

�
9� 7

1� z2

�
; d0(�) = 1:

Higher coe�cients follow from the representations

cs(�) = ��1=2
2s+1X
k=0

�k �
�3k=2 v2s+1�k(t);

ds(�) =

2sX
k=0

�k �
�3k=2 v2s�k(t);

(2:12)

where t; �k and �k are as in (2.5) { (2.7), and the quantities vk can be expressed in terms of the

uk of (2.7):

vk(t) = uk(t) + t(t2 � 1)
�
1
2
uk�1(t) + t u0

k�1(t)
�
; k = 1; 2; : : : ;

with v0(t) = 1.

Explicit representations of a0
s
(�); b0

s
(�) can be obtained by di�erentiating the relations in

(2.5), but they also follow from the representations for as; bs; cs; ds and from (2.11):

a0
s
(�) = cs(�)� �(�) as(�)� � bs(�);

b0s(�) = ds+1(�)� as+1(�)� �(�) bs(�):
(2:13)

A recursive scheme for evaluating as; bs is given by

a00s (�) + 2�b0s(�) + bs(�)�  (�) as(�) = 0;

2a0s+1(�) + b00s (�)�  (�) bs(�) = 0;
(2:14)

where a0(�) = 1 and

 (�) =
5

16�2
+
�z2(z2 + 4)

4(z2 � 1)3
: (2:15)

The coe�cients as; bs; cs; ds in (2.2) and (2.10) are complicated expressions. Explicit represen-

tations are given in (2.5) and (2.12) in terms of the coe�cients uk of Debye-type asymptotic

expansions. However, these expressions are di�cult to compute near the turning point z = 1, or

equivalently, near � = 0. In Amos (1986) all needed coe�cients as; bs are expanded in Maclau-

rin series at the turning point, the Maclaurin series being in terms of the variable w2 = 1� z2.

2.2. Further properties of the functions A� ; B� ; C� ;D�

Using the Wronskian relation for the Airy functions, viz.

Ai(z)Bi0(z)�Ai0(z)Bi(z) =
1

�
; (2:16)
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we can invert the relations in (2.1) and obtain

A�(�) =
��1=3

�(�)

h
J�(�z) Bi

0(�2=3�) + Y�(�z)Ai
0(�2=3�)

i
;

B�(�) = ���
5=3

�(�)

h
J�(�z) Bi(�

2=3�) + Y�(�z)Ai(�
2=3�)

i
:

(2:17)

The functions A�(�) and B�(�) are the `slowly varying' parts in the representations in (2.1).

Olver's approach for deriving Airy-type expansions for the Bessel functions is based on the

di�erential equation
d2W

d�2
= [�2� +  (�)]W; (2:18)

where  (�) is given in (2.15). This di�erential equation is obtained from the well-known Bessel

equation by using a Liouville-Green transformation; see Olver (1974 & 1997, page 420). The

quantities within the square brackets in (2.1) are two solutions of equation (2.18).

By using equation (2.18), we can derive the following system of di�erential equations for

the functions A�(�); B�(�):

A00 + 2�B0 + B �  (�)A = 0;

B00 + 2�2A0 �  (�)B = 0;
(2:19)

where primes denote di�erentiation with respect to �. To verify this we write equation (2.18) in

the operator form L�W (�) = 0. Applying L� to

W (�) = Ai(�2=3�)A�(�) + ��4=3Ai0(�2=3�)B�(�);

we �nd

L�W (�) = Ai(�2=3�) [A00
�
(�) + 2�B0

�
(�) + B�(�) �  (�)A�(�)]

+ ��4=3Ai0(�2=3�) [B00
�
(�) + 2�2A0

�
(�) �  (�)B�(�)];

(2:20)

where we have used the di�erential equation of the Airy functions; cf. (1.1). Because L�W (�) �
0, the quantities within square brackets in (2.20) must vanish.

A Wronskian for the system (2.19) follows by eliminating the terms with  (�). This gives

A00B �B00A+B2 + 2�B0B � 2�2A0A = 0;

which can be integrated:

�2A2
�(�) +A�(�)B

0

�(�)�A0�(�)B�(�)� �B2
�(�) = �2: (2:21)

The constant on the right-hand side follows by taking � = 0 and from information given later

in this section.
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By using the Wronskian relation for the Bessel functions:

J�(z)Y
0

�
(z)� J 0

�
(z)Y� (z) =

2

�z
; (2:22)

it follows that A� ; B� ; C� ;D� are related in the following way:

A�(�)D�(�)� ��2B�(�)C�(�) = 1: (2:23)

By substituting C�(�);D�(�) of (2.9) into (2.23) we again obtain (2.21).

The system in (2.19) is equivalent to a (4 by 4)-system of �rst order equations, admit-

ting four independent solutions. The solution fA;A0; B;B0g that we need satis�es initial con-

ditions at, say, � = 0. Exact initial values of A;A0; B;B0 at � = 0 can be obtained from

(2.1). They involve values of the Airy functions (and the derivatives thereof) at the origin,

and J�(�); J
0
�
(�); Y�(�); Y

0
�
(�). In a numerical scheme for solving the system (2.19) these initial

values are needed, up to a certain accuracy.

2.3. Values of the coe�cients at the turning point

It is convenient to collect some information from the literature on the initial values at the

turning point � = 0; z = 1 of system (2.19), because these values give insight in recursion

relations discussed later. From Abramowitz & Stegun (1964, page 368) we obtain

J�(�) = ��1=321=3Ai(0)S(�) + ��5=322=3Ai0(0)T (�);

Y�(�) = � ��1=321=3Bi(0)S(�) � ��5=322=3Bi0(0)T (�);

J 0
�
(�) = � ��2=322=3Ai0(0)U(�) � ��4=321=3Ai(0)V (�);

Y 0�(�) = ��2=322=3Bi0(0)U(�) + ��4=321=3Bi(0)V (�);

(2:24)

in which S; T; U; V denote functions having the following asymptotic expansions:

S(�) �
1X
n=0

�n

�2n
; �0 = 1; �1 = � 1

225
;

T (�) �
1X
n=0

�n

�2n
; �0 =

1
70
; �1 = � 1213

1023750
;

U(�) �
1X
n=0


n

�2n
; 
0 = 1; 
1 =

23
3150

;

V (�) �
1X
n=0

�n

�2n
; �0 =

1
5
; �1 = � 947

346500
:

(2:25)

From the Wronskian in (2.22) it follows that

T (�)V (�) = �2 [S(�)U(�)� 1]: (2:26)
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The function �(�) de�ned in (2.4) has expansion �(�) = 21=3+ 1
5
�+O(�2). It follows from (2.1),

(2.8) and (2.22) that

A�(0) = S(�); A0
�
(0) = 2�1=3

�
V (�) � 1

5
S(�)

�
;

B�(0) = 21=3T (�); B0
�
(0) = � 1

5
T (�) + �2 [U(�) � S(�)] :

(2:27)

It is easily veri�ed that A0�(0) = O(��2); B0�(0) = 2
225

+ O(��2); as � ! 1. Observe that

leading terms in V (�)� 1
5
S(�) and U(�)� S(�) cancel each other.

3. Expansions of the coe�cients

Our purpose is to describe an algorithm for computing the Bessel functions J�(�z); Y�(�z) and

their derivatives in the neighborhood of the turning point z = 1 for large values of the parameter

�. The powerful Airy-type expansions can be used for this purpose. We do not consider the

evaluation of the Airy functions here, because several algorithms are available for these functions;

see the overview in Lozier & Olver (1994).

We concentrate on the evaluation of the functions A� ; B� ; C� ;D� introduced in x2 for �

near the origin, say for j�j � 1. For real values of � this gives an interval in the z�domain

around z = 1, that is, [0:39; 1:98]. A straightforward method is based on using Maclaurin series

expansions of the quantities involved in powers of �.

The singular points of the functions z(�);  (�); �(�); b�(�); �(�) and those of the coe�cients

of the asymptotic expansions occur at

�� =
�
3
2
�
�2=3

e�i�=3 (3:1)

(see Olver (1974 & 1997, page 421)). These points correspond with the z = e�i�. It follows

that the radius of convergence of the Maclaurin series of these quantities equals 2:81 � � �. In this

section we give the expansions and mention the values of the early coe�cients.

It is convenient to start with an expansion of z in powers of �. We obtain from (2.3)

� z2 = (1� z2)

�
dz

d�

�2

and substitute z = 1 + z1� + : : : . This gives z31 = �1=2. Using the relations in (2.3) we obtain

the correct branch: z1 = �2�1=3. We write

� = 21=3 �; (3:2)

and we obtain in a straightforward way the expansions shown in Table 3.1.

Next we consider the coe�cients as; bs that occur in (2.2). We expand

as(�) =

1X
t=0

ats�
t; bs(�) = 21=3

1X
t=0

bts�
t; (3:3)
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z(�) =

1X
n=0

zn�
n =

�
1� � + 3

10
�2 + 1

350
�3 � 479

63000
�4 + : : :

�
;

 (�) = 21=3
1X
n=0

 n�
n = 21=3

�
1
70

+ 2
75
� + 138

13475
�2 � 296

73125
�3 � 38464

7074375
�4 + : : :

�
;

�(�) = 21=3
1X
n=0

�n�
n = 21=3

�
1 + 1

5
� + 9

350
�2 � 89

15750
�3 � 4547

1155000
�4 + : : :

�
;

b�(�) = 22=3
1X
n=0

b�n�n = 22=3
�
1 + 4

5
� + 18

35
�2 + 88

315
�3 + 79586

606375
�4 + : : :

�
;

�(�) = 2�1=3
1X
n=0

�n�
n = 2�1=3

�
1
5
+ 2

175
� � 64

2625
�2 � 30424

3031875
�3 + 173648

197071875
�4 + : : :

�
:

Table 3.1. First terms of the Maclaurin expansions of the functions

z(�);  (�); �(�); b�(�); �(�); the parameter � is given by � = 2�1=3 �.

where � is given in (3.2). The coe�cients ats; b
t

s are rational numbers. We know that a0(�) = 1.

Substituting the expansions in (2.14) we can obtain recursion relations for the coe�cients ats; b
t

s.

It follows that

2(2t + 1) bts = 2

tX
r=0

 r a
t�r

s � (t+ 1) (t + 2) at+2s ;

2(t+ 1) at+1
s+1 = 2

tX
r=0

 r b
t�r

s
� (t+ 1) (t + 2) bt+2

s
;

(3:4)

The relations are used for �xed s � 0, while t = 0; 1; 2; : : : . When s = 0 the �rst relation gives

bt0 =  t=(2t + 1); t = 0; 1; 2; : : : . We observe that the second relation does not give a value for

a01. The same problem occurs for all values of s.

To �nd a0s we can use (2.21). By substituting the expansions of (2.2), it follows that for

s = 0; 1; 2; : : :

s+1X
r=0

ar(�) as+1�r(�) +

sX
r=0

�
ar(�) b

0

s�r(�)� a0
r
(�) bs�r(�)� �br(�) bs�r(�)

�
= 0: (3:5)

Putting � = 0 yields

2a0
s+1 = �

sX
r=1

a0
r
a0
s+1�r �

sX
r=0

�
a0
r
b1
s�r � a1

r
b0
s�r

�
; s = 0; 1; 2; : : : : (3:6)

In this way we obtain the expansions shown in Table 3.2. Expansions for the coe�cients cs; ds
are not really needed, because these quantities follow from the relations in (2.11), if expansions

for the functions in the right-hand sides of (2.11) are available.



10

a0(�) = 1;

a1(�) = � 1
225

� 71
38500

� + 82
73125

�2 + 5246
3898125

�3 + 185728
478603125

�4 + : : : ;

a2(�) =
151439

218295000
+ 68401

147262500
� � 1796498167

4193689500000
�2 � 583721053

830718281250
�3 + : : : ;

a3(�) = � 887278009
2504935125000

� 3032321618951
9708942993750000

� + : : : ;

b0(�) = 21=3
�
1
70

+ 2
225

� + 138
67375

�2 � 296
511875

�3 � 38464
63669375

�4 + : : :
�
;

b1(�) = 21=3
�� 1213

1023750
� 3757

2695000
� � 3225661

6700443750
�2 + 90454643

336992906250
�3 + : : :

�
;

b2(�) = 21=3
�

16542537833
37743205500000

+ 115773498223
162820783125000

� + 548511920915149
1721719224225000000

�2 + : : :
�
;

b3(�) = 21=3
�� 430990563936859253

568167343994250000000
� 3191320338955050557

7777535495585625000000
� + : : :

�
:

Table 3.2. First terms of the Maclaurin expansions of the coe�cients as(�); bs(�);

cf. (3.3); the parameter � is given by � = 2�1=3 �.

3.1. Numerical experiments

We have used the expansions in (3.3) for j�j � 1 for obtaining values of as(�)=�
2s; bs(�)=�

2s+4=3

for s = 0; 1; 2; : : : 5 with absolute accuracy of 10
�20 if � � 100. We have used the series in (3.3)

with terms up to t = 45 � 6s. The evaluated series in (3.3) and those of the derivatives have

been used to check the Wronskian relation in (2.21) for a set of values of � on the unit circle.

The results are shown in the third column of Table 3.3. The same errors have been obtained by

calculating the quantities in (2.21) by using the explicit representations in (2.5), and those of

the derivatives by using (2.12) and (2.13).

In the fourth column the relative errors in b0(�) are shown, where we compared values of

b0(�) obtained by using explicit representations and by using the Maclaurin expansions. In the

�nal column we give the results for a1(�). The results for b0(�) and a1(�) are accurate enough

for using them in (2.1) and (2.2) in order to obtain about 20 decimal digits accuracy on the unit

circle in the ��plane for J� ; Y� . Also in the higher order coe�cients bs(�) and as+1(�), s � 1,

less accuracy is needed because of the negative powers of � in the series in (2.2).

We have computed the explicit representations of as(�); bs(�) by using the computer algebra

facilities of Maple. To obtain numerical values we have computed the quantities with the Maple

parameter Digits set equal to 20. In this way we expected to have a fair comparison with the

Maclaurin expansions, although it is quite easy to obtain higher accuracy in Maple by setting

Digits equal to larger values. Also, the coe�cients used in the Maclaurin expansions (3.3) are

converted to 20 decimal digits in the computations.

We conclude from these experiments that, for checking the Wronskian relation in (2.21)

with the required precision of 20 decimal digits, and for real values of � larger than 100, we can

use the boundary of the unit disk in the ��plane to decide about using Maclaurin expansions

of the coe�cients as; bs or the explicit representations of them.

Exact values of the coe�cients needed in this algorithm (the �rst few values are shown in

Tables 3.1 and 3.2) are available from the author upon request.
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n � = n�=16 error in (2.21) error in b0(�) error in a1(�)

0 0�=16 0:14 10
�20 0:54 10

�18 0:45 10
�19

1 1�=16 0:71 10
�20 0:84 10

�18 0:10 10
�16

2 2�=16 0:64 10
�20 0:24 10

�18 0:41 10
�17

3 3�=16 0:23 10
�20 0:90 10

�18 0:56 10
�17

4 4�=16 0:20 10
�19 0:22 10

�18 0:12 10
�16

5 5�=16 0:51 10
�20 0:85 10

�18 0:18 10
�16

6 6�=16 0:26 10
�20 0:39 10

�18 0:17 10
�16

7 7�=16 0:13 10
�19 0:54 10

�18 0:18 10
�16

8 8�=16 0:28 10
�20 0:59 10

�19 0:19 10
�16

9 9�=16 0:26 10
�20 0:55 10

�18 0:23 10
�16

10 10�=16 0:14 10
�19 0:58 10

�18 0:22 10
�16

11 11�=16 0:47 10
�20 0:89 10

�18 0:32 10
�16

12 12�=16 0:33 10
�20 0:11 10

�17 0:23 10
�16

13 13�=16 0:20 10
�19 0:47 10

�18 0:30 10
�16

14 14�=16 0:12 10
�21 0:29 10

�18 0:33 10
�16

15 15�=16 0:20 10
�19 0:98 10

�19 0:32 10
�16

16 16�=16 0:90 10
�20 0:92 10

�19 0:35 10
�16

Table 3.3. Relative errors of the relation (2.21) for values of � on the upper part of

the unit circle, � = en�i=16, by comparing the results obtained by using the explicit

representations in (2.5) and the expansions (3.3). In the fourth column the relative

errors of b0(�) obtained by both methods are shown; the same for a1(�) in the �nal

column.

4. Evaluation of the functions A�(�); B�(�) by iteration

We now concentrate on solving the system of di�erential equations in (2.19) by using analytical

techniques. Instead of expanding the coe�cients as; bs of the asymptotic series we expand the

functions A�(�); B�(�) in Maclaurin series. As remarked earlier, the singular points of these

functions occur at �� =
�
3
2
�
�2=3

e�i�=3, and the radius of convergence of the series of A�(�) and

B�(�) in powers of � equals 2:81 � � �.
We expand

A�(�) =

1X
n=0

fn(�)�
n; B�(�) =

1X
n=0

gn(�)�
n;  (�) =

1X
n=0

hn�
n: (4:1)

The coe�cients f0; f1; : : : ; g0; g1; : : : are to be determined, with the �rst elements given in (2.27),

while the coe�cients hn are known. The �rst few hn follow from (3.2) and Table 3.1:

h0 =
1
70
21=3; h1 =

2
75
; h2 =

69
13475

22=3; h3 =
148
73125

21=3:
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Upon substituting the expansions into (2.19), we obtain for n = 0; 1; 2; : : : the recursion relations

(n+ 2) (n+ 1) fn+2 + (2n+ 1) gn = �n; �n =

nX
k=0

hkfn�k;

(n+ 2) (n+ 1) gn+2 + 2�2(n+ 1) fn+1 = �n; �n =

nX
k=0

hkgn�k:

(4:2)

We have already observed that cancellation occurs in the representations in (2.27). All evalua-

tions based on the above recursions for computing higher coe�cients fn; gn from lower coe�cients

su�er from cancellations. That is, the recursion relations cannot be used in forward direction.

In particular when � is large the recursions in (4.2) are not stable in forward direction.

To show what happens, we give a few details on the �rst recursion. Take n = 0, then we

obtain, using f0 = A�(0); g0 = B�(0) and (2.27),

2f2 = f0 h0 � g0 = 21=3
�
1
70
S(�)� T (�)

�
;

2g2 = g0 h0 � 2�2 f1 = 22=3
�
1
70
T (�)� �2fV (�)� 1

5
S(�)g� :

We see from (2.25) that f2 = O(��2); g2 = O(1), as � ! 1, whereas the quantities used to

compute f2 are of order O(1). Also, the term with �2 in g2 is of lower order in the �nal result.

Further use of the recursion makes things worse. In fact, in further steps more and more early

terms in the asymptotic expansions of combinations of S(�); T (�); U(�) and V (�) are subtracted.

This unstable pulling down of asymptotic series suggests to use the recursion in (4.2) in

backward direction. When we try to use (4.2) in backward direction, for instance with false

starting values fN ; gN for some large integer N , a complication arises because of the terms

�n; �n on the right-hand sides of (4.2). All terms �n; �n contain fk; gk for k = 0; 1; 2; : : : ; n.

Hence, recursion in backward direction is not possible at all. A way out is to consider �n; �n as

known quantities, and to treat (4.2) as inhomogeneous di�erence equations.

4.1. Solving (2.19) by iteration

A �rst step in this approach will be to solve the system (2.19) by iteration. That is, we choose

an appropriate pair of functions F0; G0, and de�ne two sequences of functions fFmg; fGmg by
writing for m = 1; 2; 3; : : ::

F 00
m
+ 2�G0

m
+ Gm =  (�)Fm�1;

G00m + 2�2F 0m =  (�)Gm�1:
(4:3)

To study this iterative process we need to know the solutions of the homogeneous equations,

that is, of the system
F 00
m
+ 2�G0

m
+ Gm = 0;

G00
m
+ 2�2F 0

m
= 0;

(4:4)

One solution is F = 1; G = 0. Other solutions of (4.4) follow by eliminating F 00 in the �rst

equation by di�erentiating the second one. The result is

G000 � 4�2�G0 � 2�2G = 0; (4:5)
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with solutions products of Airy functions (see Abramowitz & Stegun (1964, page 448)):

Ai2(t); Ai(t) Bi(t); Bi2(t); t = �2=3�: (4:6)

The F�solutions of the homogeneous equations (4.4) follow from integrating the second line

in (4.4). Knowing these four linearly independent solutions we can construct solutions F; G

of the inhomogeneous equations corresponding to (4.4), that is, the system (2.19), by using

the variation of constants formula, and eventually by constructing Volterra integral equations

de�ning the solutions A;B of (2.19). For details we refer to x4.3 below.

4.2. Solving (4.3) by backward recursion

We rewrite (4.2) in backward form:

fn = 1
2�2

h
1
n
�n�1 � (n + 1)gn+1

i

gn�1 =
1

2n�1

h
�n�1 � n(n+ 1)fn+1

i
;

(4:7)

where n � 1. The coe�cients are assumed to belong to the functions Fm(�); Gm(�) of the

iteration process described by (4.3), while the coe�cients �n�1; �n�1 are assumed to be known,

and contain Maclaurin coe�cients of Fm�1(�); Gm�1(�) and  (�). Observe that (4.7) does not

de�ne f0. After having computed f1; f2; : : : ; g0; g1; g2; : : : by the backward recursion process, we

compute f0 from the Wronskian (2.21):

f0 =
�g1 +

p
g21 + 4�2(�2 + f1g0)

2�2
; (4:8)

where the +sign of the square root is taken because of the known behaviour of F�(0) when � is

large; see (2.27).

We give a few steps in the iteration and backward recursion process. Let us start the

iterations (4.3) with constant (F0; G0) (constant with respect to � and �). The obvious constant

choice of (F0; G0) is (1; h0); see (2.27). We use the four coe�cients of  (�) shown after (4.1) for

constructing the � and � coe�cients in the right-hand sides of (4.7). We have

�n = hn; �n = h0hn; n = 0; 1; 2; 3; �n = �n = 0; n � 4:

Then the �rst iteration gives

f4 =
1
8
h0h3�

�2; g3 =
1
7
h3;

f3 =
1
6
h0h2�

�2; g2 =
1
5
h2 � 3

10
h0h3�

�2;

f2 =
1
2
( 1
2
h0h1 � 3

7
h3)�

�2; g1 =
1
3
h1 � 1

3
h0h2�

�2;

f1 =
1
2
(h20 � 2

5
h2 +

3
5
h0h3�

�2)��2; g0 = h0 � ( 1
2
h0h1 � 3

7
h3)�

�2:

(4:9)

while f0 is computed by using (4.8). Expanding the result for f0 we �nd

f0 = 1� 1

225
��2 +O ���4�
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which agrees with the �rst two terms of the asymptotic expansion of T (�) given in (2.25).

Also, the �rst terms of the asymptotic expansions of g0; f1; g1 agree with the �rst terms of the

expansions following from (2.25) and (2.27). When more coe�cients hk and more iterations are

used, the further iterates Fm; Gm have Maclaurin coe�cients fn; gn of which the asymptotic

expansions with respect to � are converging to the actual asymptotic expansions of fn; gn. In

particular, the asymptotic expansions of f0; g0 coincide more and more with those following

from (2.27). Of course, it is not our goal to obtain the asymptotic expansions of the coe�cients

fn; gn, but this illustrates the analytical nature of the algorithm.

The numerical problem in using the recursions in (4.2) in forward direction is the in
uence

of dominant solutions of the homogeneous equations of (4.2) (that is, the equations obtained by

taking �n = �n = 0). The dominant solutions are the Maclaurin coe�cients of the functions

given in (4.6), as functions of �. The coe�cients grow as � becomes large. The minimal solution

is given by f0 = 1 and fn+1 = gn = 0; n � 0. From the above observations we infer that

the solutions of the inhomogeneous equations (4.2) cannot contain dominant solutions of the

homogeneous equations. This explains the unstable character of the forward recursions based

on (4.2) and the stable character of the recursion based on the backward form in ((4.7). More

details on these phenomena can be found in Wimp (1984).

4.3. On the convergence of the iterations in (4.3)

To obtain a solution of the system (2.19), which we write in the form

F 00 + 2�G0 + G �  (�)F = 0;

G00 + 2�2F 0 �  (�)G = 0;

we introduced the iterations in (4.3). We can write this in matrix form

y0(�) = A(�) y(�) + B(�) y(�);

y0m(�) = A(�) ym(�) +B(�) ym�1(�);

where m = 1; 2; 3; : : : and

y(�) =

0
B@
F

G

U

V

1
CA ; A(�) =

0
B@
0 0 1 0

0 0 0 1

0 1 0 �2�
0 0 �2�2 0

1
CA ; B(�) =

0
B@

0 0 0 0

0 0 0 0

 (�) 0 0 0

0  (�) 0 0

1
CA ;

and F 0 = U;G0 = V .

We take �0 2 IR and �(�) as a fundamental matrix of the system y0(�) = A(�) y(�), i.e.,

the columns of the matrix are composed of linearly independent solutions of the homogeneous

equation y0(�) = A(�) y(�), with �(�0) = I4. As we remarked earlier (cf. (4.5), (4.6)), we can

indeed �nd these solutions, and because the solutions are linearly independent and analytic, it

follows that �(�) is invertible in C and that ��1(�) has the same regularity as �(�). Applying

the variation of constants formula, we �nd

y(�) = �(�) y(�0) + �(�)

Z
�

�0

��1(t)B(t) y(t) dt;

ym(�) = �(�) ym(�0) + �(�)

Z
�

�0

��1(t)B(t) ym�1(t) dt:
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So, if we take ym(�0) = y(�0),

ym(�)� y(�) = �(�) ym(�0) + �(�)

Z
�

�0

��1(t)B(t) [ym�1(t)� y(t)] dt:

We consider a matrix norm j � j in C4; let k�k be its subordinated matrix norm, and let � > �0.

We are going to prove that ym ! y for � 2 [�0; �]. Take, for � 2 [�0; �],

M = sup
�k�(�)k ;

��1(�)

� ;

P = sup kBk ;
� = supfjy1(�)� y(�)jg:

Then

jy2(�)� y(�)j �M2P

Z
�

�0

jy1(s)� y(s)j ds

� �M2P (� � �0):

jy3(�)� y(�)j �M2P

Z
�

�0

jy2(s)� y(s)j ds

� �M2P M2P

Z
�

�0

(s� �0) ds

= �
�
M2P

�2 (� � �0)
2

2
:

Continuing this procedure, we �nally obtain

jym(�)� y(�)j � �

�
M2P

�m�1
(m� 1)!

(� � �0)
m�1

;

which tends to zero as m!1. The proof for � < �0; � 2 [�; �0] and for complex values of �; �0
is similar.

4.4. Numerical experiments

For numerical applications information is needed about the growth of the coe�cients fn; gn.

Since the Maclaurin series in (4.1) have a radius of convergence equal to 2:81 � � �, for all values
of �, the size of the coe�cients fn; gn is comparable with that of hn. It depends also on the

size of j�j how many coe�cients fn; gn are needed in (4.1). When j�j = 1 we need about 45

terms in the Maclaurin series in (4.1) in order to obtain an accuracy of about 20 decimal digits.

The ��interval [�1; 1] corresponds to the z�interval [0:39; 1:98]. When z is outside this interval

many other e�cient algorithms are available for the computation of J�(�z); Y�(�z).

We have computed successive iterates of Maclaurin coe�cients fn; gn de�ned in (4.1) for

di�erent values of �. To give the algorithm some relevant starting values we have used approx-

imations for f0; g0 based on (2.27), with a few terms of S(�); T (�) of (2.25). Furthermore we

have taken gn = hn=(2n + 1); n � 1, which choice is based on taking A = 1 in the �rst line of

(2.19), and integrating the resulting relation (
p
� B)0 =  =(2

p
� ).



16

� = 5

i jf0 � fa0 j jg0 � ga0 j jf5 � fa5 j jg5 � ga5 j jf10 � fa10j jg10 � ga10j Wronskian

1 6:11e�09 1:76e�06 1:12e�03 6:14e�04 3:38e�03 1:55e�03 4:36e�08
2 4:54e�12 1:03e�08 6:14e�06 8:33e�07 2:22e�05 4:42e�06 2:05e�10
3 2:56e�15 1:60e�11 1:52e�08 8:48e�10 5:47e�08 8:24e�09 3:29e�13
4 1:21e�17 1:83e�14 6:40e�12 5:25e�13 1:86e�11 2:95e�11 6:72e�16
5 0:00e�00 4:19e�17 4:64e�14 4:04e�16 2:58e�14 1:26e�14 2:23e�18

� = 10

i jf0 � fa0 j jg0 � ga0 j jf5 � fa5 j jg5 � ga5 j jf10 � fa10j jg10 � ga10j Wronskian

1 4:24e�10 1:14e�07 2:90e�04 1:63e�04 8:92e�04 4:30e�04 2:76e�09
2 8:50e�14 8:17e�10 1:84e�06 5:76e�08 6:91e�06 3:16e�07 1:64e�11
3 1:45e�17 3:20e�13 1:10e�09 9:06e�11 4:27e�09 9:28e�10 6:64e�15
4 1:08e�19 9:89e�17 1:74e�12 1:25e�15 4:79e�12 6:87e�13 8:07e�18
5 0:00e�00 1:88e�19 1:35e�15 6:74e�17 1:58e�15 4:32e�16 3:44e�19

� = 25

i jf0 � fa0 j jg0 � ga0 j jf5 � fa5 j jg5 � ga5 j jf10 � fa10j jg10 � ga10j Wronskian

1 1:12e�11 2:94e�09 4:70e�05 2:66e�05 1:45e�04 7:09e�05 7:10e�11
2 3:66e�16 2:22e�11 3:09e�07 1:52e�09 1:18e�06 8:44e�09 4:47e�13
3 0:00e�00 1:40e�15 2:95e�11 2:66e�12 1:17e�10 2:76e�11 2:91e�17
4 0:00e�00 0:00e�00 5:63e�14 7:25e�18 1:61e�13 3:17e�15 1:75e�19
5 0:00e�00 0:00e�00 6:45e�18 3:40e�19 8:67e�18 3:14e�18 1:76e�19

� = 50

i jf0 � fa0 j jg0 � ga0 j jf5 � fa5 j jg5 � ga5 j jf10 � fa10j jg10 � ga10j Wronskian

1 7:02e�13 1:84e�10 1:18e�05 6:66e�06 3:64e�05 1:78e�05 4:44e�12
2 5:75e�18 1:40e�12 7:79e�08 9:53e�11 2:97e�07 5:31e�10 2:82e�14
3 0:00e�00 2:21e�17 1:85e�12 1:69e�13 7:39e�12 1:76e�12 5:57e�19
4 0:00e�00 0:00e�00 3:63e�15 1:70e�19 1:05e�14 5:05e�17 1:26e�19
5 0:00e�00 0:00e�00 2:80e�19 0:00e�00 2:01e�19 8:94e�20 1:26e�19

Table 4.1. Relative errors during �ve iterations (i) of f0; g0; f5; g5; f10; g10 compared with

more accurate values fa0 , etc. The �nal column shows the relative error in the Wronskian (2.21)

at � = 1.
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During each iteration we start the backward recursions with fn = gn�1 = 0; n � 46, and

we compute f45; g44; f44; g43; : : : by using (4.4). We use hk; k = 0; 1; : : : 45 and we recompute

the coe�cients �k; �k; k = 0; 1; 2; : : : ; 45, using (4.2) with values fk; gk obtained in the previous

iteration. In Table 4.1 we show the relative errors in the values f0; g0; f5; g5; f10; g10, when

compared with more accurate values fa0 , etc. Computations are done with extended precision

(machine accuracy about 10
�19). The accurate values are obtained by applying the backward

recursion by using 10 iterations. We also give the relative error in the Wronskian relation (2.21)

at � = 1 during each iteration.

From Table 4.1 we conclude that for � = 5 we can already obtain an accuracy of 10
�10 in

the Wronskian after two iterations; further iterations improve the results. For larger values of �

the algorithm is very e�cient.

Small values of � do not cause problems in the numerical algorithms published in the

literature. When using the above algorithm for computing the Bessel functions, also the Airy

functions and the functions �(�) and �(z), all occurring in (2.1), are needed. So the method

based on the evaluation of A�(�); B�(�) may not be faster than existing algorithms when � is

less than 100, say.

5. Discussion and conclusions

We have described two methods for evaluating Airy-type asymptotic expansions for the Bessel

functions J�(�z); Y�(�z) (and for their derivatives) near the turning point z = 1. For the Hankel

functions the same methods are applicable.

The �rst method described in x2 for evaluating the asymptotic series of the Airy-type

expansions requires the storage of many pre-computed coe�cients. When these are available

evaluation the asymptotic series near the turning point z = 1; � = 0 is rather straightforward

and e�cient. One has to be sure whether for a given value of � and the required precision enough

terms are available in the asymptotic series. The accuracy in the evaluation of A� ; B� ; C� ;D�

can be checked by using the relation in (2.23).

In the second method of x3 one needs only the storage of the coe�cients hn of the Maclaurin

series for  ; see (4.1) and (2.15). An algorithm based on this method can reach any desired

accuracy (already for moderate values of �), if enough coe�cients hn are available. The two

components in the algorithm:

� the iteration of the pair of functions fFm; Gmg (see (4.4)),
� the backward recursion scheme for the coe�cients fn; gn (see (4.2)),

are both numerically stable, and become more e�cient as � increases. The computer experiments

shown in Table 4.1 indicate that this method is very promising.

The methods of this paper can be used for Airy-type asymptotic expansions for other

special functions. We mention as interesting cases parabolic cylinder functions, Coulomb wave

functions, and other members of the class of Whittaker functions. To stay in the class of Bessel

functions, we mention the modi�ed Bessel function of the third kind Ki�(z) of imaginary order,

which plays an important role in the di�raction theory of pulses and in the study of certain

hydrodynamical studies. Moreover, this function is the kernel of the Lebedev transform. The

same functions A� ; B� ; C� ;D� can be used for this case; see Dunster (1990) for many details.
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It seems that there is no published code for the numerical evaluation of the function Ki�(x) that

covers the case of large parameters.

It is of interest to compare the algorithms of Amos (1986) and Matviyenko (1993) with

our algorithms, but we expect to return to this in future publications, when we also want to

consider the modi�ed Bessel functions with purely imaginary order (cf. also Temme (1994),

where contours of steepest descents are given for Ki�(x)).

Acknowledgment. The author wishes to thank Dr. Juan Campos Rodriguez of the Uni-

versity of Granada (Spain) for his help in the proof given in x4.3, and the referee for helpful

comments on the �rst version of the paper.

6. Bibliography

[ 1] M. Abramowitz & I.A. Stegun (1964), Handbook of mathematical functions with for-
mulas, graphs and mathematical tables, Nat. Bur. Standards Appl. Series, 55, U.S. Gov-
ernment Printing O�ce, Washington, D.C.

[ 2] D. Amos (1986). Algorithm 644, A portable package for Bessel functions of a complex
argument and nonnegative order, ACM Trans. Math. Software 12, 265{273.

[ 3] T.M. Dunster (1990). Bessel functions of purely imaginary order, with an application to
second-order linear di�erential equations having a large parameter. SIAM J. Math. Anal.
21, 995{1018.

[ 4] D.W. Lozier & F.W.J. Olver (1994). Numerical evaluation of special functions, 79{125
in:Mathematics of computation, 1943{1993: A half-century of computational mathematics.
(W. Gautschi, ed.), AMS, Proc. Symp. Appl. Math. 48, 79{125.

[ 5] G. Matviyenko (1993). On the evaluation of Bessel functions, Appl. Comp. Harm. Anal.,
1, 116{135.

[ 6] A.B. Olde Daalhuis & N.M. Temme (1994). Uniform Airy type expansions of integrals,
SIAM J. Math. Anal., 25 304{321.

[ 7] F.W.J. Olver (1974 & 1997) Asymptotics and Special Functions, Academic Press, New
York. Reprinted in 1997 by A.K. Peters, ISBN 1-56881-069-5.

[ 8] N.M. Temme (1987). On the computation of the incomplete gamma functions for large
values of the parameters, 479{489 in: Algorithms for approximation, Proc. of the IMA
Conference on Algorithms for the approximation of functions and data. (J. C. Mason &
M.G. Cox, eds.), Clarendon, Oxford. ISBN 0-19-853612-7.

[ 9] N.M. Temme (1994). Steepest descent paths for integrals de�ning the modi�ed Bessel
functions of imaginary order, Methods Appl. Anal., 1 14{24.

[ 10] N.M. Temme (1996). Special functions: An introduction to the classical functions of math-
ematical physics, Wiley, New York. ISBN 0-471-11313-1.

[ 11] J. Wimp (1984). Computation with recurrence relations, Pitman, Boston. ISBN 0-273-
08508-5.


