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ABSTRACT

The convergence behaviour is investigated of solution algorithms for the anisotropic Poisson problem on partially

ordered, sparse families of regular grids in 3D. In order to study multilevel techniques on sparse families of grids,

�rst we consider the convergence of a two-level algorithm that applies semi-coarsening successively in each of

the coordinate directions. This algorithm shows good convergence, but recursive application of the successive

semi-coarsening is not su�ciently e�cient. Therefore we introduce another algorithm, which uses collective 3D

semi-coarsened coarse grid corrections. The convergence behaviour of this collective version is worse, due to

the lack of correspondence between the solutions on the di�erent grids. By solving for the trivial solution we

demonstrate that a good convergence behaviour of the collective version of the algorithm can be retained when

the di�erent solutions are su�ciently coherent. In order to solve also non-trivial problems, we develop a defect

correction process. This algorithm makes use of hierarchical smoothing in order to deal with the problems

related to the lack of coherence between the solutions on the di�erent grids. Now good convergence rates are

obtained also for non-trivial solutions. All convergence results are obtained for two-level processes. The results

show convergence rates which are bounded, independent of the discretisation level and of the anisotropy in the

problem.

1991 Mathematics Subject Classi�cation: Primary: 65N55. Secondary: 65N22.

Keywords & Phrases: sparse grids, multigrid, hierarchical basis, defect correction

Note: This report will be published elsewhere. Work carried out under project MAS2.1 'Computational uid

dynamics'.

1. Introduction

Classical multigrid (MG) uses sequentially nested families of grids. In the regular, d-dimensional

case every coarse grid-cell is formed by combination of 2d �ner grid cells. For more dimensions, as

d becomes larger, this implies that many frequencies that can be represented on a �ne grid cannot

be seen on the next coarser one. Since the two basic mechanisms in a MG method are smoothing

and coarse-grid-correction, this means that, for higher dimensions (e.g. d = 3) very strong relaxation

techniques are required to obtain good convergence results. A way to simplify this heavy requirement

is to use semi-coarsening, i.e., a coarser grid is created by only combining a pair of grid cells to a

coarser grid cell. Obviously, this process of semi-coarsening can be applied in each of the d coordinate

directions. Subsequent application this process in all coordinate directions makes a partially ordered

set of grids rather than a sequentially ordered one. All grids that can be seen as the coarsenings of

one particular grid are called a full grid of grids. Semi-coarsening is earlier described for d = 2 in

[9, 10] and for d = 3 in [1, 2, 3, 6, 7, 8].

It is an additional disadvantage of regular re�nement in each direction, especially for higher dimen-

sions, that the number of the degrees of freedom increases very fast when more levels of re�nement

are introduced. In the battle against the increasing number of degrees of freedom, a promising devel-

opment is the sparse grid approach of Zenger [12]. Sparse grids are formed by taking a subset from

the partially ordered family of semi-re�ned grids. This subset, the sparse grid of grids, is formed by

taking all grids for which the cells exceed a certain speci�ed volume. For su�ciently smooth functions
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it can be shown that the representation of a function on a sparse grid can be much more e�cient than

on a regular full grid [7, 12].

The problem with a representation on a sparse grid of grids is that there is no unique �nest grid.

There is a whole set of �nest grids and the question arises of how to represent a �nal solution. Basically

there are two ways to answer the question. The �rst is to introduce hierarchical basis functions instead

of standard basis functions [1, 2, 3, 12]. In this way one has to add the contributions (the hierarchical

surplus) from all grids in the sparse family to form the �nal solution. The second method is based on

extrapolation. Then a linear combination of the approximations on the �nest grids is formed. This is

called the combination technique [4, 5, 6].

An advantage of the hierarchical basis technique is the existence of a straightforward and unique

representation of an approximation, and the possibility to write down the FE discretisation for a

di�erential equation. It is a disadvantage that the FE discrete operator is not sparse and that {for

variable coe�cient equations{ no e�cient method is available for its evaluation. In contrast to the

hierarchical basis technique, the combination technique makes use of standard basis FE solutions on

the �nest grids. This has the advantage that existing techniques can be applied for the solution process

on these grids.

The above arguments are the motivation to develop methods which use 3D MG semi-coarsening

techniques together with a sparse grid of grids. The combination should also combine the advantages

of both approaches, i.e., MG convergence rates should be obtained without the requirement of strong

relaxation techniques, and the the solution of the problem can be represented with su�cient accuracy

by a relative small number of degrees of freedom. An additional advantage can be that the method is

not sensitive for anisotropies in the problem.

2. The equation

In this paper we study the 3D anisotropic Poisson equation with homogeneous boundary conditions:

�r � (aru) = f on 
 = [0; 1]3; (2.1)

where a = diag(a11; a22; a33) is a constant diagonal tensor. First, we discretise the equation by the

usual �nite element (FE) technique on the regular grid 
k, where k = (k1; k2; k3) is a multi-integer. In


k the mesh-size in the i-th coordinate direction is hi = 2�ki , i = 1; 2; 3. By Bk = f'kj jo � j � 2kg

we denote the basis of standard piecewise tri-linear basis-functions in 
k. A standard FE method

on grid 
k is obtained by selecting trial and test functions in Bk. This yields the discrete equationsP
j a('kj; 'ki)ukj = f('kj), which are also denoted in matrix form by

Akkuk = fk: (2.2)

Let A` be the block diagonal matrix composed by all sti�ness matrices on level `,

A` = diag
�
Akkj jkj = k1 + k2 + k3 = `

�
;

and let f`; u` be the concatenation of right hand side vectors fk and solution vectors uk respectively.

Then the collection of all discretisations on the grids 
k with jkj = ` can be written as

A`u` = f`: (2.3)

In this paper we study iteration methods for the solution of (2.3). In (2.3) possibly the FE method

can be replaced by another discretisation technique. Although we are essentially interested in MG

methods, for simplicity in this paper we restrict ourselves to the corresponding two-grid methods.

3. A successive correction method

In this section we consider a method for which each cycle consists of 3 stages, one for each coordinate

direction i = 1; 2; 3. In each stage it uses the one-dimensional (semi-coarsened) Full Approximation
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Scheme in direction i. We call the method SCM (Successive Correction Method). This method is

similar to the one proposed by Paum [11] in the sense that each time the coarse-grid-correction is

obtained only from coarsening in the i-th direction. For grids that have no coarser grid in the i-th

direction we perform only relaxations, in order to have a constant number of relaxations for all the

grids on the �ne level. For relaxation on the �ne level we use Jacobi-relaxation with a damping factor

! = 1

2
. We applied one pre- (�1 = 1) and one post-relaxation (�2 = 1) for every cycle.

For convergence measurement we solve the equation (2.1) with homogeneous right hand side, f = 0.

The trivial solution has the advantage of a possible lasting monitoring of the convergence. As an initial

guess we use u0 = x(1� x)y(1� y)z(1� z). After every SCM cycle we calculate the residual on each

grid of the �ne level `. In Figure 3 we see the convergence history of the SCM cycling. We repeat

the experiment for di�erent (plane and line) anisotropies, viz. a11 = 1:0, 0:01 and 100:0. In all cases

a22 = a33 = 1.

We make the following observations. During convergence we can distinguish two phases: an initial

and an asymptotic phase. The asymptotic convergence rate appears to be � � 0:35, independent of

the grid and independent of the level. Also for the di�erent anisotropies the convergence rates tend

towards the same constant value for all grids, independent of the level. In contrast to the asymptotic

rates, the initial convergence rates show large di�erences for the di�erent grids on a level.

Despite of the good and level-independent convergence rates of the SCM process, this is not an

e�cient method for the recursive application in a multi-level algorithm, because recursive application

requires a number of arithmetic operations that is more than proportional with the number of the

degrees of freedom. Therefore, in the next section we study an algorithm with a better complexity.

4. Collective correction methods

4.1 The Plain Collective Correction Method (PCCM)

In this section we consider methods that solve only a single linear system for each coarse grid on level

`� 1 (instead of three). The one solution is used to compute a correction for multiple �ne grids. This

is implemented in its simplest form in the Plain Collective Correction Method (PCCM, see Figure 1).

In this algorithm we see several calls for auxiliary routines. The relaxation is damped Jacobi as in

Section 3. Because of our interest in a TGM, the coarse grid equations on level ` � 1 are solved by

a conjugate gradient method. The prolongation of the corrections is done in the routine P3D. This

interpolation is directly based on the hierarchical representation on the levels `� 1, `� 2 and `� 3,

which representation is obtained by restriction from level `� 1 by the scheme given in Figure 2.

We again study equation (2.1) with homogeneous right hand side, f = 0, and initial guess u0 =

x(1� x)y(1� y)z(1� z). After every cycle with PCCM we calculate the residual and the results are

shown in Figure 4. In contrast with the SCM algorithm we see that the convergence behaviour of

this algorithm collapses. This is due to non-coherent residuals (or solutions) on the di�erent grids

of the �nest level, i.e., the residuals on the di�erent grids do not correspond. One can even observe

that residuals on di�erent grids are equally large, but have opposite signs. Hence the e�ect of their

restriction to the coarse grid is cancelled. This results in a bad convergence behaviour. In the initial

phase some grids are converging faster, but the convergence of these particular grids is hampered as

they feel the presence of the slowly converging grids. This is also the reason why the residual is not

monotonically decreasing for all grids.

4.2 The Simple Collective Correction Method (SCCM)

In order to avoid the problem with the non-coherent solutions, as described in Section 4.1, we simply

force the solution to be coherent. This is done in two steps, �rst changing the function from its redun-

dant representation on level ` to a hierarchical representation. Second, we transfer the hierarchical

representation back to the redundant representation. During the sweep from redundant representation

on level ` to the hierarchical representation, we have to calculate for the common points on the �ne

grid an approximation on the coarse grid. This is done by averaging the three values of the common
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routine PCCM(u`; f`; �1; �2);

integer �1; �2;k; j;

for j = 1; �1 do

Relax(A`u` = f`)

end do;

r` = f` �A`u`;

for (8jkj = `� 1) do

uk = 1

3
(Rk;k+e1

uk+e1
+Rk;k+e2

uk+e2
+Rk;k+e3

uk+e3
);

uold

k
= uk;

fk = Akk(uk) +
1

3
(Rk;k+e1

rk+e1
+Rk;k+e2

rk+e2
+Rk;k+e3

rk+e3
);

end do;

Solve(A`�1u`�1 = f`�1)

for (8jkj = `� 1) do

ck = uk � uold

k
end do;

P3D(c`�1, c`);

u` = u` + c`;

for j = 1; �2 do

Relax(A`u` = f`)

end do;

end

Figure 1: The algorithm PCCM

points on the �ne level. This process we call hierarchical smoothing, and in SCCM it is applied after

every call for PCCM.

Figure 6 shows the convergence for the isotropic equation (2.1) for various levels. We see that

the rate of convergence depends slightly on the level, but the convergence rate is bounded above by

a reasonable (constant) value. In Figure 7 we see the the convergence results for the anisotropic

equation. Again this convergence is independent of the anisotropy.

In our present case, with the trivial solution, we can simply apply hierarchical smoothing to the

solution. However, in general the discrete solutions di�er on the di�erent grids, and the hierarchical

smoothing is not su�cient. This is due to the fact that the solutions on the di�erent grids all have

their own discretisation error, so that the discrete solutions do not completely correspond. Hence,

when we force the solutions to correspond by hierarchical smoothing we will not obtain a converging

solution. Therefore, in the next section we develop a method which is able to handle also non-trivial

solutions.

4.3 The Collective Correction Method (CCM)

In the previous section we described that we could not expect good convergence rates by SCCM

because the solutions on all �ne levels di�er by their own speci�c truncation errors. Hence, to obtain

corresponding solutions we have to adjust the right hand side of the equations (2.2) for this e�ect.

This leads to the following defect correction equation on grid 
k:

Akkuk = Akkuk �Rk`

�
~A`~u` � f`

�
= gk: (4.1)

Here ~A` is some (hierarchical basis) discretisation matrix, and ~u` is the coherent representation of the

solution, obtained after a sweep of hierarchical smoothing from the redundant representation. The
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algorithm CCM is obtained from PCCM by replacing the right hand side fk in (2.2) by the adapted

right hand side gk. As in SCCM we apply hierarchical smoothing to the solution.

As we want to obtain good convergence for arbitrary rhs, we consider equation (2.1), with f = 100.

Figure 5 shows the convergence results for the isotropic equation, on level ` = 5 and ` = 6. We see

that the convergence rate changes somewhat, due to the adjustment of the right hand side. Figure 8

shows the convergence of the anisotropic equation for the levels ` = 5; 6 and ` = 7. We see that the

convergence rate hardly su�ers from the anisotropy. Further we see that the convergence is not really

dependent on the level of discretisation.

1
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1
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Figure 2: Restrictions of the corrections in P3D.

5. Conclusions

In the asymptotic phase, the convergence rates of the SCM-algorithm is almost completely independent

on the level of discretisation and on the anisotropy of the problem. However, each cycle of this

algorithm requires three coarse grid corrections. This implies that the recursive application of this

algorithm requires a number of arithmetic operations that is more than proportional with the number

of degrees of freedom. Collective correction algorithms overcome this di�culty.

Good convergence for the collective algorithm depends on coherence between the solutions on the

di�erent �ne grids. Therefore, we apply hierarchical smoothing to obtain coherent solutions. Now

the solution is solved with a defect correction process that makes use of the hierarchical basis rep-

resentation. Additionally, we applied the hierarchical smoothing to speed up the convergence of the

equations. With this combined process of defect correction and hierarchical smoothing we obtain good

convergence results, i.e., convergence which is only slightly dependent on the discretisation level and

anisotropy of the problem.

Thus far we calculated the defect correction by means of the hierarchical FE discretisation. For

the general case this still can be expensive. The next challenge is to �nd more e�cient discretisation

operators to calculate the defect in (4.1).
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Figure 3: Convergence of SCM for ` = 6 (left) and ` = 7 (right) for di�erent values of a11.
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Figure 4: Convergence of PCCM for the trivial solution, for level ` = 7 and ` = 8.
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Figure 5: Convergence of CCM for the isotropic equation (2.1), with right hand side f = 100, for level

` = 5 and ` = 6.
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Figure 6: Convergence for the isotropic equation (2.1), for the trivial solution obtained with SCCM.
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Figure 7: Convergence obtained with SCCM, for the anisotropic equation, a11 = 0:001 (left) and

a11 = 100 (right), for the trivial solution.
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Figure 8: Convergence of CCM for the anisotropic equation (2.1), with a11 = 0:001 (left) and a11 =

100:0 (right) and the right hand side f = 100, for ` = 5; 6 and ` = 7.


