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ABSTRACT

We consider several model problems from a class of elliptic perturbation equations

in two dimensions. The domains, the di�erential operators, the boundary conditions,

and so on, are rather simple, and are chosen in a way that the solutions can be

obtained in the form of integrals or Fourier series. By using several techniques from

asymptotic analysis (saddle point methods, for instance) we try to construct asymptotic

approximations with respect to the small parameter that multiplies the di�erential

operator of highest order. In particular we consider approximations that hold uniformly

in the so-called boundary layers. We also pay attention to how to obtain a few terms

in the asymptotic expansion by using direct methods based on singular perturbation

methods.
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1. Introduction

A singular perturbation is a term or component in a di�erential equation existing of a

derivative term (the highest order in the equation) with a small coe�cient ". There is

an extensive literature on solving singularly perturbed di�erential equations (linear and

nonlinear) by means of constructing perturbation expansions and by using matching

principles. See for example Eckhaus (1973), (1979), Grasman (1971), O'Malley

(1979) and Smith (1985). For an historical survey we refer to Shih & Kellogg

(1987).
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In this paper we consider several model problems from a class of elliptic perturbation

equations in two dimensions. The domains, the di�erential operators, the boundary

conditions, and so on, are rather simple, and are chosen in a way that the solutions can

be obtained in the form of integrals or Fourier series. It is our aim to show how methods

from uniform asymptotic analysis for integrals (saddle point methods, for instance) can

be used to �nd the asymptotic behaviour of the solutions with respect to the small

parameter that multiplies the di�erential operator of highest order. In particular we

consider approximations that hold uniformly in the so-called boundary layers. We also

pay attention how to obtain a few terms in the asymptotic expansion by using direct

methods based on singular perturbation methods.

In general, the construction of the outer and inner expansions (for approximating

the solutions outside and inside the boundary layers) by using singular perturbation

methods is now a standard method, and does not cause any di�culties for the prob-

lems we are discussing. However, interesting problems arise when the equations are

solved analytically, and for simple cases it is not always trivial how to obtain a uniform

expansion, say from an integral, that is valid in and outside the boundary layer.

We consider the following type of singular perturbation problem:

"��(x; y)� �y(x; y) = f(x; y); (1:1)

where " is a small positive parameter, in a domain 
 of the plane. The domain 
,

the function f and the boundary conditions will be chosen in a way that we can solve

the equation in terms of an integral or a series expansion. We consider the following

domains (not all in the same detail):

[1] The strip 
 =
n
(x; y)

�� x 2 IR; 0 � y � 1
o
,

[2] The quarter plane 
 =
n
(x; y)

�� x � 0; y � 0
o
,

[3] The sector 
 =
n
x = r cos �; y = r sin �

�� r � 0; 0 < � � � < 2�
o
;

[4] The exterior of the unit circle,

[5] The interior of the unit circle.

The problem is to �nd the asymptotic behaviour of � as "! 0. The solution to equation

(1.1) has boundary layers at certain parts of the boundary @
 of 
. In general, it is

quite di�cult to obtain uniform asymptotic approximations of � that are valid in the

boundary layers and in the other parts of 
 as well.

We present for the analytic representation of � methods from asymptotic analysis

(for instance saddle point methods) to indicate the kind of problems that arise when

trying to obtain uniform approximations.

InGold (1982), Roberts (1967), and Shercliff (1962) problems from mathemat-

ical physics are given that lead to the elliptic singular perturbation problem considered

here. The equation (1.1) arises in magnetohydrodynamics, where " measures the im-

portance of viscous force relative to the electromagnetic force, and in the theory of

plate-membranes under tension in the y�direction, where " measures the bending sti�-

ness.
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2. An example from ODE's

To give a �rst impression of what is happening in the boundary layer we consider an

example of a singular perturbation problem for an ordinary di�erential equation. The

example is a simpli�cation of (1.1), and gives insight in the boundary layer aspects of

this equation.

−1.0
−0.5 0.5

1.0

0.5

−0.5

−1.0

−1.5

−2.0

Figure 1. Boundary layer near y = 1 of the equation "wyy � wy = 1

with boundary values w(�1) = 0. The exact solution is given in (2.2).

The linear operator @=@y plays a dominant role in (1.1). The interesting direction

concerning the change in behaviour of the solution � is along the characteristic lines

x = constant of this operator. This means that the role of the term �xx in (1.1) is

not very great in the interior of 
, and therefore we omit in this example the second

x�derivative in (1.1).

The solution of the equation

"
d
2
w

dy2
� dw

dy
= 1; (2:1)

with the boundary values w = 0 if y = �1, is given by

w(y) = �1� y +
e
y=" � e

�1="

sinh1="
: (2:2)

We observe that on the interval [�1; 1� �], where � is a �xed small positive number,

for small values of " the function w is equal to w0(y) = �1 � y plus a function that is

exponentially small. Near the boundary y = 1 the solution w drops from the value �2
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to its proper boundary value 0. In this example we see that the boundary layer occurs

at y = 1.

A perturbation analysis of (2.1) starts with the expansion w(y) � P1
n=0 "

n
wn(y),

which gives, when selecting equal powers of ",

�w00 = 1; w
0
n+1 = w

00
n; n = 0; 1; 2; : : : :

This gives,

w0(y) = �y � 1; wn(y) � 0; n = 1; 2; 3; : : : ;

when we take into account that all functions wn should vanish at y = �1.
When we want to analyze the situation near y = 1 we introduce the stretching

variable y = 1 � "�. This gives the di�erential equation �w + _w = ", where the dots

indicate di�erentiation with respect to �. A �rst order approximation v0 follows from

the reduced equation �v0 + _v0 = 0, with solution v0 = c1 + c2e
��.

The constants c1; c2 follow from giving w0 + v0 the requested boundary value 0 at

y = 1, giving c1 + c2 = 2. Another relation comes from a "matching" condition: if v0
should vanish if � ! 1 then we get c1 = 0. This gives an approximation of the exact

solution given in (2.2):

w(y) = �1� y + 2e�(1�y)=" +O("):

In the present case the error is exponentially small for all y 2 [�1; 1], because all

wn; n > 0, vanish. Selecting c1; c2 with the condition w0+ v0 = 0 at y = �1, we get the
exact solution (2.2).

In general cases more functions wn and vn are needed to get an approximation of

the form

w(y) =

mX
n=0

"
n
wn(y) +

mX
n=0

"
n
vn(y) +O

�
"
m+1

�
; "! 0;

where the O�term holds uniformly with respect to y 2 [�1; 1].

2.1. The location of the boundary layer

When we take " = 0 in (2.1), we obtain the reduced equation �wy = 1. The solutions

of this equation cannot satisfy both boundary conditions w = 0 if y = �1. We started

the perturbation method by assuming (in fact knowing) that the boundary layer occurs

at y = 1. The minus sign in front of the �rst derivative term in (2.1) is crucial here.

We might have started in a di�erent way, by taking as a �rst approximation w0(y) =

1 � y and trying to match at y = �1. The stretching variable � is now de�ned by

y = �1 + "�, which gives the di�erential equation �w � _w = ";, with reduced equation

�v0 � _v0 = 0. Solutions are v0 = c1 + c2 exp(�) = c1 + c2 exp[(y + 1)="], again with

c1 + c2 = 0 to satisfy the boundary condition at � = 0, that is, at y = �1.
Observe that it is not possible now to use the matching principle to get a second

relation for c1; c2. With the false start, assuming that the boundary layer occurs at
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y = �1, we have lost the matching principle. By the way, the exact solution can be

written in the form

w(y) = 1� y +
e
y=" � e

1="

sinh1="
:

The term with the exponential functions is now relevant throughout the whole interval

[�1; 1].
As shown in Eckhaus & De Jager (1966) for elliptic problems, one can deduce

from a maximum principle that w(�1) = 0 is the proper initial condition for the reduced

equation of (2.1).

3. An equation in the strip 0 � y � 1

We consider the equation

"�w(x; y) � @w

@y
(x; y) = 0; 0 � y � 1; (3:1)

with boundary conditions

w(x; 0) = f(x); w(x; 1) = g(x):

In this case the boundary layer occurs near y = 1.

A perturbation analysis starts with substituting an expansion

w(x; y) �
1X
n=0

"
n
wn(x; y)

in which the terms satisfy

w0(x; y) = f(x);
@wn(x; y)

@y
= �wn�1(x; y); n = 1; 2; : : : : (3:2)

This gives an approximation that holds outside the boundary layer. The �rst boundary

layer correction v0 to this approximation follows from introducing the local coordinate

� by writing y = 1� "�. As in the previous section it is given by

v0(x; �) = c1(x) + c2(x)e
��
:

When we prescribe the matching condition v0(x; �)! 0 as � !1, and the boundary

condition w0 + v0 = 0 at � = 0, we obtain

w(x; y) = f(x) + [g(x) � f(x)] e�(1�y)=" +O("); "! 0:

When we prescribe that the approximation w0 + v0 assumes the matching and both

boundary conditions, we obtain

w(x; y) = f(x) + [g(x)� f(x)]
e
�(1�y)=" � e

�1="

1� e�1="
+O("):
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We observe from the recursive scheme in (3.2) that the functions wn contain deriva-

tives of f . When f is discontinuous the scheme does not work, because w1 is not de�ned

for all x. The solution w(x; y) of the elliptic di�erential equation (3.1) is smooth inside

the strip 0 < y < 1, also if f and g have integrable singularities. Therefore, it is of

interest to consider an approach that is based on the exact solution.

To obtain an exact solution of (3.1) we assume that f; g 2 L
2(IR). We take the

Fourier transform of the di�erential equation with respect to x, that is, let

bw(�; y) :=
Z 1

�1
e
�i�x

w(x; y) dx:

Then we obtain for any " > 0 the solution of the transformed problem:

bw(�; y) = e
!y sinh(1� y)�

sinh�
bf(�) + e

!(y�1) sinhy�

sinh�
bg(�);

where

! =
1

2"
; � =

p
!2 + �2:

The exact solution of the problem (3.1) is then the inverse

w(x; y) =
1

2�

Z 1

�1
e
i�x bw(�; y) d�: (3:3)

Even for simple functions f; g it is not an easy problem to obtain an asymptotic

expansion of this integral. For example, if g = 0 and f = �[�1;1] is the characteristic

function on [�1; 1], that is

f(x) =

�
1; if �1 � x � 1;

0; otherwise,

we obtain

w(x; y) =
e
!y

�

Z 1

�1
e
i�x sin �

�

sinh(1� y)�
sinh�

d�:

In this case it is of interest to investigate how the discontinuities of f at x = �1
are taken over by the smooth function w(x; y) inside the strip. Also, w(x; y) tends to

zero exponentially fast if y ! 1. So, several examples of non-uniform behaviour can be

observed.

From a �rst analysis we conclude that a uniform asymptotic approximation of w(x; y)

contains error functions (normal distribution functions) if x crosses the values �1, with
0 < y < 1. We expect that it is even more di�cult to investigate the behaviour of

w(x; y) in the boundary layer, in particular near the points (�1; 1).
In Cook & Ludford (1971) more details can be found on methods based on the ex-

act solution, and with non-smooth boundary functions f and g. Other related references

are Mauss (1970) and Howes (1981).
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4. An equation in the quarter plane x � 0; y � 0

We consider the elliptic partial di�erential equation

"��(x; y)� @�

@y
(x; y) = 0; (4:1)

where " > 0, in the quarter plane


 = fx > 0; y > 0g

with boundary conditions

�(x; 0) = 0; �(0; y) = �(y):

In this case there is no upper boundary layer because the domain 
 is unbounded

in the y�direction. However, along the y�axis a parabolic boundary layer occurs. In

general, such type of boundary layers arise when the boundary contains segments that

coincide with a characteristic of the �rst order operator @=@y (that is, lines with x =

constant).

Solutions of the reduced equation @�0

@y
(x; y) = 0 do not satisfy both given boundary

conditions.

A local analysis in the parabolic boundary layer starts with the local coordinate

� =
xp
"
:

Equation (4.1) transforms into

@
2�

@�2
� @�

@y
= �"@

2�

@y2
:

We de�ne the function w0(�; y) as the solution of the reduced equation

@
2
w0

@�2
� @w0

@y
= 0;

that satis�es the boundary conditions for �. An explicit form of the solution reads:

w0(�; y) =

r
2

�

Z 1

�=
p
2y

e
� 1

2
t2
�
�
y � �

2
=(2t2)

�
dt:

We continue with constructing an exact solution for the simple choice �(y) � 1, and

refer to Temme (1974) for the case of a general sector, and for a discussion on what

happens if the sector becomes a quarter plane.

Put

�(x; y) = e
!y
F (x; y); ! =

1

2"
;
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ε∆Φ − Φ   = 0

Φ = 1

Φ = 0

∆F − ω  F = 0,

F = e

F = 0

2y

−ωy

        
ω = 1/(2ε)

Φ(x,y ) = e     F(x,y )
ωy

x

y

x

y

Figure 2. Boundary values of � and F in the boundary value problems.

then F satis�es the Helmholtz equation

�F (x; y)� !
2
F (x; y) = 0;

with boundary conditions

F (0; y) = e
�!y

; F (x; 0) = 0:

Separating the variables we obtain the solution

F (x; y) =
1

�i

Z 1

�1
e
ily�xpl2+!2 l dl

l2 + !2
:

Put l = ! sinh t and introduce polar coordinates

x = r cos �; y = r sin �; 0 � � � 1

2
�:

Then

F (x; y) =
1

�i

Z 1

�1
e
�!r cosh(t�i�) sinh t

cosh t
dt:

Shift the contour up in the complex plane (assume that � < 1
2
�, and that, hence, we do

not pass a pole of cosh t):

F (x; y) =
1

�i

Z 1

�1
e
�!r cosh t sinh(t+ i�)

cosh(t+ i�)
dt

Write � = 1
2
� � �. Then

F (x; y) =
1

�i

Z 1

�1
e
�!r cosh t cosh(t� i�)

sinh(t� i�)
dt

We want to obtain an asymptotic expansion of this integral for large values of !, in

particular near the y�axis where the boundary layer occurs.

The asymptotic features of the integral are:
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[1] there is a saddle point at t = 0;

[2] when �! 1
2
� (or �! 0) the saddle point and the pole coalesce.

A standard procedure to deal with this kind of asymptotic phenomena is based on using

the error function (cf. Wong (1989)). We use the error function representation (the

proof is left as an exercise)

e
�r cos�erfc

�p
2r sin

1

2
�

�
=

1

2�i

Z 1

�1
e
�r cosh t dt

sinh 1
2
(t� i�)

;

where 0 < � < 2�; and split o� the pole at t = i�:

cosh(t� i�)

sinh(t� i�) =

�
cosh(t� i�)

sinh(t� i�)
� 1

2 sinh 1
2
(t� i�)

�
+

1

2 sinh 1
2
(t� i�)

:

This gives

F (x; y) = e
�!yerfc

p
!(r � y) +

1

�

Z 1

�1
e
�!r cosh t

f(t) dt

where

f(t) =
1

i

cosh(t� i�)

sinh(t� i�)
� 1

2i sinh 1
2
(t� i�)

:

We expand

f(t) = cosh
1

2
t

1X
n=0

cn

�
sinh

1

2
t

�n

;

and obtain the asymptotic expansion

�(x; y) � erfc
p
!(r � y) +

2

�
e
�!(r�y)

1X
n=0

c2n

�(n+ 1
2
)

(2!r)n+
1

2

;

as ! !1, uniformly in the quarter plane; r should be bounded away from 0. In fact,

we need !r!1. The �rst coe�cient reads

c0 =
cos�

sin�
� 1

2 sin 1
2
�
; � =

1

2
� � �:

For small values of � we have

c0 = �3

8
�� 3

128
�
3 +O ��5� :

Because f(t) is odd if � = 0, all coe�cients c2n vanish if � = 0.

The problem of this section is treated in Temme (1971). For more details on the

parabolic boundary layer we refer to Eckhaus & De Jager (1966). Other references

for the elliptic problems having a characteristic boundary include Knowles & Mes-

sick (1964), Grasman (1968), Cook & Ludford (1973), Hedstrom & Osterheld
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Linear boundary layer
along the upper 
boundary of the sector

Sector angle   <     

Parabolic boundary layer
along the y - axis

Parabolic interior 
boundary layer around the
y - axis

1
2
− π

Sector angle   = 

1
2
− π

1
2
− π

Sector angle   > 

Figure 3. Boundary layers in sector problems.



11

(1980), and Shih & Kellogg (1987). In particular, Grasman obtained an asymptotic

expansion from an integral representation of the exact solution of a quarter plane, based

on which Shih and Kellogg devised a method of matched asymptotic expansions for an

elliptic problem de�ned in a rectangular region. Hedstrom and Osterheld used a combi-

nation of a Bleistein transformation and the treatment of poles of Van der Waerden

(1951) (see alsoWong (1989, Chapter 7)) to construct an asymptotic expansion for an

integral representation of the exact solution of an elliptic problem de�ned in the quarter

plane, which is of the same type as one given in the present section.

5. The exterior of the circle

The model problem

"��(x; y)� �y(x; y) = 0; (5:1)

on the region 
 =
�
(x; y)

��x2 + y
2 � 1

	 � IR2 satisfying the boundary condition

�(x; y) = 1 for x
2 + y

2 = 1

and � ! 0 at in�nity, is discussed in great detail in Waechter (1968). See also

Hemker (1996) for numerical aspects and a summary of Waechter's approach.

The exact solution can be written in terms of a Fourier series, in which quotients of

Bessel functions arise as coe�cients. The series is transformed into an integral in the

complex plane, and the integration is with respect to the complex order of the Bessel

functions (a Watson transform).

The domain 
 is divided into several subdomains in order to describe the rather com-

plicated asymptotic behaviour. In a certain subdomain residue series are constructed

by using zeros (with respect to the order) of modi�ed Bessel functions. In another

subdomain saddle point methods are used.

The exact solution for this problem reads

�(x; y) =

1X
n=�1

Kn(!)

In(!)
Kn(!r) cosn(� + �=2); ! =

1

2"
;

where r; � are the polar coordinates x = r cos �; y = r sin �; r � 1. For further details we

refer to the cited literature, and to the next section for a similar problem.

6. The interior of the circle

Consider the model problem

"��(x; y)� @�

@y
(x; y) = 1; x

2 + y
2
< 1: (6:1)

The boundary condition reads �(cos �; sin �) = 0 on the boundary of the circle r = 1,

where r; � are the polar coordinates:

x = r cos �; y = r sin �; 0 � r � 1; �� < � � �:
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1.0

−1.0

1.0−1.0

x

y

θ

r

Figure 4. Boundary layer inside the circle along the upper boundary

r = 1; y > 0 and near the points (�1; 0).

Again, the problem is to �nd the asymptotic behaviour of � as "! 0. The solution

to equation (6.1) has a boundary layer at the boundary where y is positive. In particular

it is of interest to �nd the behaviour of � in small neighborhoods of the points (x; y) =

(�1; 0), the places of birth of the boundary layer.

6.1. Singular perturbation methods

We give a few steps on the construction of the asymptotic solution of the singular

perturbation problem by substituting an asymptotic expansion. We recall:

"��(x; y)� @�

@y
(x; y) = 1; x

2 + y
2
< 1;

�(cos �; sin �) = 0:

(6:2)

The boundary layer occurs at the upper semi-circle, which is in agreement with the

case of a similar ordinary di�erential equation. Inside the circle the solution of the circle

problem can be approximated by

w0(x; y) = �y �
p
1� x2;

which satis�es the condition on the lower semi-circle, but not on the upper semi-circle.

When we substitute the formal series

�(x; y) �
1X
n=0

"
n
wm(x; y)
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into (6.2) and equate equal powers of ", we �nd

@w0(x; y)

@y
= �1; @wn(x; y)

@y
= �wn�1(x; y); n = 1; 2; : : : ;

and all wn should vanish at the lower part of the unit circle.

This gives w0 given above and

wn(x; y) =

Z y

�p1�x2
�wn�1(x; �) d�; n = 1; 2; : : : ; :

It is easily veri�ed that

w1(x; y) =
y +

p
1� x2

(1� x2)3=2
:

We observe that w1 becomes singular at the points (�1; 0) and that the functions

wn do not satisfy the boundary condition wn = 0 on the upper part of the unit circle.

To satisfy the boundary conditions along the upper part of the unit circle so-called

boundary layer terms are introduced. These functions have the property of being of

order O("n) for all n everywhere inside the unit circle except for a small neighborhood

of the upper part of the circle.

Following the construction of the boundary layer term given in Eckhaus & De

Jager (1966), we can write

�(x; y) = �y �
p
1� x2 + 2 sin � e�

1

"
(1�r) sin �

 (x; y) + " z0(x; y);

where z0(x; y) = O(1), uniformly inside the unit disk, with the exception of small

neighborhoods of the points (�1; 0). The function  is a smoothing factor, which

equals unity on a neighborhood of the upper part of the circle, and  vanishes in the

lower part of the disc.

In Roberts (1967) the circle problem is considered with the same simple di�erential

equation and boundary condition as in our case. A detailed analysis is given for the

boundary layer near the points (�1; 0) by using boundary layers coordinates. Integrals

of ratios of Airy functions are used to obtain the approximations. See also Grasman

(1971).

6.2. The solution of the boundary value problem

We recall:

"��(x; y)� @�

@y
(x; y) = 1; x

2 + y
2
< 1;

�(cos �; sin �) = 0:

(6:3)

We construct the exact solution of this equation. A �rst substitution

�(x; y) = �y � e
!y
F (x; y);

gives the problem

�F (x; y)� !
2
F (x; y) = 0; ! =

1

2"
;
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with boundary condition

F (cos �; sin �) = � sin � e�! sin �
:

The Helmholtz equation can be solved in terms of modi�ed Bessel functions by using

the polar coordinates and by separating the variables.

We have a solution of the form

F (x; y) =

1X
n=�1

anIn(!r)e
in�
;

where the coe�cients an follow from the well-known Bessel function series

e
z cos t =

1X
n=�1

In(z) cos nt:

This gives

F (x; y) =

1X
n=�1

I
0
n(!)

In(!)
In(!r) cosn(� + �=2);

�(x; y) = �y � e!r sin �
1X

n=�1

I
0
n(!)

In(!)
In(!r) cosn(� + �=2):

6.3. Transforming the Fourier series

We apply the Poisson summation formula to the Fourier series. We have

1X
n=�1

f(n) =

1X
m=�1

bf(2�m);

where bf is the Fourier transform of f :

bf(y) =
Z 1

�1
f(x) eixy dx:

This result holds if f is of bounded variation and absolutely integrable on IR (cf. Zyg-

mund (1959, p. 68)). For cosine transforms we have (by assuming that f is even)

1X
n=0

0
f(n) =

1X
m=0

0 bf(2�m); bf(y) = 2

Z 1

0

f(x) cos(xy) dx:

Applying this to series for F (x; y) we obtain

F (x; y) = 2

1X
m=0

0
Fm(x; y);

Fm(x; y) = 2

Z 1

0

I
0
�(!)

I�(!)
I�(!r) cos �(� + �=2) cos(2�m�) d�:
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The function I�(z) is an analytic function of �, with the following asymptotic be-

haviour:

I�(z) =
(z=2)�

�(� + 1)

�
1 +O(��1)

�
; � !1;

with z �xed.

I�(z) is positive if z and � are positive.

It follows that all functions Fm(x; y) in are well-de�ned, and that the Poisson sum-

mation formula can be applied. The integrals that de�ne Fm(x; y) converge fast for

�xed values of !, as follows from the estimate for I�(z).

6.4. The asymptotic behaviour of F0(x; y)

To investigate the asymptotic behaviour of F0(x; y) we use the Debye uniform approxi-

mation of I�(!).

We have

I
0
�(!)

I�(!)
I�(!r) =

p
�2 + !2

p
2�!

e
��

(�2 + !2r2)
1=4

[1 +O(1=!)] ;

as ! !1, uniformly with respect to � 2 [0;1). The quantity � is given by

� =
p
1 + z2 + ln

z

1 +
p
1 + z2

; z =
!r

�
:

Using this in F0, putting � = !r sinh t, replacing the cosine by an exponential

function, we obtain

F0(x; y) �
r
!r

2�

Z 1

�1

p
1 + r2 sinh2 t

p
cosh t e�!rf(t) dt;

where

f(t) = (t� i� � i�=2) sinh t� cosh t:

The saddle points follow from the equation

f
0(t) = (t� i� � i�=2) cosh t = 0;

giving

t0 =

�
� +

1

2
�

�
i; t1 =

1

2
�i:

Several interesting aspects can be observed.

[�] when � ! 0, the two saddle points and a singularity of the integrand coalesce.

[�] when � ! 0 and r ! 1, another singularity coalesces with the two coalescing

saddle points.

There is no standard method in uniform asymptotic methods for integrals available

to handle the second case. In the �rst case Airy functions can be used.
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This �rst orientation in the asymptotic phenomena demonstrates the complicated

situation that arises in the points (�1; 0).
Another approach is based on replacing the Fourier series with an integral in the

complex plane, where we integrate with respect to complex orders of the Bessel func-

tions.

For example, we can write:

F (x; y) = �i
Z
C

I
0
�(!)

I�(!)
I�(!r)

cos �(� � �=2)

sin ��
d�; (6:4)

where C is a contour around the poles of 1= sin ��; see Figure 5.

Figure 5. Contour of integration in (6.4) around the poles of 1= sin ��.

For this approach it is needed to investigate the location of the zeros of the modi�ed

Bessel function I�(!), and the possibility of using these zeros for obtaining an expansion

in the form of a residue series. Again, we have to replace the Bessel functions in (6.4)

with their asymptotic approximations.

More details on the circle problem are given Temme (1997), where we show that

use of the Watson transform (6.4) yields the uniform asymptotic approximation that is

valid in the boundary layer. In Mauss (1969) a similar problem has been investigated.
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