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ABSTRACT

The polynomials Pn and Qm having degrees n and m respectively, with Pn monic, that

solve the approximation problem

Pn(z)e
�z +Qm(z) = O

�
zn+m+1

�
will be investigated for their asymptotic behavior, in particular in connection with the dis-

tribution of their zeros. The symbol O means that the left-hand side should vanish at the

origin at least to the order n+m+1. This problem is discussed in great detail in a series of

papers by Sa� and Varga. In the present paper we show how their results can be obtained by

using uniform expansions of integrals in which Airy functions are the main approximants. We

give approximations of the zeros of Pn and Qm in terms of zeros of certain Airy functions,

as well of those of the remainder de�ned by En;m(z) = Pn(z)e
�z +Qm(z).
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1. Introduction
It is well known (cf. Perron (1950)) that the solution of the Pad�e approximation problem

for the exponential function, namely,

Pn(z)e
�z +Qm(z) = O

�
zn+m+1

�
as z ! 0;

where Pn and Qm are polynomials of degree n and m respectively, with Pn monic, is given

by

Pn(z) =
1

m!

Z 1

0

tm(t+ z)ne�t dt;

Qm(z) =
�1
m!

Z 1

0

tn(t� z)me�t dt:
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Explicit forms are (cf. Perron (1950, page 433))

Pn(z) = n!

nX
k=0

�
m+ n� k

m

�
zk

k!
;

Qm(z) = �n!
mX
k=0

�
m+ n� k

n

�
(�z)k
k!

:

Let the remainder En;m be de�ned by

En;m(z) = Pn(z)e
�z +Qm(z)

then

En;m(z) =
(�1)mzm+n+1

m!

Z 1

0

un(1� u)me�uz du:

The quantities Pn; Qm; En;m can be expressed in terms of (con
uent) hypergeometric func-

tions and Laguerre polynomials. We have

Pn(z) = U(�n;�n�m; z)

= zn+m+1 U(m+ 1; n+m+ 2; z)

= (�1)nn!L�n�m�1n (z);

Qm(z) = � n!

m!
U(�m;�n�m;�z)

= � n!

m!
(�z)n+m+1 U(n+ 1; n+m+ 2;�z)

= �(�1)mn!L�n�m�1m (�z);

En;m(z) =
(�1)m+1n!zn+m+1

(n+m+ 1)!
M(n+ 1; n+m+ 2;�z)

=
(�1)m+1n!zn+m+1

(n+m+ 1)!
e�zM(m+ 1; n+m+ 2; z):

For the diagonal case n = m these functions can be written in terms of Bessel functions.

We have the following symmetry. Write

Pn(z) = P (n;m; z); Qm(z) = Q(n;m; z):

Then

m!P (n;m; z) = �n!Q(m;n;�z):

For investigating the asymptotic behavior of the functions it is convenient to use the following

contour integrals

Pn(z) =
(�1)nn!
2�i

Z
C0

e�zw

wn+1(w + 1)m+1
dw; (1:1)
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Qm(z) =
(�1)nn!e�z

2�i

Z
C
�1

e�zw

wn+1(w + 1)m+1
dw; (1:2)

where C0; C�1 are small circles around the points 0 and �1. It follows that

En;m(z) =
(�1)nn!e�z

2�i

Z
C

e�zw

wn+1(w + 1)m+1
dw; (1:3)

where C is a circle around the points 0 and �1.
In a sequence of papers Sa� and Varga investigated the polynomials Pn; Qm and the

remainder En;m, and the distribution of their zeros, for large values of n;m with �xed ratio

� = m=n (the �nal paper appeared in 1978). They used saddle point methods for the

integrals de�ning the U� and M�functions (not the contour integrals) and found curves in

the complex z�plane along which the zeros are cumulating. For m = 0 their results agree

with the earlier results obtained by Szeg�o on the distribution of the zeros of the exponential

polynomial

en(z) =

nX
k=0

zk

k!
:

The purpose of the paper is:

� To give a new approach for locating the zeros of the quantities Pn; Qm and En;m by

using uniform asymptotic approximations for these functions in terms of Airy func-

tions.

� To give approximate values of the zeros of Pn; Qm and En;m in terms of zeros of certain

Airy functions.

� To become familiar with methods that possibly can be used in the more complicated

quadratic Hermite-Pad�e Type I approximation problem for the exponential function,

which problem is discussed in Driver & Temme (1996).

In x2, we consider the diagonal case n = m. In Driver & Temme (1997) this has been

done by using the Sommerfeld for the corresponding Bessel functions. Now we use di�erent

integrals in order to become familiar with the more di�cult general case, which we consider

in Section 3. In that section we also give approximations of the zeros of Pn; Qm and En;m

in terms of zeros of Airy functions. In addition we compare our description of the curves

along which the zeros accumulate with that of Saff & Varga (1978). In x4 we give more

details on uniform Airy-type expansions, and how to obtain asymptotic expansions for the

zeros of functions approximated in this way, with applications to Pn; Qm; En;m. In x5 we give
more details on the conformal mapping used in x3, and in x6 we discuss aspects of numerical

calculations based on the expansions for the zeros of Pn; Qm; En;m. We give an interpretation

of the zeros of Pn; Qm in the lower half-plane, and in connection with this we discuss the

singularities of a parameter � occurring in the expansions. In x7 we give a few remarks on

the quadratic Hermite-Pad�e Type I approximations to the exponential function.
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2. The diagonal case (n = m)
In Driver & Temme (1997) we have shown for the case n = m how we can use relations

between Pn; Qm and En;m and Bessel functions to obtain Airy-type approximations. In the

present section we show how the same results can be obtained by using the integrals given

in (1.1) { (1.3). These integrals are more di�cult to handle than the integrals used in our

earlier paper for the Bessel functions; there we used the Sommerfeld integrals. We start with

the diagonal case, because it gives a good introduction to the general case.

We consider (1.1) and write the integral in the form

Pn(2izn) =
(�1)nn!
2�i

Z
C0

e�n�(w)

w(w + 1)
dw; (2:1)

where the phase function � is given by

�(w) = 2izw + lnw + ln(w + 1);

and C0 is a contour around the origin. Because of the logarithms the function � is not

single valued on a circle around the origin. However, in the asymptotic analysis we deform

the original contour and extend it to in�nity (in such a way that =izw = 0;<izw > 0

along the path at in�nity). We introduce branch lines for lnw and ln(w + 1), starting from

w = 0; w = �1, respectively, into that direction. For example, when z = 1 + i, we have

izw = �u � v + i(u � v), where we write w = u + iv. Hence, the branch line for lnw runs

from the origin along the diagonal u = v with u � 0; v � 0. Furthermore, in this example we

assume that the phase of w belongs to the interval [�3�=4; 5�=4].
The saddle points are

w� = � 1
2
+ i

2z

�
1�

p
1� z2

�
= � 1

2
+ 1

2
ie�� ; z =

1

cosh �
: (2:2)

We take 0 < z � 1; � � 0; later we take z complex, in particular in a neighborhood of

z = 1. We see that the saddle points are located on the vertical line <w = � 1
2
. Writing

w = � 1
2
+ 1

2
iv, we obtain

�(� 1
2
+ 1

2
iv) = �zv + ln(1 + v2)� ln 4 + i(� � z):

Hence, =�(w) is constant on the vertical line <w = � 1
2
, on which two saddle points are

located. Consequently, we expect that a saddle point contour, de�ned by =�(w) = =�(w�)
runs through both saddles w+ and w�.

In Figure 2.1 we give the contours of steepest descent and steepest ascent. The contour

for Pn starts at �i1 over the path indicated by ABC. The path for Qn runs along CBD, and

the path for En;n along ABD. The integrals for Pn and Qn pick up their main contribution

at the saddle point w�, whereas the integral for En;n obtains its main contribution at w+.

From w� two paths of ascent are running to the poles at w = �1; w = 0. The path from w+

to +i1 through E is also a path of ascent. The picture is made for the case z = 0:9.
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Figure 2.1. The saddle point contours of the integral in (2.1) through the saddles

at w� for the case z = 0:9: ABC for Pn, CBD for Qn, and ABD for En;n.

In Figure 2.2 we give the location of saddle points and the paths of steepest descent

for the case z = 1:75. The saddle point contours are: AB�C� for Pn, C
+B+D for Qn,

AB�C� [C+B+D for En;n. From w� two ascent paths run to the poles at w = �1; w = 0,

from w� two ascent paths run through E� to i1.

We transform the integral into an Airy-type integral by using the cubic transformation

�(w) = � 1
3
�3 + �� +A (2:3)

where A and � do not depend on w and are determined by the condition that the saddle

point w� in the w�plane should correspond to the saddle points �p� in the ��plane. That
is,

�(w+) = 2
3
�
3

2 +A; �(w�) = � 2
3
�
3

2 +A: (2:4)

This gives, using (2.2),

A = �iz � 1 + �i� ln(2z);

2
3
�3=2 = � � tanh � = arctanh

p
1� z2 �

p
1� z2 :

(2:5)

The contour in the w�plane is transformed into a contour, say CP , in the ��plane. In Figure

2.3 we show corresponding points of paths in both planes of the mapping de�ned in (2.3) for

z = 0:9 and z = 1:75. The path CP used in (2.6) is the path through A;B;C.
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Figure 2.2. The saddle point contours of (2.1) through the saddles at w� for

the case z = 1:75. Saddle point contours are: AB�C� for Pn, C
+B+D for Qn,

AB�C� [ C+B+D for En;n.

Integrating in the opposite direction on CP , which introduces a minus sign, we obtain

Pn(2izn) = �(�1)nn! e�nA 1

2�i

Z
CP

e
1

3
�3���g(�) d�; (2:6)

where

g(�) =
1

w(w + 1)

dw

d�
: (2:7)

We also have, by using (2.4),

dw

d�
=

(� � �2)w(w + 1)

2izw(w + 1) + 2w + 1
(2:8)

and

g(�) =
� � �2

2izw(w + 1) + 2w + 1
: (2:9)
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Figure 2.3. The contours in the ��plane and points A;B;C;D that correspond

to the points on the contours on the w�plane of Figures 2.1 (with z = 0:9) and 3.2

(with z = 1:75), with saddle points (open circles) at �p� .

A �rst approximation in terms of an Airy function follows by replacing g(�) with g0 =

[g(
p
� ) + g(�p� )]=2. We give the result for the three quantities together:

Pn(2izn) � �n! en+inz(2z)nn�1=3g0 e�2�i=3Ai
�
�n2=3e�2�i=3

�
;

Qn(2izn) � �n! en�inz(2z)nn�1=3g0 e+2�i=3Ai
�
�n2=3e+2�i=3

�
;

En;n(2izn) � +n! en�inz(2z)nn�1=3g0Ai
�
�n2=3

�
:

(2:10)

In order to evaluate g0, we need in (2.7) dw=d�, evaluated at � = �p� . By using

l'Hôpital's rule in (2.8) we have

�
dw

d�

�2
�����
�=
p
�

=

p
� w+(w+ + 1)

tanh �
;

g(
p
� ) =

�1=4p
tanh �

1p
w+(w+ + 1)

=
�2i�1=4p

tanh �(1 + e2� )

= �i
p
z e�

1
2
�

�
4�

1� z2

�1=4

;
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and �
dw

d�

�2
�����
�=�p�

=

p
� w�(w� + 1)

tanh �
;

g(
p
�� ) = �1=4p

tanh �

1p
w�(w� + 1)

=
�2i�1=4p

tanh �(1 + e�2� )

= �i
p
z e+

1

2
�

�
4�

1� z2

�1=4

:

This gives

g0 = �i
p
z cosh 1

2
�

�
4�

1� z2

�1=4

: (2:11)

We have mentioned that, when n = m, we may also use Sommerfeld-type integrals to do

the asymptotic analysis of Pn; Qn and En;n. This arises from the fact that Pn; Qn and En;n

can be expressed in terms of Hankel and Bessel functions (cf. Driver & Temme (1997)).

The asymptotic approximations obtained via the Sommerfeld integral representations are the

same as those in (2.10).

3. The general case
We write (1.1) in the form

Pn[(z(n+m)] =
(�1)n n!
2�i

Z
C0
e�n�(w)

dw

w(w + 1)
; (3:1)

where

�(w) = (1 + �)zw + lnw + � ln(w + 1); � =
m

n
; (3:2)

and C0 is a contour around the branch cut of lnw, that starts at w = 0 and terminates at 1
in the valley of exp(�zw). The saddle points are

w� =
�z � 1� g�(z)

2z
; g�(z) =

q
(z � ei�) (z � e�i�) ; (3:3)

where � 2 (0; �) is the number that is de�ned by � = tan2 1
2
�.

We concentrate on values of z with =z > 0, in particular on values near the point exp(i�);

when z assumes this value, the two saddle points w� coincide. The cubic transformation

�(w) = � 1
3
�3 + �� +A; (3:4)

with corresponding points w = w� () � = �p� , gives

Pn[(z(n+m)] =
(�1)n n! e�nA

2�i

Z
CP

en(
1

3
�3���)f(�) d�; (3:5)
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where

f(�) =
1

w(w + 1)

dw

d�
=

� � �2

(1 + �)zw(w + 1) + w + 1 + �w
;

4
3
�3=2 = �(w+)� �(w�)

= (1 + �) z (w+ � w�) + ln
w+

w�
+ � ln

w+ + 1

w� + 1
;

2A = �(w+) + �(w�);

(3:6)

and CP is the image in the ��plane of the path C0 in the w�plane under the map de�ned in

(3.4). When z 2 (0; 1), CP has the form as in Figure 2.3.

As will be explained in x5 we need information on the domain of holomorphy of f(�)

in order to be able to construct a uniform Airy-type expansion for Pn[z(n +m)]) when n is

large, in particular for values of z (or �) where the zeros occur. We give more details on this

point in x5.
A �rst order approximation reads

Pn[(z(n+m)] � �(�1)n n! e�nA n�1=3 f0e�2�i=3Ai
�
�n2=3e�2�i=3

�
; (3:7)

where

f0 =
1
2
[f(
p
� ) + f(�p� )]

with f given in (3.6).

3.1. The condition for the zeros

We compare the condition for the location of the zeros of the quantities Pn; Qm; En;m as

given in Saff & Varga (1978) with the condition that follows from the uniform Airy-type

asymptotic approximation. Sa� and Varga introduce the quantity

w�(z) =
4�

�

1+� zeg�(z)

(1 + �)[1 + z + g�(z)]
2

1+� [1� z + g�(z)]
2�
1+�

; 0 < � <1; (3:8)

where g�(z) is de�ned in (3.3). Then the zeros of the three quantities Pn; Qm; En;m occur

along curves in the z�plane de�ned by

jw�(z)j = 1: (3:9)

By using the saddle points w� de�ned in (3.3), a straightforward computation shows that

(1 + �) lnw�(z) = � 4
3
�3=2 � � ln(�1); (3:10)

where 4
3
�3=2 is de�ned in (3.6). The condition (3.9) can be read as: lnw�(z) is purely

imaginary. So an equivalent formulation of (3.9) reads: �3=2 is purely imaginary, that is, the

phase of � is �� or ��=3. In other words, � is located on the rays where the zeros occur of

Ai(z);Ai(e�2�i=3z).
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3.2. An approximation of the zeros near z+

We show how to obtain an asymptotic approximation of the zeros of Pn[z(n+m)] near z+.

The simpler case when n = m is shortly discussed in Driver & Temme (1997). In x4.2 an

approximation of all zeros will be given. The Airy function Ai(z) has zeros at the negative

axis; let as denote these zeros. Then the main approximant in (3.7) has zeros at

�s = n�2=3e2�i=3as; s = 1; 2; 3; : : : :

The corresponding z� values follow from inverting the relation between � and z given in

(3.6). The �rst zeros (s small) give small values of �s, that is, values zs near z
+. We expand

� = c1(z � z+) + c2(z � z+)2 + : : : ; (3:11)

and try to �nd c1; c2; : : :. From (3.6) it follows by di�erentiating with respect to z (after

straightforward and lengthy calculations):

2z
p
� �0 = �(1 + �) g�(z): (3:12)

Squaring this equation and substituting (3.11), we obtain

4(z+)2c31 = (z+ � z�)(1 + �)2; c31 = i
sin 1

2
�

cos3 1
2
�
e�2i�;

where we use the relation between � and � given after (3.3). The cubic root gives three

possibilities:

c1 = e"2�i=3+�i=6�2i�=3
sin1=3 1

2
�

cos 1
2
�
; " = �1; 0; 1:

The proper choice of " follows from comparing this value of the coe�cient with the one that

follows from expanding the arctanh function in (2.5), where � = 1 and � = 1
2
�, near z = 1

which gives

� = 21=3(1� z) [1 +O(1� z)] ; z ! 1

(observe that in x2 Pn(2izn) is considered). This gives

zs � z+ � as e
5�i=6+2i�=3n�2=3

cos 1
2
�

sin1=3 1
2
�
; n!1; (3:13)

When � = 1
2
�; � = 1 this gives

zs � i� as2
�1=3e7�i=6n�2=3;

which con�rms the expression for the �rst zeros of Pn(2izn) obtained in Driver & Temme

(1997, equation (2.14)) when we turn that result over an angle �=2.
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Approximation (3.13) for the zeros of Pn[z(n +m)] is valid for small values of s. The

zeros of Qm(z(n + m)] follow from multiplying the second term in the right-hand side of

(3.13) by e2�i=3, those of En;m[z(n+m)] from multiplying this term by e�2�i=3.
For a recent discussion on how to obtain approximations of zeros of Airy-type asymptotic

expansions, including order estimates of the remainders, we refer to Rui & Wong (1996).

4. More on Airy-type expansions
We �rst show how to obtain higher order Airy-type approximations for integrals of a certain

standard form.

4.1. Complete asymptotic expansions

We consider

Fn(�) :=
1

2�i

Z
C
en(

1
3
�3���)f(�) d�; (4:1)

where C is a contour running from 1 exp(��i=3) to 1 exp(�i=3), through the saddle point

at � =
p
� . We use the Bleistein method for obtaining a complete asymptotic expansion

(this method was �rst given in Bleistein (1966) for a di�erent class of integrals).

We de�ne two sequences of functions ffkg; fgkg; k = 0; 1; 2; : : : by writing

fk(�) = �k �Bk� + (�2 � �)gk(�); fk+1(�) = � d

d�
gk(�); (4:2)

with f0 = f and Ak; Bk following from substitution of � = �p� . We have

Ak =
1
2
[fk(

p
� ) + fk(�

p
� )] ; Bk = � 1

2
p
�
[fk(

p
� )� fk(�

p
� )] : (4:3)

By substituting f(�) = f0(�) of (4.2) into (4.1) and integrating N�times by parts we obtain

Fn(�) = Ai
�
�n2=3

�N�1X
k=0

Ak

nk+1=3
+Ai0

�
�n2=3

�N�1X
k=0

Bk

nk+2=3
+ "N (�; n); (4:4)

where

"N (�; n) =
1

nN
1

2�i

Z
C
en(

1
3
�3���)fN(�) d�;

where Ai0(z) is the derivative of the Airy function. If f is analytic in a certain domain

of the complex plane, the functions fk are, by inheritance, analytic functions in the same

domain. For proving that (2.4) gives a uniform asymptotic expansion as n!1 (in particular,

uniformly valid in a neighborhood of � = 0), we need estimates of "N (�; n) in a neighborhood

of C. In the cases considered in this paper the parameters z and � are complex. For describing

the zeros of Pn and Qm z and � are restricted to compact sets, but the two in�nite strings

of zeros of En;m extend to in�nity.

Proofs for the asymptotic nature of uniform Airy-type expansions of integrals are con-

sidered in several places in the literature; for instance, see Olver (1974 & 1997) and Wong
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(1989). In Olde Daalhuis & Temme (1994) a new method for representing the remainder

and coe�cients in Airy-type expansions of integrals is given. This approach gives a general

method for extending the domain of the saddle point parameter (� in the integral in (4.1)) to

unbounded domains. A basic assumption for proving the validity of the uniform expansion

in a unbounded domain, say � 2 �, is that the singularities of the function f should remain

at a certain distance from the saddle points at �p� . To be more precise, let

�(�) = minfj� �p� j
��� � is a singularity of f(�)g:

Then the assumption is: �(�) > j�j�; � 2 �, where the constant � should be larger than � 1
2
.

We discuss later this property for the integrals considered in this paper.

4.2. Asymptotic expansions of the zeros

We �rst consider the expansion of the zeros of a function Wn(�) having the asymptotic

expansion

Wn(�) � Ai
�
�n2=3

� 1X
k=0

Ak(�)

nk
+Ai0

�
�n2=3

� 1X
k=0

Bk(�)

nk+1=3
: (4:5)

We write � = � + ", where � = n�2=3as, with as is a zero of the Airy function Ai(z). We

write

Wn(�) =

1X
m=0

"m

m!
W (m)

n (�) = 0 (4:6)

and obtain expansions for the derivatives from (4.5). That is, by using Ai00(z) = zAi(z),

dm

d�m
Wn(�) � nm

"
Ai
�
�n2=3

� 1X
k=0

Am
k (�)

nk
+Ai0

�
�n2=3

� 1X
k=0

Bm
k (�)

nk+1=3

#
;

where A0
k(�) = Ak(�); B

0
k(�) = Bk(�) and, for m = 1; 2; : : :,

Am
k (�) = �Bm�1

k (�) +
d

d�
Am�1
k�1 (�);

Bm
k (�) = Am�1

k (�) +
d

d�
Bm�1
k�1 (�);

(4:7)

the functions with negative lower index are zero. Hence,

dm

d�m
Wn(�) � nm�1=3Ai0 (as)

1X
k=0

Bm
k (�)

nk+1=3
;

and substituting this expansion in (4.6), we obtain the asymptotic equality

1X
k=0

Bk(�)

nk
+
n"

1!

1X
k=0

B1
k(�)

nk
+
n2"2

2!

1X
k=0

B2
k(�)

nk
+
n3"3

3!

1X
k=0

B3
k(�)

nk
+ : : : � 0: (4:8)
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We try to �nd an expansion

" � �1

n
+
�2

n2
+
�3

n3
+ : : : :

Substituting this in (4.8), we obtain for �1 the relation

B0(�) +
�1

1!
B1
0(�) +

�21
2!
B2
0(�) +

�31
3!
B3
0(�) + : : : = 0:

Using the relations in (4.7), we obtain

Bm
0 (�) = Am�1

0 (�) = �Bm�2
0 (�) = �Am�3

0 (�) = �2Bm�4
0 = : : : ;

and for �1 the equation

cosh(
p
��1)B0(�) +

1p
�

sinh(
p
��1)A0(�) = 0:

This gives

�1 = � 1p
�
arctanh

p
�B0(�)

A0(�)
: (4:9)

Higher order coe�cients �j can be obtained, but we are satis�ed with this �rst order ap-

proximation. We infer that the function Wn(�), having an asymptotic expansion as given

in (4.5), for large values of n has a zero �s associated with the zero as of the Airy function

Ai(z), and we have found the approximation

�s � �+
�1

n
; n!1; (4:10)

with � = n�2=3as and �1 given in (4.9).

The above analysis is based on Olver (1954), where the method is used for obtaining

asymptotic approximations of the zeros of Bessel functions of large order. In the Bessel

function case odd powers of n are absent in the two series in (4.5). This gives a much simpler

analysis for obtaining an expansion for the zeros.

4.3. Asymptotic expansions of the zeros of Pn; Qm; En;m

When we use the above method for the quantity En;m[z(n+m)], which has an expansion of

the form (4.5), we have to calculate the zero zs after having obtained the value �s in (4.10).

The corresponding z�value can be written as

zs = zs(�s) = zs(�+") = zs(�)+
"

1!
z0s(�)+

"2

2!
z00s (�)+: : : = zs(�)+

z0s(�)�1
n

+O(n�2); (4:11)

where zs(�) follows from inverting the relation between � and z given in (3.6), with � replaced

by �. After calculating zs(�) it is not di�cult to obtain z0s(�), because from (3.12) it follows

that

(1 + �)g�(�)
dz

d�
= �2z�: (4:12)
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When we denote the in�nite set of zeros of En;m[z(n+m)] in the upper half plane by en;m;s,

we obtain the approximation

en;m;s = (n+m)

�
zs(�) +

z0s(�)�1
n

+O(n�2)
�
; s = 1; 2; 3; : : : ; (4:13)

where �1 is given in (4.9). This approximation holds uniformly with respect to s. There is a

conjugate set of zeros �en;m;s in the lower half plane.

From (3.7) we see that Pn[z(n+m)] has a complete expansion in terms of Airy functions

with argument �n2=3e�2�i=3. It is not di�cult to verify that in this case an approximation

for the zeros is given by (4.10) with � replaced by e2�i=3� and �1 evaluated as in (4.9) with

this new value of �. An approximation for the corresponding z�value can then be obtained

as in (4.11). For Qm[z(n+m)] the quantity � should be replaced by e�2�i=3�.
The quantity �1 used in the approximation of the zeros is given in (4.9). To use it we

need the coe�cients A0; B0 de�ned in (4.3) with f de�ned in (3.6). The quantities f(�p� )
follow from a similar analysis as used for (2.11). We have

f(
p
� ) =

(4�)1=4p
(1 + �) g�(z)w+(w+ + 1)

; f(�p� ) = (4�)1=4p
(1 + �) g�(z)w�(w� + 1)

;

where

w+(w+ + 1) =
1� z cos � + g�(z)

2z2
; w�(w� + 1) =

1� z cos � � g�(z)

2z2
:

It follows that

�
p
� B0(�)

A0(�)
=
f(
p
� )� f(�p� )

f(
p
� ) + f(�p� )

=

p
w�(w� + 1) �

p
w+(w+ + 1)p

w�(w� + 1) +
p
w+(w+ + 1)

= e�i�

s
z � ei�

z � e�i�

and (4.9) becomes in this case

�1 =
1p
�
arctanh e�i�

s
zs(�)� ei�

zs(�) � e�i�
:

5. More details on the cubic transformation (3.4)
The mapping w ! �(w) de�ned in (3.4) is singular at the points w = 0 and w = 1. These

points are mapped into in�nity. It is of interest to locate �nite singularities of the mapping

that are mapped to �nite points in the ��plane. The singular points of the conformal

mapping follow from the zeros of d�=dw, see (3.6). The candidates are the saddle points w�,
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but these are regular points because of the vanishing of � � �2 at the corresponding points

�p� in the �� plane. Less obvious candidates are the points outside the principal sheets of

the logarithms occurring in �(w). For instance, the derivative d�=dw again vanishes at the

points w�e2�ik; k = �1;�2; : : :, and these points are not mapped to the points �p� in the

�� plane, because of lnw in �(w). The term ln(w + 1) gives also rise for singular points.

Putting w = w�e2�ik; k = �1;�2; : : : into (3.2) we obtain

�
�
w�e2�ik

�
= (1 + �)w� + lnw� + 2�ik + � ln(w� + 1)

which reduces to 2�ik � 2
3
�3=2 + A. The corresponding ��values can be obtained from the

equation

2�ik � 2
3
�3=2 = � 1

3
�3 + ��: (5:1)

For example, when z = 1:75i; � = 1, we have � = �0:796 : : : and �3=2 = �0:710 : : : i. It

follows that (5.1) has solutions on the imaginary axis. For k = �1 we obtain the solutions

� = �4:846 : : : i. These points are singular points of the mapping (3.4). For the values of z; �

in this example the saddle points in the ��plane occur at �p� = �0:892 : : : i.
The possibility of constructing a valid uniform Airy-type expansion, as given in the

previous section, depends on the regularity of the function f(�) in (4.1) in the neighborhood

of the saddle points at �p� and the growth of f along the contours of steepest descent.

Most important is the regularity of f near the saddle points. In the above example we see

saddle points at �0:892 : : : i and nearby singularities at �4:846 : : : i (other singularities in this
example are at larger distances from the saddle points). The growth of f along the saddle

point contours is at most of algebraic nature (see (3.6)).

When z runs through compact sets of the half-plane =z > 0 the singularities in the

��plane are bounded away from the saddle points �p� . For z ! 0 and z ! 1 (this is in

particular important for locating the zeros of En;m(z)), the singularities approach the saddle

points. This can be seen as follows. We scale � by introducing � = �=
p
� . Then (5.1)

becomes

�� 1
3
�3 = � 2

3
+ 2�ik��3=2:

When � is large solutions occur near � = �1 satisfying � = �1 +O(��3=4). It follows that
solutions in the ��plane satisfy

� = �p� +O(��1=4); � !1:

We see that the distance between the singularities and the saddle points is O(��1=4) as �
becomes large. According to theorems in x5 of Olde Daalhuis & Temme (1994) we can

accept distances of order ��� with � > � 1
2
. In the present case we have � = � 1

4
, which is

safe enough. We conclude that an expansion as in (4.1) can be constructed for all points z

with =z � 0 (and in fact in a larger domain, but that is not relevant here).

In Figure 5.1 we show geometrical components of the mapping in (3.4) for � = 1; z =

1:75i. We exclude small neighborhoods of the branch cuts from 0 to �i1 and from �1 to

�i1 and give corresponding points in both planes. The arc from H to A in the ��plane
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Figure 5.1. Geometrical details of the mapping (3.4) with corresponding

points in both planes. The black dots on the imaginary axis are singularities at

� = �4:846 : : : i.

corresponds to a large circular arc in the w�plane from H to A, encircling the saddle points

w�. The points B;C and F;G tend to in�nity in the ��plane, with arg � = �2�=3, as the
corresponding points tend to 0 and �1 in the w�plane.

From the pictures it follows that the mapping is one to one on the boundary of the

domain in the w�plane that lies outside the thin neighborhoods of the branch cuts. Because

the mapping is analytic inside this domain and on the boundary, the mapping is univalent

inside the domain (see Titchmarsh (1939, page 201)).

The black dots on the imaginary axis are singularities at � = �4:846 : : : i corresponding
to the points w�e�2�i, which are outside the principal sheet of lnw. For values of z on the

positive imaginary axis this principal sheet is de�ned by � 1
2
� < argw < 3

2
�.

6. Numerical veri�cation of the expansions for the zeros
In this section we give more details on the computational aspects of the asymptotic estimate

given in (4.13), and we give information on the singularities of � de�ned in (3.6) as a function

of z.

For the expansion of en;m;s given in (4.13) we claimed that it holds for all zeros in the

upper plane. We can verify this by computing numerically the zeros of En;m[z(n +m)] and

compare the results with the two-term expansion in (4.13). In the diagonal case n = m we

can compare the zeros of En;m[z(n+m)] with those of the Bessel function Jn+1=2(�izn) since

En;n(2iz) = (�i) (2z)n
p
2�z e�iz Jn+ 1

2
(z);

see (2.1) of Driver & Temme (1997). The zeros of the J�Bessel function are easily com-
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puted, also when the order is large.

When we take n = 31, the �rst zero of Jn+1=2(�izn) on the positive imaginary axis has

the value z = 1:215727 : : : i and the zero of En;m(2zn) computed with (4.13), with s = 1,

has the value 1:2157877 : : : i, which gives an approximation with �ve corresponding digits

(relative precision: 0.000049). The accuracy improves steadily for the larger zeros. For

s = 30 we obtain 4:4957504 : : : i and 4:4957801 : : : i, for the numerical and asymptotic values,

respectively, with relative precision 0.0000066.

For the zeros of the polynomials Pn and Qm we can use the same approximation given

in (4.13) (with modi�cations as explained after (4.13)). When n = m = 31 there are 15

complex zeros for each polynomial in the upper half plane and one real zero. The zero of

Pn closest to z = i has the value �0:154582 : : : + 0:916323 : : : i (computed by Maple), and

the approximation based on (4.13) gives �0:154579 : : :+0:916388 : : : i (which gives a relative

precision of 0.00007). The real zero of Pn has the value �0:673442 : : :, whereas (4.13) gives
�0:673433 + 0:000017 : : : i, which gives a relative precision of 0.00017, mainly due to the

imaginary part; the real part has a relative precision of 0.000012, which is better than that

of the �rst zero.

By inspecting more numerical results it follows that this time the zeros farther from z = i

become less accurate (as they approach the real axis). Although we need only [(n + 1)=2]

zeros for the polynomials (the other ones follow from conjugation), it is not as satisfactory

as in the case of En;n(2zn), and we will explain what is going wrong.

First we observe that, apparently, we have two possibilities for computing all n zeros of

Pn:

� by using (4.13) for s = 1; 2; : : : ; n;

� by using (4.13) for s = 1; 2; : : : ; [(n+1)=2] and the remaining ones by using conjugation.

In addition to this we observe that we can continue the computations beyond s = n, because

the Airy function has an in�nite number of zeros. To explain this latter point, we remark

that an approximation as given in (3.7) can also be used for non-integer values of n (with

proper interpretation of Pn and (�1)n n!). The integrals in (1.1){(1.3) de�ne functions for

general complex values of n and m, and those functions (for instance the Hankel functions

in (2.1) of Driver & Temme (1996) (2.1) when n = m) have an in�nite number of zeros,

unless n is an integer, when they have exactly n zeros; see also Abramowitz & Stegun

(1964, page 373).

Also, when n is not an integer, the integrals in (1.1){(1.3) de�ne many-valued functions,

and an appropriate choice of a branch cut for the generalized function Pn is the negative real

axis. When we compute more than the �rst half of the zeros of this Pn we have to interpret

these zeros as lying outside the principal sector, that is, with arg z > �. When n is an integer

these [n=2] zeros are exactly the conjugates of those in the upper half plane.

6.1. Singularities of � as function of z

Another point is that the quantity � de�ned in (3.6) becomes singular at z = e�i�. Recall

that we assumed that � vanishes at the point z = ei� and is analytic at this point. At z = e�i�

we see from (3.3) that w+ = w� and from (3.6) that � vanishes again. However, this is false
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Figure 6.1. Trajectories of the saddle points w+ (open dots) and w� (black dots)

when z runs through the zeros of Pn, with n = m = 31. At B and E the saddle

points coincide when z = �i.

in general: the vanishing of � at z = e�i� depends on the actual phase of z at this point.

When z follows the curve of the early zeros of Pn in the left-hand plane, this curve crosses

the negative axis, and the values of w+ and w� are not equal when z arrives at z = e�i� (in
fact, their phases are di�erent). Consider again the diagonal case n = m, with � = 1

2
�. At

z = i = e
1

2
�i, we have w+ = w�, but when z = �i = e

3

2
�i we have w+=w� = e�2�i.

In Figure 6.1 we show the trajectories of the saddle points w� (de�ned in (3.3)) when

z runs through the zeros of Pn with n = m = 31, starting near z = i and ending at

z = �i = e
3

2
�i, with all zeros located in the half-plane <z < 0. At B and E the saddle points

coincide (when z = �i). The saddle point w+ describes a path from B to E, partly through

the right-hand part of the plane, whereas w� remains in the left-hand half plane.

We infer from (3.6) that at z = �i = e
3

2
�i the parameter � is given by 4

3
�3=2 = �2�i, that

is, � = (3�=2)3=2e��i=3. Similarly, at z = �i = e�
1
2
�i we have � = (3�=2)3=2e+�i=3. Now

it is clear that, when we compute the zeros of Pn that lie in the lower half-plane =z < 0,

the quantity � becomes singular as we approach z = �i. This makes an approximation as

in (4.13) less accurate for these zeros, and it is better to use conjugation for the zeros of the

polynomial Pn in =z < 0. Approximation (4.13) holds uniformly for all zeros of Pn located

in =z > 0.
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In the case that n = m, the relation for � given in (3.6) reads

2
3
�3=2 = ln

1 +
p
1 + z2

�iz �
p
1 + z2 ;

from which the role of the point z = �i (with phases 3�=2 and ��=2) can be read o�.

The relations given in (3.12) and (4.12) for d�=dz also show that the mapping z ! �(z) is

not conformal when g� vanishes, except when z = ei�. All points z = ei��2k�i; k = 1; 2; 3; : : :

and z = e�i��2k�i; k = 0; 1; 2; : : : give singular points on the extended Riemann sheet of �(z).

7. Concluding remarks
In a forthcoming paper on the quadratic Hermite-Pad�e Type I approximations associated

with the exponential function the polynomials Pn; Qm and Rs, having degrees n; m and s

respectively, with Pn monic, that solve the approximation problem

Enms(z) := Pn(z)e
�2z +Qm(z)e

�z +Rs(z) = O
�
zn+m+s+2

�
as z ! 0;

will be investigated for their asymptotic behaviour and zero distribution. The quantities

Pn; Qm; Rs and Enms have integral representations that are of a similar type as the ones

given in (1.1) { (1.3). More details can be found in Driver & Temme (1996), which is a

preliminary study of this problem. Many properties of the quantities Pn; Qm; Rs and Enms

are derived in that paper.

The present investigations have been done in order to become familiar with the more

complicated methods from uniform asymptotics for obtaining information on the zeros of

Pn; Qm; Rs and Enms of the Hermite{Pad�e case. We could have obtained the results of the

present paper by considering the quantities de�ned in (1.1) { (1.3) as con
uent hypergeometric

functions, and by considering the di�erential equation for this class of special functions. In

that way we might have used the powerful methods to obtain Airy-type expansions, including

error bounds for the remainders, that are developed in Olver (1974 & 1997). However, for

the Hermite{Pad�e case an approach based on linear di�erential equations seems not to be

available.
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