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ABSTRACT

Bernoulli and Euler polynomials are considered for large values of the order. Convergent

expansions are obtained for Bn(nz + 1/2) and En(nz + 1/2) in powers of n−1,

with coefficients being rational functions of z and hyperbolic functions of argument

1/2z. These expansions are uniformly valid for |z ± i/2π| > 1/2π and |z ± i/π| >
1/π, respectively. For real argument, accuracy of these approximations is restricted

to the monotonic region. The range of validity of the uniformity parameter z is

enlarged, respectively, to regions of the form |z± i/2(m+1)π| > 1/2(m+1)π and

|z±i/(2m+1)π| > 1/(2m+1)π, m = 1, 2, 3, .., by adding certain combinations of

incomplete gamma functions to those uniform expansions. In addition, the convergence

of these improved expansions is stronger and also for real argument the accuracy of

these improved approximations is better in the oscillation region.
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1. Introduction

The Bernoulli and Euler polynomials of degree n and complex argument z, denoted
by Bn(z) and En(z), respectively, are defined by [ [1], eq. 23.1.1.],

wewz

ew − 1
=
∞∑

n=0

Bn(z)
n!

wn, |w| < 2π, (1)
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2ewz

ew + 1
=
∞∑

n=0

En(z)
n!

wn, |w| < π. (2)

Standard texts on the classical theory of Bernoulli and Euler polynomials and numbers
are, for example, chapter VI in Milne-Thomson [13] and chapters V and VI in Jordan
[9]. A very complete bibliography up to 1960 concerning tables and applications of the
theory of Bernoulli and Euler polynomials can be found in Fletcher et al. [6]. Fore more
recent works (after 1960) the reader is referred to Weinmann [20], Todorov [19], Dilcher
[3]-[4], Leeming [10], Haruki et al. [8] and Cvijovic et al. [2] and references therein
for a very complete survey on formulas involving these polynomials, zeroes, asymptotic
behaviour, integral representations and a number of other properties. Nevertheless, an
extensive list of formulae involving Bernoulli and Euler polynomials can be found in
Erdlyi et al. [ [5], pp. 35 − 43], Magnus et al. [ [11], pp. 25− 32], Abramowitz et al. [
[1], pp. 803− 806], Gradshteyn et al. [ [7], pp. 1076− 1080], Prudnikov et al. [ [12] vol
3, 55− 57] and Temme [ [18], pp. 2− 17].

Here we are interested in approximations of these polynomials for large order n.
Convergent expansions in terms of trigonometric functions for real z and 0 ≤ z ≤ 1
can be found in [ [1], 23.1.16 − 23.1.18]. A more detailed study about these expan-
sions concerning the type of convergence is investigated in [3], where similar expansions
for generalized Bernoulli polynomials are obtained as well. In ref. [20], asymptotic
expansions of (generalized) Bernoulli polynomials are obtained in terms of elementary
functions as well as in terms of gamma functions. These expansions happen to fail
when the argument z is let to grow arbitrarily. Here we are concerned with finding
approximations of the Bernoulli and Euler polynomials for large order n that remain
also valid for large argument z. In particular, the purpose of this paper is to obtain
approximations of Bn(nz +1/2) and En(nz +1/2) for large n which are uniformly valid
in some unbounded region of the complex variable z.

1.1. Summary of the results

Our main results are summarized as follows.

1. For
∣∣z ± i

2π

∣∣ > 1
2π

, n ≥ 1,

Bn

(
nz +

1
2

)
=

nnzn−1

2 sinh(1/2z)

{
1+[

1 + 4
(

z − 1
2

coth
(

1
2z

))
coth

(
1
2z

)]
1

8nz2
+O

(
1
n2

)}
.

2. For
∣∣z ± i

π

∣∣ > 1
π , n ≥ 1,

En

(
nz +

1
2

)
=

(nz)n

cosh(1/2z)

[
1 +

(
1− 2 tanh2

(
1
2z

))
1

8nz2
+O

(
1
n2

)]
.
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3. For
∣∣z ± i

4π

∣∣ > 1
4π , n ≥ 1,

Bn

(
nz +

1
2

)
=

[
e2πinz

(2πi)n
Γ(n + 1, 2πinz) +

e−2πinz

(−2πi)n
Γ(n + 1,−2πinz)

]
+

(nz)n

{[
1

2z sinh(1/2z)
− 8π2z2

1 + 4π2z2

]
+[

1
16z3 sinh(1/2z)

(
1 + 4

(
z − 1

2
coth

(
1
2z

))
coth

(
1
2z

))
+

8π2z2(3− 4π2z2)
(1 + 4π2z2)3

]
1
n

+O
(

1
n2

)}
.

4. For
∣∣z ± i

3π

∣∣ > 1
3π , n ≥ 1,

En

(
nz +

1
2

)
=2i

[
eπinz

(πi)n+1
Γ(n + 1, πinz)− e−πinz

(−πi)n+1
Γ(n + 1,−πinz)

]
+

(nz)n

{[
1

cosh(1/2z)
− 4πz2

1 + π2z2

]
+

[
4πz2(3− π2z2)

(1 + π2z2)3
+

1
8z2 cosh(1/2z)

(
1− 2 tanh2

(
1
2z

))]
1
n

+O
(

1
n2

)}
.

For the given z−domains, the above approximations have the indicated asymptotic
properties and, in addition, they are the first terms of convergent expansions.

2. Uniform expansions and saddle point method

From the definitions (1) and (2) we have,

Bn

(
z +

1
2

)
=

n!
2πi

∫
C

wewz

2 sinh(w/2)
dw

wn+1
(3)

and

En

(
z +

1
2

)
=

n!
2πi

∫
C

ewz

cosh(w/2)
dw

wn+1
, (4)

where the contour C encircles the origin in the counterclockwise direction and contains
no poles of w sinh−1(w/2) or cosh−1(w/2), respectively. The shift 1/2 in the variable
z is introduced in order to have reflection symmetry z → −z in these polynomials. In
order to deal with both Bn(z) and En(z) simultaneously, we will start this section with
generic polynomials defined by the contour integral

Pn(z) =
n!
2πi

∫
C

f(w)ewz dw

wn+1
, (5)

where f(w) is a meromorphic function with simple poles w1, w2, . . . and analytic at the
origin. The contour C is a circle with center the origin and which contains no poles of
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f(w) inside. Bernoulli and Euler polynomials defined by (3) and (4) are nothing but
particular cases.

We can write (5) in the form

Pn(nz) =
n!
2πi

∫
C

f(w)en(wz−log(w)) dw

w
,

The key observation used for obtaining approximations of Pn(nz) for large n and fixed
z is the following: the main contribution of the integrand above to the integral is
originated in the saddle point of the argument of the exponential [21], that is, in the
point w = z−1. Approximations of Pn(nz) for large n and fixed z can be obtained by
expanding f(w) around the saddle point [14]-[17]. Therefore, if z−1 is not a pole of
f(w), we expand

f(w) =
∞∑

k=0

f (k)(z−1)
k!

(w − z−1)k, |w − z−1| < r, (6)

where r is the distance from z−1 to the nearest singularity of f(w). The radius ε1 of the
contour C in the definition (5) of Pn(z) can be chosen as close to zero as necessary. Then,
for w ∈ C (|w| = ε1), the above series is absolutely convergent if |z−1| < |z−1 − wk|
∀ k = 1, 2, . . . (see Figure 1 (a) where the particular case f(w) = w/2 sinh(w/2) is
represented).

2
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(a) (b)
Figure 1. (a)The meromorphic function f(w) = w/2 sinh(w/2) has singularities wk =
±2kπi, k = 1, 2, . . . For small ε1, validity of (6) is guaranteed if the saddle point z−1 is closer to

the origin than to any of the singularities wk. This happens for z−1 inside a strip of width 2π along

the real axis. (b) For z−1 inside that strip we can choose small enough ε1 and ε2 = |z−1−2πi|−R

such that the circle C is inside the circle C ′. Then, a ≡ maxw∈C |w − z−1|/R < 1 and (9)

holds.
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Substituting expansion (6) into (5) we obtain

Pn(nz) =
n!
2πi

∫
C

∞∑
k=0

f (k)(z−1)
k!

(w − z−1)kenwz dw

wn+1
. (7)

The k−th derivative of f(w) evaluated in the point z−1 may be written

f (k)(z−1) =
k!
2πi

∫
C′

f(t)dt

(t− z−1)k+1
,

where the contour C ′ is a circle around the point z−1 with radius R ≡ |t − z−1|
smaller than the distance from z−1 to any of the singularities wk of f(t). That is,
R ≡mink∈N |wk − z−1| − ε2 for some ε2 > 0 (see Figure 2 (b) where the particular case
wk = ±2kπi is represented). Therefore,

|f (k)(z−1)| ≤ K
k!
Rk

, (8)

where K is not depending on k. Then, for |z−1| < |z−1 − wk| ∀ k = 1, 2, . . . and small
enough ε1 and ε2 we have maxw∈C |w − z−1|/R ≡ a < 1 for a certain a > 0 which only
depends on z, ε1 and R (see Figure 1 (b)). Taking the modulus in (7) and using (8) we
obtain

|Pn(nz)| ≤ Kn

∞∑
k=0

ak

∫
C

∣∣∣∣enwz dw

wn+1

∣∣∣∣ <∞, (9)

where Kn is a certain constant. Therefore, after substituting (6) into (5), we can apply
Fubini’s theorem and interchange sum and integral to obtain, for |z−1| < |z−1 − wi| ∀
i = 1, 2, 3, . . .,

Pn(nz) = (nz)n
∞∑

k=0

f (k)(z−1)
k!

Φk(n, z), (10)

where
Φk(n, z) =

1
2πi

n!
(nz)n

∫
C

(w − z−1)kenzw dw

wn+1
. (11)

The functions Φk(n, z) are polynomials in n divided by powers of z and constitute an
asymptotic sequence for n→∞. More precisely,
Lemma 1. The functions Φk(n, z) defined in (11) can be represented in the form

Φk(n, z) =
pk(n)
(nz)k

, (12)

where
p0(n) = 1, p1(n) = 0, p2(n) = −n, p3(n) = 2n (13)

and the remaining polynomials pk(n) are given by the recurrence

pk(n) = (1− k)(pk−1(n) + npk−2(n)). (14)
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Proof. By direct calculation from the definition (11) for k = 0 and k = 1 we obtain
Φ0(n, z) = 1 and Φ1(n, z) = 0. For k ≥ 2 we can write

Φk(n, z) =
1

2πi

n!
(nz)n+1

∫
C

(w − z−1)k−1 d

dw

[
enz(w−z−1ln(w))

]
dw.

Integrating by parts and after straightforward operations we obtain

Φk(n, z) =
1− k

nz

[
z−1Φk−2(n, z) + Φk−1(n, z)

]
, (15)

from which (14) follows trivially. �
Lemma 2. For fixed z 6= 0, the sequence Φk(n, z) is an asymptotic sequence for n→∞
that satisfies Φk(n, z) = O(n[k/2]−k).
Proof. It is trivially verified for Φ0(n, z) and Φ1(n, z). For k ≥ 2 it can be easily proved
by induction over k by using (12) and the recurrence (14). �

We can summarize this discussion in the following
Theorem 1. The polynomials Pn(nz) defined in (5), where f(w) is a meromorphic
function with simple singularities w1, w2, . . . and analytic in the origin, may be expanded
as the infinite sum

Pn(nz) = (nz)n
∞∑

k=0

f (k)(z−1)
k!

pk(n)
(nz)k

, (16)

valid for z ∈ C/, |z−1| < |z−1 − wi| ∀ i = 1, 2, 3, . . ., where pk(n) are the polynomials
defined in (13)-(14).
Remark 1. Observe that the polynomials pk(n) appearing in the expansion (16) of
Pn(nz) are the same ones for any set of polynomials of the family Pn(z) defined in (5).
The particular information about the particular set of polynomials defined by each f(w)
in (5) is all contained in the coefficients f (k)(z−1).

2.1. Uniform expansions of the Bernoulli polynomials

The Bernoulli polynomials Bn(nz + 1/2) may be expanded in the form (16) with
f(w) = (w/2)/ sinh(w/2) and wk = ±2kπi, k = 1, 2, 3, ... In this case eq. (6) reads, for
w ∈ C,

w/2
sinh(w/2)

=
∞∑

k=0

f (k)(z−1)
k!

(w − z−1)k, |w − z−1| < | ± 2πi− z−1|. (17)

After straightforward operations we obtain that the derivatives f (k)(z−1) are given
by the recurrence

f (k)(z−1) =−
bk/2c∑
l=1

(
k
2l

)
fk−2l(z−1)

4l
−

1
2

coth
(

1
2z

) b(k−1)/2c∑
l=0

(
k

2l + 1

)
fk−2l−1(z−1)

4l
, k ≥ 2,
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where

f (0)(z−1) =
1

2z sinh(1/2z)
and f (1)(z−1) =

z − 1
2 coth(1/2z)

2z sinh(1/2z)
. (18)

In the shown results we also use f (2)(z−1), which is given by

f (2)(z−1) = − 1
8z sinh(1/2z)

[
1 + 4

(
z − 1

2
coth

(
1
2z

))
coth

(
1
2z

)]
.

Introducing these f (k)(z−1) in (16) and retaining for convenience only the first three
terms of the expansion we obtain,
Corollary 1. For |Im

(
z−1

)
| < π (or

∣∣z ± i
2π

∣∣ > 1
2π ) and n ≥ 1,

Bn

(
nz +

1
2

)
=

nnzn−1

2 sinh(1/2z)

{
1+[

1 + 4
(

z − 1
2

coth
(

1
2z

))
coth

(
1
2z

)]
1

8nz2
+O

(
1
n2

)}
.

(19)

Figure 2 shows the accuracy of approximation (19) for several values of n for real
values of the uniformity parameter z.

Although expansion (16) with f (k)(z−1) given by (18) is convergent for
∣∣z ± i

2π

∣∣ >
1
2π

, convergence is slow for |z| ≤ π−1 (and
∣∣z ± i

2π

∣∣ > 1
2π

) and quite fast for |z| > π−1.
The relative error decreases for increasing |z| or n. For example, for |z| ∼ π−1 and
n = 10, the relative error is ∼ 10−2. For n = 40 and |z| ∼ 1, the relative error is
∼ 10−5. The accuracy is even better for real argument, as shown in Figure 2. For real
argument, the oscillatory region of Bn(nx + 1/2) is contained in |x| ≤ π−1, whereas
the monotonic region contains |x| > π−1; therefore, for real argument, accuracy of
approximation (19) is restricted to the monotonic region.

x

0.4

x

-0.08

-0.04

0

0.04

0.08

0.2 0.6-0.6 -0.4 -0.2

-0.4 -0.2 0 0.2 0.4

-0.05

0.1

(a) n = 3. (b) n = 10.
Figure 2. Solid lines represent Bn(nx + 1/2) for several values of n, whereas dashed lines

represent the right-hand side of (19) with z ≡ x, both normalized by the factor (1 + |x/a|n)−1,
where a is half the width of the oscillation region.
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2.2. Uniform expansions of the Euler polynomials

The Euler polynomials En(nz+1/2) may be expanded in the form (16) with f(w) =
1/ cosh(w/2) and wj = ±(2j + 1)πi, j = 0, 1, 2, . . . . Similar calculations to those of the
above subsection may be performed in this case. For w ∈ C, eq. (6) reads

1
cosh(w/2)

=
∞∑

k=0

f (k)(z−1)
k!

(w − z−1)k, |w − z−1| < | ± πi− z−1|. (20)

After straightforward operations, we obtain that the derivatives f (k)(z−1) are given by
the recurrence

f (k)(z−1) =−
bk/2c∑
l=1

(
k
2l

)
fk−2l(z−1)

4l
−

1
2

tanh
(

1
2z

) b(k−1)/2c∑
l=0

(
k

2l + 1

)
fk−2l−1(z−1)

4l
, k ≥ 1,

where
f (0)(z−1) =

1
cosh(1/2z)

. (21)

In the shown results we also use f (2)(z−1), which is given by

f (2)(z−1) =
1

4 cosh(1/2z)

(
2 tanh2

(
1
2z

)
− 1

)
.

Introducing these f (k)(z−1) in (16) and retaining for convenience only the first three
terms of the expansion we obtain,
Corollary 2. For |Im

(
z−1

)
| < π

2 (or
∣∣z ± i

π

∣∣ > 1
π ) and n ≥ 1,

En

(
nz +

1
2

)
=

(nz)n

cosh(1/2z)

[
1 +

(
1− 2 tanh2

(
1
2z

))
1

8nz2
+O

(
1
n2

)]
. (22)

Figure 3 shows the accuracy of approximation (22) for several values of n for real
values of the uniformity parameter z.

As in the Bernoulli case, although expansion (16) with f (k)(z−1) given by (22) is
convergent for

∣∣z ± i
π

∣∣ > 1
π , convergence is slow for |z| ≤ 2π−1 (and

∣∣z ± i
π

∣∣ > 1
π ) and

quite fast for |z| > 2π−1. The relative error decreases for increasing |z| or n. For
example, for |z| ∼ 2π−1 and n = 10, the relative error is ∼ 10−2. For n = 40 and
|z| ∼ 1, the relative error is ∼ 10−4. The accuracy is even better for real argument, as
shown in Figure 3. Also, for real argument, the oscillatory region of En(nx + 1/2) is
contained in |x| ≤ 2π−1, whereas the monotonic region contains |x| > 2π−1; therefore,
accuracy of approximation (22) is restricted to the monotonic region.
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(a) n = 3. (b) n = 10.
Figure 3. Solid lines represent En(nx + 1/2) for several values of n, whereas dashed lines

represent the right-hand side of (22) with z ≡ x, both normalized by the same factor as in Fig.

2.

3. Enlarging the region of validity of the uniformity parameter z

We have proved in Theorem 1 that validity of approximation (16) is restricted to
the region |z−1| < |z−1 − wi| ∀ i = 1, 2, 3, . . . . (in the particular cases of the Bernoulli
and Euler polynomials, the uniformity parameter z is restricted to be outside the discs∣∣z ± i

2π

∣∣ ≤ 1
2π and

∣∣z ± i
π

∣∣ ≤ 1
π , respectively). In these z−domains, the expansions are

convergent series, as in (16). From computer experiments (see also Figures 2 and 3)
we conclude that, in addition, in the Bernoulli and Euler cases, the uniformity param-
eter should satisfy |z| ≥ π−1 and |z| ≥ 2π−1, respectively, in order to obtain a good
approximation by using only the first few terms of the expansion (16).

However, the region {z ∈ C/, |z−1| < |z−1 − wi| ∀ i = 1, 2, 3, . . .} may be enlarged
by ’isolating’ the contribution of the poles w1, w2, . . . of f(w): take the (simple) poles
{wi ∈ C/, i = 1, 2, 3, . . .} of f(w), ordered by increasing modulus |wi| ≤ |wi+1| and define

fm(w) = f(w)−
m∑

k=1

rk

w − wk
, (23)

where rk are the residues of f(w) in wk. The function fm(w) has no poles inside the
disc {w ∈ C/, |w| < |wm+1|}. Introducing (23) in (5) we obtain

Pn(z) = Pm
n (z) + Qm

n (z), (24)

where
Pm

n (z) =
n!
2πi

∫
C

fm(w)ewz dw

wn+1
(25)

and

Qm
n (z) =

n!
2πi

m∑
k=1

rk

∫
C

ewz

w − wk

dw

wn+1
. (26)
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Now, the poles wm+1, wm+2, . . . of the function fm(w) are farther away from the origin
than the poles of the function f(w). Repeating the process of last section for Pm

n (z)
instead of Pn(z) we obtain

Pm
n (nz) = (nz)n

∞∑
k=0

f (k)(z−1) + h
(k)
m (z−1)

k!
pk(n)
(nz)k

, (27)

valid for |z−1| < |z−1 − wi| ∀ i = m + 1,m + 2, . . . (and z 6= 0), where h
(k)
m (w) is the

k−th derivative of

hm(w) = −
m∑

l=1

rl

w − wl
. (28)

Therefore, the range of validity of the expansion (27) is now larger than that of the
expansion (16). On the other hand, the functions Qm

n (z) defined in (26) are just combi-
nations of incomplete gamma functions: shifting the integration contour by w = wk + t

in each integral in (26), writing

etz

t
=

∫ z

0

etxdx +
1
t

and after straightforward operations, using elementary properties of incomplete gamma
functions [[18], chap. 11, sec. 2], we obtain

n!
2πi

∫
C

ewz

w − wk

dw

wn+1
= ewkz

[∫ z

0

e−wkttndt− n!
wn+1

k

]
= − ewkz

wn+1
k

Γ(n + 1, wkz),

that is nothing but −n!/wn+1
k times the Taylor polynomial of degree n in z = 0 of ewkz.

Therefore,

Qm
n (z) = −

m∑
k=1

rkewkz

wn+1
k

Γ(n + 1, wkz),

and we have the following,
Theorem 2. The polynomials Pn(z) defined in (5) by means of a meromorphic function
f(w) analytic in the origin with simple poles w1, w2, . . . (and respective residues r1,
r2, . . .), can be represented, for each integer m > 0, as

Pn(nz) =−
m∑

k=1

rkewknz

wn+1
k

Γ(n + 1, wknz)

+ (nz)n
∞∑

k=0

f (k)(z−1) + h
(k)
m (z−1)

k!
pk(n)
(nz)k

,

(29)

valid for z ∈ C/, |z−1| < |z−1 −wi|, ∀ i = m + 1,m + 2, . . ., where the polynomials pk(n)
are given in (14) and h

(k)
m (z−1) is the k−th derivative of the function hm(w) defined in
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(28). Each term of the finite sum in the first line in the above equation equals n!rk/wn+1
k

times the Taylor polynomial of degree n in z = 0 of ewknz.
The ’isolation’ technique used above for enlarging the region of validity of z, is quite

similar to the one employed for obtaining uniform asymptotic expansions of contour
integrals with a saddle point near a pole [[21], chap. 7, sec. 2]. There, by means of
a change of variable, the contribution of the poles (eq. (26)) is expressed as an error
function. Here, it is expressed just as a combination of incomplete gamma functions.

The series expansion of Pm
n (nz) on the right-hand side of (27) converge in a larger

region |z−1| < |z−1−wi| ∀ i = m + 1,m +2, . . . . But moreover, the polynomial Qm
n (z)

has been defined in (26) by using a function −hm(w) in the integral that has the same
first 2m poles and the same residues as the function f(w) defining Pn(z) in (5). The
contour C in (5) and in (26) may be chosen to pass near the singularities of f(w) closest
to the origin. If |z| is small, the saddle point is far away from the path C and the greatest
contribution to the integral is given by the piece of integral closest to these singularities.
Therefore both integrals in (5) and in (26) are dominated by the same singularity and
then, these integrals should be very similar, that is, Pn(nz) ' Qm

n (nz) for small |z| and
m ≥ 1. Therefore, for small |z|, it must happen that |Pm

n (nz)| << |Qm
n (nz)|. We check

these facts in the Bernoulli and Euler examples.

3.1. Bernoulli polynomials

The first 2m poles and residues of f(w) = (w/2)/ sinh(w/2) are wk = ±2kπi, rk =
(−1)kwk, k = 1, 2, . . . ,m. From (28) and after a straightforward algebra one may easily
check that the derivatives h

(k)
m (z−1) of hm(w) in the saddle point z−1 can be obtained

from

h(k)
m (z−1) =

m∑
l=1

(−1)lh
(k)
l ,

where h
(k)
l are given by the recursive formula

h
(k)
l = − k

z−2 + 4π2l2

(
2z−1h

(k−1)
l + (k − 1)h(k−2)

l

)
(30)

for k ≥ 2, with

h
(0)
l =

8π2l2

z−2 + 4π2l2
, and h

(1)
l = − 16π2l2

z(z−2 + 4π2l2)2
. (31)

In the shown results we also use h
(2)
l , which is given by

h
(2)
l =

16π2l2(3z−2 − 4l2π2)
(z−2 + 4l2π2)3

.

Introducing f (k)(z−1) given in (18) and h
(k)
m (z−1) given in (30)-(31) in eq. (29), using

wk = ±2kπi, rk = (−1)kwk, k = 1, 2, . . . ,m and retaining only the first three terms of
the infinite sum in the second line of (29) we obtain,
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Corollary 3. For |Im(z−1)| < (m + 1)π (or
∣∣∣z ± i

2(m+1)π

∣∣∣ > 1
2(m+1)π ) and n,m ≥ 1,

Bn

(
nz +

1
2

)
=−

m∑
k=1

(−1)k

[
e2kπinz

(2kπi)n
Γ(n + 1, 2kπinz)+

e−2kπinz

(−2kπi)n
Γ(n + 1,−2kπinz)

]
+

(nz)n

{[
1

2z sinh(1/2z)
+ 8π2

m∑
k=1

(−1)kk2z2

1 + 4k2π2z2

]
+[

1
16z3 sinh(1/2z)

(
1 + 4

(
z − 1

2
coth

(
1
2z

))
coth

(
1
2z

))
−

8π2
m∑

k=1

(−1)kk2z2(3− 4k2π2z2)
(1 + 4k2π2z2)3

]
1
n

+O
(

1
n2

)}
.

(32)

Remark 2. For m = 1, it follows, by using

Γ(n + 1, z) = n! e−z
n∑

j=0

zj

j!
,

that the first sum on the right-hand side, that is, the polynomial Q1
n(nz), reduces to

Q1
n(z) = 2n!zn

bn/2c∑
k=0

(−1)k

(4π2z2)k(n− 2k)!
.

This is nothing but 2n!/(2π)n times the Taylor polynomial of degree n in z = 0 of
cos(2πnz−πn/2), which in turn is the first term of the Fourier expansion of Bn(nz+1/2)
[[1], 23.1.16], which converges very fast if n is large.

Figure 4 shows the strong accuracy of approximation (32) already obtained from
n = 3 with m = 1 for real values of the uniformity parameter z.

Approximation (32) is not valid for
∣∣∣z ± i

2(m+1)π

∣∣∣ ≤ 1
2(m+1)π . Convergence is slow in

the vicinity of these discs and grows sharply for increasing distance from z to these discs
and/or increasing n. For example, for m = 1 and n = 10, the relative error is ∼ 10−2

for
∣∣z ± i

4π

∣∣ ∼ 1
4π and ∼ 10−5 for |z| ∼ 1. For m = 1 and n = 40, the relative error

is ∼ 10−3 for
∣∣z ± i

4π

∣∣ ∼ 1
4π and ∼ 10−6 for |z| ∼ 1. Accuracy is even better for real

argument, as shown in Figure 4 and, as a difference with approximation (19), accuracy
is also good in the oscillation region. For real argument and in the oscillation region,
Q1

n(nx) ' Bn(nx+1/2) and P 1
n(nx) tends to zero exponentially fast. On the other hand,

in the monotonic region, the approximation of Bn(nx+1/2) given by P 1
n(nx)+Q1

n(nx)
is better than the approximation given by Pn(nx).
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(a) n = 3. (b) n = 10.
Figure 4. Solid lines represent Bn(nx + 1/2) for several values of n, whereas dashed lines

represent the right-hand side of (32) with z ≡ x, both normalized by the same factor as in Fig. 2.

3.2. Euler polynomials

The first 2m poles and residues of f(w) = 1/ cosh(w/2) are, respectively, wk =
±(2k + 1)πi and rk = ∓2i(−1)k, k = 0, 1, 2, . . . ,m− 1. From (28) and after a straight-
forward algebra one may easily check that the derivatives h

(k)
m (z−1) of hm(w) at the

saddle point z−1 can be obtained from

h(k)
m (z−1) =

m−1∑
l=0

(−1)lh
(k)
l ,

where h
(k)
l are given by the recursive formula

h
(k)
l = − k

z−2 + (2l + 1)2π2

(
2z−1h

(k−1)
l + (k − 1)h(k−2)

l

)
(33)

valid for k ≥ 2 with

h
(0)
l = − 4π(2l + 1)

z−2 + (2l + 1)2π2
, and h

(1)
l =

8π(2l + 1)z−1

(z−2 + (2l + 1)2π2)2
. (34)

In the shown results we also use h
(2)
l , which is given by

h
(2)
l = −8(2l + 1)π

(3z−2 − (2l + 1)2π2)
(z−2 + (2l + 1)2π2)3

.

Introducing f (k)(z−1) given in eq. (21) and h
(k)
m (z−1) given in (33)-(34) in eq. (29),

using wk = ±(2k +1)πi and rk = ∓2i, k = 0, 1, 2, . . . ,m− 1 and retaining only the first
three terms of the infinite sum in the second line of (29) we obtain,
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Corollary 4. For |Im
(
z−1

)
| < (2m+1)π/2 (or

∣∣∣z ± i
(2m+1)π

∣∣∣ > 1
(2m+1)π ) and n,m ≥ 1,

En

(
nz +

1
2

)
=2i

m−1∑
k=0

(−1)k

[
e(2k+1)πinz

((2k + 1)πi)n+1
Γ(n + 1, (2k + 1)πinz)−

e−(2k+1)πinz

(−(2k + 1)πi)n+1
Γ(n + 1,−(2k + 1)πinz)

]
+

(nz)n

{[
1

cosh(1/2z)
− 4π

m−1∑
k=0

(−1)k(2k + 1)z2

1 + (2k + 1)2π2z2

]
+[

4π
m−1∑
k=0

(−1)k(2k + 1)z2(3− (2k + 1)2π2z2)
(1 + (2k + 1)2π2z2)3

+

1
8z2 cosh(1/2z)

(
1− 2 tanh2

(
1
2z

))]
1
n

+O
(

1
n2

)}
.

(35)

Remark 3. For m = 1, the first line on the right-hand side, that is, the polynomial
Q1

n(nz), is nothing but 4n!/πn+1 times the Taylor polynomial of degree n in z = 0 of
cos(πnz − πn/2), the first term of the Fourier expansion of En(nz + 1/2) [ [1], 23.1.16],

Q1
n(z) =

4n!zn

π

bn/2c∑
k=0

(−1)k

(π2z2)k(n− 2k)!
.

Figure 5 shows the strong accuracy of approximation (35) already obtained from
n = 3 with m = 1 for real values of the uniformity parameter z.

Approximation (35) is not valid for
∣∣∣z ± i

(2m+1)π

∣∣∣ ≤ 1
(2m+1)π . Convergence is slow

in the vicinity of these discs and grows sharply for increasing distance from z to these
discs and/or increasing n. For example, for m = 1 and n = 10, the relative error
is ∼ 10−3 for

∣∣z ± i
3π

∣∣ ∼ 1
3π and ∼ 10−5 for |z| ∼ 1. For m = 1 and n = 40, the

relative error is ∼ 10−5 for
∣∣z ± i

3π

∣∣ ∼ 1
3π and ∼ 10−6 for |z| ∼ 1. Accuracy is even

better for real argument, as shown in Figure 5 and, as a difference with approximation
(22), accuracy is also good in the oscillation region. For real argument, and in the
oscillation region, Q1

n(nx) ' En(nx+1/2) and P 1
n(nx) tends to zero exponentially fast.

On the other hand, in the monotonic region, the approximation of En(nx + 1/2) given
by P 1

n(nx) + Q1
n(nx + 1/2) is better than the approximation given by Pn(nx).



15

x


x


0
-1
 -0.5
 0.5
 1


0
-1
 -0.5
 0.5
 1


-40


40


80


-0.4


-0.2


0.2


0.4


(a) n = 3. (b) n = 10.

Figure 5. Solid lines represent En(nx + 1/2) for several values of n, whereas dashed lines

represent the right-hand side of (35) with z ≡ x, both normalized by the same factor as in Fig. 2.

4. Conclusions

Convergent expansions of the family of polynomials Pn(nz) defined by formula (5)
have been given in equation (10). For the particular cases of Bernoulli Bn(nz+1/2) and
Euler En(nz +1/2) polynomials, these expansions are given in equations (19) and (22),
respectively. They are uniformly valid for |z−1| < |z−1−wi| ∀ i = 1, 2, . . ., where wi are
the singularities of the meromorphic function f(w) defining Pn(nz) in (5) ordered by
increasing modulus, |wi| ≤ |wi+1|. For the particular cases of Bernoulli Bn(nz+1/2) and
Euler En(nz + 1/2) polynomials, convergence is restricted to the region

∣∣z ± i
2π

∣∣ > 1
2π

and
∣∣z ± i

π

∣∣ > 1
π , respectively. Although the convergence is quite strong only outside

the discs |z| ≤ π−1 and |z| ≤ 2π−1, respectively, and slow inside these discs. Figures
2 and 3 show the accuracy of these approximations for several values of n and real
argument z. Strong convergence is restricted the monotonic region.

The convergence may be strongly accelerated by ’isolating’ the poles of f(w), such
as it is described in Section 3. We obtain in this way that the convergence rate of
expansion (10) is improved in the expansion (29). In particular, the convergence rate
of the expansions (19) and (22) of Bernoulli and Euler polynomials are improved by
(32) and (35), respectively. These ’improved’ expansions are valid in a larger region
of the uniformity parameter z. They are uniformly valid for |z−1| < |z−1 − wi| ∀
i = m + 1,m + 2, . . . with m a positive integer. In the particular cases of the Bernoulli
and Euler polynomials, expansions (32) and (35) are uniformly valid for

∣∣∣z ± i
2(m+1)π

∣∣∣ >

1
2(m+1)π and

∣∣∣z ± i
(2m+1)π

∣∣∣ > 1
(2m+1)π , respectively. For real argument, the convergence

is quite strong everywhere including the oscillation region. Figures 4 and 5 show the
accuracy of these approximations for several values of n and real argument. We notice
that the expansions in (32) and (35) are much better at the origin z = 0 than the
simpler expansions (19) and (22). This can be explained by observing that the latter
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expansions, though not being correct, are exponentially small at the origin and that the
contributions coming from the incomplete gamma functions can be viewed as first terms
of fast converging expansions for the Bernoulli and Euler polynomials (see Remark 2
and Remark 3).

Approximations (19) and (22) may be quite useful for practical evaluations of
Bernoulli Bn(nz + 1/2) and Euler En(nz + 1/2) polynomials for large n in the ap-
propriate region of z. When the uniformity parameter satisfies |z| > π−1 or |z| > 2π−1,
respectively, only the three first terms of the expansion (19) or (22) are needed to ap-
proximate B10(10z + 1/2) or E10(10z + 1/2) with 2 digits. For |z| > 1, the first three
terms approximate these polynomials with 4 digits. Because of the asymptotic character
the accuracy of the approximation increases for increasing n.

Also, only the first few terms of the expansion of P 1
n(nz) are needed to obtain a good

approximation of Bernoulli and Euler polynomials in a larger region of the uniformity
parameter z by using the improved approximations (32) and (35) containing incomplete
gamma functions. Besides, the accuracy of these expansions is larger. On the other
hand, the knowledge of the zeros of the incomplete gamma functions may be used
for approximating the zeros of the Bernoulli and Euler polynomials by means of the
approximations (32) and (35). This will be investigated in a following publication.
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