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Note on PARNASSOS,

a Navier-Stokes Method for Ship-Stern Flows

Barry Koren

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

In this report, analyses are made of some of the numerical techniques implemented in MARIN's viscous ship-

hydrodynamics software PARNASSOS. Suggestions are given to improve the robustness of PARNASSOS and

{ where appropriate { its accuracy and computational e�ciency. The e�ects to be expected from some of the

proposed modi�cations are analyzed as well.

1991 Mathematics Subject Classi�cation: 35B05, 35B35, 35M10, 65N06, 65N12, 76D05, 76M20.

Keywords and Phrases: ship hydrodynamics, reduced Navier-Stokes equations, qualitative solution behavior,
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Note: This work was performed under a research contract with the Maritime Research Institute Netherlands

and was carried out under CWI-project MAS2.1 \Computational Fluid Dynamics".

1. Introduction

1.1 PARNASSOS

The ow equations considered in PARNASSOS are the steady, 3D, incompressible, Reynolds-averaged

Navier-Stokes equations with free-surface e�ects neglected and { also { all di�usion terms in main-

stream direction. Near the ship, the mainstream direction is assumed to be tangential to the hull.

The resulting reduced Navier-Stokes equations yield a reliable ow model for attached, thin boundary-

layer ow along in�nitely long geometries (i.e., geometries without leading and trailing edges). In case

of separation, the equations may lose their validity. PARNASSOS is mainly used for ow-topology

studies near ship sterns. (An important �rst objective of ship designers is to get an impression of

the local ow �eld the propeller has to operate in.) Since separation is to be expected most in the

ship-stern region, care has to be taken in interpreting computational results. The fact that the stern

is a trailing edge causes no problems. For a at plate, it is known that at high Reynolds numbers, the

ow model near the trailing edge has a triple-deck structure [13], where in the lower of the three decks

the full Navier-Stokes equations must be applied ([2], p. 230{232 and [3], p. 4,12,18,22). Fortunately,

because of the very high Reynolds numbers in ship hydrodynamics, the sizes of this full-Navier-Stokes

deck are negligible in practice.

The equations are discretized in computational space. The discretization uses �nite di�erences

on a non-staggered grid. The resulting residuals, though, are staggered. The solution method for

the discretized equations exploits the fact that, due to the absence of di�usion in one direction, the

equations are mixed parabolic-elliptic. The parabolic part dominates the elliptic. Therefore, parabolic

solution methods (marching methods) are appropriate. As a result of the remaining ellipticity of the

equations, a single-march method only is insu�cient. The solver has to be equipped for the elliptic

part, which contains the pressure derivatives. To solve for the pressure, use can be made of well-

established techniques such as the pseudo-compressibility [1] or the pressure-correction method [6].

The authors of PARNASSOS have chosen for an interesting alternative: pressure relaxation via the

momentum equation in mainstream direction. We refrain from a further description of PARNASSOS

and refer to publications by its authors. For an overview, see [8], for more detailed descriptions, see

[9, 10, 11].
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1.2 Problem description

The kind of computational domain in which PARNASSOS is applied, is sketched in Figure 1. In here,

the shaded curvilinear plane represents the hull of a half ship's rear part. The piece of hull extends

from the stern to about halfway the ship's length. It forms part of the computational domain's

boundary of which the remainder is the symmetry plane at y = 0. At the other boundaries, that in

the (z = 0)-plane is a symmetry boundary as well. Those in the planes x = 0 and x = xmax are

inow and outow boundaries, respectively. The inow conditions near the hull are derived from a

boundary-layer solution. Further away, a potential-ow solution is employed to determine the inow

conditions. (In the far�eld, the potential ow is in x-direction.) At the remaining, curvilinear outer

boundary (Figure 1), the conditions imposed follow from the potential-ow solution only.
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Figure 1: Sketch of computational domain considered in PARNASSOS.

For the discretization of the computational domain, an HO-type grid is applied. At the (z = 0)-

boundary, the grid plane is of H-type (Figure 2a). The density of grid lines running in mainstream

direction is highest in the boundary-layer ow along the hull. Although this is suggested in Figure

2a, the grid is not necessarily normal to the ship's symmetry plane. Instead, it may very well be

normal to the ship hull. At the inow and outow boundaries, the grid planes are of O-type (Figure

2b). The grid plane at the outow boundary (lower sketch in Figure 2b) is singular; the most inner

circumferential grid line has an in�nitely large curvature in its lowest point z = zsingular. The radial

grid line through z = zsingular su�ers in�nite curvature as well. (In the singular point, each of the

two grid lines is both at a �nite angle and tangential to the (y = 0)-plane.) The grid singularity does

not only occur at the most downstream grid plane, it is present in all grid planes downstream of the

stern. The singularity has its origin at the lower part of the ship stern. An unfavorable circumstance

is that this is in the region of interest, where the propeller is placed. In computational practice, the

grid singularity appears to result in robustness problems. The aim of this work is to �nd a �x for

these robustness problems.

1.3 Solution approach and outline of report

To solve the grid-singularity problem, the obvious way seems to be the generation of a non-singular

grid. However, sticking to the same type of grid, the remedies may also be sought in, e.g., a dis-

cretization with better stability properties, or in a solver with better convergence properties. Seeking

in a broader context may yield a �x which is simpler and as e�ective as that of the construction of

a regular grid. In this report, we will follow this more general approach. In Section 2, the reduced

Navier-Stokes model considered in PARNASSOS is analyzed with respect to the type of partial di�er-

ential equations and the qualitative solution behavior. In Section 3, the existing numerical techniques

that have been incorporated in PARNASSOS are analyzed to some extent: some numerical properties

of the di�erence formulae and some properties of the pressure relaxation (the less standard part of
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a. H-type grid plane at

z = 0.

b. O-type grid planes, at x = 0 (above)

and at x = xmax (below).

Figure 2: Sketches of grid planes.

the solution method) are studied. Partially based on the results of Section 3, in Sections 4, 5 and 6,

some modi�cations of the numerical method are proposed and { where possible { analyzed. The mod-

i�cations are classi�ed as not promising (Section 4), somewhat promising (Section 5) and promising

(Section 6). In this report, no numerical results are presented.

2. Continuous equations

Let us consider a Cartesian coordinate system x; y; z and let us assume that the x-direction is the

mainstream direction. Then, the ow equations considered in PARNASSOS can be written as

@u

@x
+
@v

@y
+
@w

@z
= 0; (2.1a)

u
@u

@x
+ v

@u

@y
+ w

@u

@z
+
@p

@x
� 1

Re

�
@2u

@y2
+
@2u

@z2

�
= 0; (2.1b)

u
@v

@x
+ v

@v

@y
+ w

@v

@z
+
@p

@y
� 1

Re

�
@2v

@y2
+
@2v

@z2

�
= 0; (2.1c)

u
@w

@x
+ v

@w

@y
+ w

@w

@z
+
@p

@z
� 1

Re

�
@2w

@y2
+
@2w

@z2

�
= 0; (2.1d)

where the density is supposed to be embodied in p and the turbulence model in Re. In the practice

of PARNASSOS, a curvilinear coordinate system is considered, �tted to the ship hull. It is in this
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curvilinear system that a mainstream direction is assigned, i.e., the direction in which all di�usion

terms are neglected. Thus, Cartesian, reduced Navier-Stokes system (2.1) is no valid ow model for

strongly curvilinear geometries, only for rectilinear such as that sketched in Figure 3, it may be so.

For �rst analysis purposes, we think that system (2.1) is to be preferred above a curvilinear one. It

yields more transparent results.
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Figure 3: In�nitely long, half at-plate hull, with computational domain.

2.1 Type of equations

To investigate the type of the equations, we rewrite the system operator in (2.1) to the corresponding

higher-order, scalar operator. For this purpose, assume the non-constant coe�cients u; v; w and, in

case of turbulence, also 1
Re

to be frozen and rewrite (2.1) in the matrix form

0
BB@

@
@x

@
@y

@
@z

0

� 0 0 @
@x

0 � 0 @
@y

0 0 � @
@z

1
CCA
0
BB@

u

v

w

p

1
CCA =

0
BB@

0

0

0

0

1
CCA ; � = u

@

@x
+ v

@

@y
+ w

@

@z
� 1

Re

�
@2

@y2
+

@2

@z2

�
;

(2.2)

where the frozen coe�cients have been overlined. The corresponding scalar operator is given by the

determinant of above matrix, i.e., by

�
@2

@x2
+

@2

@y2
+

@2

@z2

��
u
@

@x
+ v

@

@y
+ w

@

@z
� 1

Re

�
@2

@y2
+

@2

@z2

��2
: (2.3)

We see that the determinant is the product of two di�erential operators, the �rst is elliptic, the second

is parabolic (in x-direction). Given the quadratic form of the latter operator, the complete operator is

predominantly parabolic. To compare, the full Navier-Stokes equations are purely elliptic; the corre-

sponding determinant yields the sixth-order elliptic operator
�

@2

@x2
+ @2

@y2
+ @2

@z2

�h
u @
@x

+ v @
@y

+ w @
@z
�

1
Re

�
@2

@x2
+ @2

@y2
+ @2

@z2

�i2
. The second-order ellipticity, which is still present in (2.3), originates from

the velocity derivatives in the continuity equation and from the pressure derivatives. Elimination in

(2.2) of these derivatives, leads to
h
u @
@x

+ v @
@y

+ w @
@z
� 1

Re

�
@2

@y2
+ @2

@z2

�i3
, which is purely parabolic

indeed. With the knowledge that system (2.1) is second-order elliptic and fourth-order parabolic, from

existing theory on the well-posedness of boundary-value problems, it is known that the numbers of



2. Continuous equations 5

boundary conditions that have to be imposed in this case are: one at outow in x-direction and three

at all other boundaries. (Given the knowledge that the second-order elliptic nature is partly due to

the pressure derivatives, it seems natural that for the single outow condition a pressure condition

is taken.) In the next section, the qualitative solution behavior will be investigated. There, it will

be derived that the numbers of boundary conditions mentioned here are indeed necessary to get a

well-posed problem.

2.2 Qualitative solution behavior

Before investigating the solution behavior of the reduced Navier-Stokes system (2.1), we �rst analyze

the full Navier-Stokes system. For both systems of equations, it is assumed that the solution can be

written as the complex Fourier series0
BB@

u

v

w

p

1
CCA =

1

(2�)3

1X
m=�1

1X
l=�1

1X
k=�1

0
BB@

û

v̂

ŵ

p̂

1
CCA

k;l;m

ei(!x)kxei(!y)lyei(!z)mz: (2.4)

Linearizing the two systems of Navier-Stokes equations by freezing (as in Section 2.1) the non-constant

coe�cients u; v; w and possibly 1
Re
, we only need to consider a single Fourier component. Let us write

this component as0
BB@

u

v

w

p

1
CCA =

0
BB@

U

V

W

P

1
CCA ei!xxei!yyei!zz; (2.5)

and the linearized coe�cients again as u; v; w and 1
Re
.

Full Navier-Stokes equations. Substitution of (2.5) into the linearized, full Navier-Stokes equations

yields0
BB@

i!x i!y i!z 0

� 0 0 i!x
0 � 0 i!y
0 0 � i!z

1
CCA
0
BB@

u

v

w

p

1
CCA =

0
BB@

0

0

0

0

1
CCA ; � = i (u!x + v!y + w!z) +

1

Re

�
!2x + !2y + !2z

�
:

(2.6)

A non-trivial solution of (2.6) exists if the determinant of the matrix in (2.6) equals zero, i.e., if

�
!2x + !2y + !2z

� �
i (u!x + v!y + w!z) +

1

Re

�
!2x + !2y + !2z

��2
= 0: (2.7)

We proceed by looking for the solution modes !x of (2.7). From the �rst factor, it directly follows the

two solutions

(!x)1;2 = �i
q
!2y + !2z : (2.8a)

The solutions !x from the second factor can be directly written out as well. To keep the analysis

transparent, the latter solutions are expanded in terms of the small parameter 1
Re
, yielding

(!x)3;4 = �
�
v

u
!y +

w

u
!z

�
+ i

(v!y + w!z)
2 + u2(!2y + !2z)

u3
1

Re
+O

�
1

Re
2

�
; (2.8b)
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(!x)5;6 = �iuRe +
�
v

u
!y +

w

u
!z

�
� i

(v!y + w!z)
2 + u2(!2y + !2z)

u3
1

Re
+O

�
1

Re
2

�
: (2.8c)

Both are double roots because the second factor is squared. In analyzing (!x)1; : : : ; (!x)6, we as-

sume that !y and !z are real. Then, the root (!x)1 = +i
q
!2y + !2z implies exponential decrease of

the solution in positive x-direction and exponential increase in negative x-direction. For (!x)2, the

opposite holds. In (!x)3;4, the O(1)-term implies a neutrally stable, oscillating solution behavior.

The O( 1
Re
)-term in (!x)3;4 on its turn, implies damping in positive x-direction and growth in the

opposite direction, for u > 0. For u < 0, the behavior is the reverse. Hence, the combined e�ect of

the O(1)- and the O( 1
Re
)-term in (!x)3;4 is an oscillatory solution that diminishes and grows expo-

nentially in downstream and upstream direction, respectively. Finally, the double root (!x)5;6 implies

a solution behavior which is exactly the opposite of that of (!x)3;4. In Table 1, the solution behavior

in x-direction is summarized. The minus signs de�ne solution decrease and the plus signs increase.

Because of the similarity of equation (2.7) with respect to !x; !y and !z, for the y- and z-directions,

the tables corresponding to Table 1 are similar. (The tables for the y- and z-direction can be directly

obtained from Table 1 by replacing x; u; (!x)1�6 by y; v; (!y)1;::: ;6 and z; w; (!z)1;::: ;6, respectively.)

x! +1 x! �1
u > 0 u < 0 u > 0 u < 0

(!x)1 � � + +

(!x)2 + + � �
(!x)3 � + + �
(!x)4 � + + �
(!x)5 + � � +

(!x)6 + � � +

Table 1: Qualitative solution behavior of full Navier-Stokes equations, in a single coordinate direction,

+ means solution increase, � solution decrease.

For each of the four possible (x; u)-cases in Table 1, three exponentially growing solution modes appear

(three plus signs per column). The same holds for the y- and z-direction. Hence, to ensure a stable

solution, in each coordinate direction, independent of the sign of the (frozen) velocity component,

three conditions must be imposed at each of the two corresponding boundaries.

Reduced Navier-Stokes equations. Substitution of (2.5) into the linearized, reduced Navier-Stokes

equations (2.1) yields0
BB@

i!x i!y i!z 0

 0 0 i!x
0  0 i!y
0 0  i!z

1
CCA
0
BB@

u

v

w

p

1
CCA =

0
BB@

0

0

0

0

1
CCA ;  = i (u!x + v!y + w!z) +

1

Re

�
!2y + !2z

�
:

(2.9)

Setting the determinant of the matrix in (2.9) equal to zero, gives for the Fourier modes !x; !y and

!z the equation

�
!2x + !2y + !2z

� �
i (u!x + v!y + w!z) +

1

Re

�
!2y + !2z

��2
= 0: (2.10)
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Now, the corresponding, exact solutions !x are

(!x)1;2 = �i
q
!2y + !2z ; (2.11a)

(!x)3;4 = �
�
v

u
!y +

w

u
!z

�
+ i

!2y + !2z

u

1

Re
: (2.11b)

The roots (!x)1;2 are identical to those for full Navier-Stokes. The double root (!x)3;4 di�ers in

form, but implies the same solution behavior as that for full Navier-Stokes: exponential diminution

in ow direction and exponential growth in upstream direction. The qualitative solution behavior is

summarized in Table 2.

x! +1 x! �1
u > 0 u < 0 u > 0 u < 0

(!x)1 � � + +

(!x)2 + + � �
(!x)3 � + + �
(!x)4 � + + �

Table 2: Qualitative solution behavior of reduced Navier-Stokes equations, in mainstream direction,

+ means solution increase, � solution decrease.

Hence, for the reduced Navier-Stokes equations, it follows that to obtain a stable solution in main-

stream direction (here the x-direction), three boundary conditions must be imposed at inow and one

at outow. In the two other directions (here the y- and z-direction), it can be easily veri�ed that, just

as for full Navier-Stokes, three conditions must be imposed at each of the boundaries.

In PARNASSOS, the above numbers of boundary conditions are imposed at all boundaries, with

the exception of the (y = 0)-symmetry boundary and the (z = 0)-symmetry boundary (the water

surface). There, instead of three, four conditions are imposed, viz. @u
@y

= 0; v = 0; @w
@y

= 0; @p
@y

= 0

at the (y = 0)-symmetry boundary and @u
@z

= 0; @v
@z

= 0; w = 0; @p
@z

= 0 at the water surface. This

seems to be inconsistent overspeci�cation; substitution of the conditions v(x; z) = 0 and w(x; y) = 0

into the corresponding momentum equation normal to the two boundaries yields @p
@y

= 1
Re

@2v
@y2

and
@p

@z
= 1

Re
@2w
@z2

, respectively. In the \real" double-hull case, at y = 0 and z = 0, it will hold @2v
@y2

= 0 and

@2w
@z2

= 0, respectively. So, the overspeci�cation is consistent.

3. Analysis of existing numerical method

For reasons of transparency, the numerical analysis is not done for the 3D discrete reduced Navier-

Stokes equations, but for the 2D discrete case at most. So, as the continuous starting equations we

take

@u

@x
+
@v

@y
= 0; (3.1a)

u
@u

@x
+ v

@u

@y
+
@p

@x
� 1

Re

@2u

@y2
= 0; (3.1b)

u
@v

@x
+ v

@v

@y
+
@p

@y
� 1

Re

@2v

@y2
= 0: (3.1c)
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Taking into account the parabolic-elliptic nature of the reduced Navier-Stokes equations, in PARNAS-

SOS, all �rst-order x-derivatives are discretized by three-point backward di�erence formulae, with the

exception of the (elliptic) pressure derivative @p
@x
, which is discretized downstream. All other deriva-

tives in (3.1) are discretized by central di�erence formulae. Noteworthy is that the discretization is

done staggered in y-direction. I.e., when the discretization of the x-momentum equation is done in

grid point i; j, where i denotes the grid point number in x-direction and j that in y-direction, then

the continuity equation is discretized in point i; j� 1
2
and the y-momentum equation in point i; j+ 1

2
.

Considering an equidistant grid with mesh sizes �x = �y = h, in PARNASSOS, the discretization of

system (3.1) would then be

1

2

�
3ui;j�1 � 4ui�1;j�1 + ui�2;j�1

2h
+

3ui;j � 4ui�1;j + ui�2;j

2h

�
+
vi;j � vi;j�1

h
= 0; (3.2a)

ui;j
3ui;j � 4ui�1;j + ui�2;j

2h
+ vi;j

ui;j+1 � ui;j�1

2h
+
pi+1;j � pi;j

h
�

1

Re

ui;j+1 � 2ui;j + ui;j�1

h2
= 0; (3.2b)

ui;j + ui;j+1

2

1

2

�
3vi;j � 4vi�1;j + vi�2;j

2h
+

3vi;j+1 � 4vi�1;j+1 + vi�2;j+1

2h

�
+

vi;j + vi;j+1

2

vi;j+1 � vi;j

h
+
pi;j+1 � pi;j

h
�

1

Re

1

2

�
vi;j+1 � 2vi;j + vi;j�1

h2
+
vi;j+2 � 2vi;j+1 + vi;j

h2

�
= 0: (3.2c)

3.1 Accuracy

Through Taylor-series expansions around grid point i; j, from (3.2), the following system of modi�ed

equations is found�
1� h

2

@

@y

��
@u

@x
+
@v

@y

�
= O(h2); (3.3a)

u
@u

@x
+ v

@u

@y
+
@p

@x
� 1

Re

@2u

@y2
= �h

2

@2p

@x2
+O(h2); (3.3b)

�
1 +

h

2

@

@y

��
u
@v

@x
+ v

@v

@y
+
@p

@y
� 1

Re

@2v

@y2

�
= O(h2): (3.3c)

So, the discretization of the continuity and y-momentum equation is O(h2)-accurate, but that of the
x-momentum equation is O(h)-accurate, and therefore, through the coupling of the equations, the

discretization of the whole system is O(h)-accurate. The system is kept from full O(h2)-accuracy by

the O(h)-discretization of @p

@x
only.

3.2 Monotonicity

Neglecting the partially elliptic nature of the ow equations, as well as the nonlinearity, a further

simpli�ed, but still representative model equation of the reduced 3D Navier-Stokes equations (2.1) is

the stripped-o� boundary-layer equation

u
@u

@x
� 1

Re

@2u

@y2
= 0; u > 0: (3.4)
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Considering again an equidistant grid with �x = �y = h, in PARNASSOS, the discretization of (3.4)

would be

u
3ui;j � 4ui�1;j + ui�2;j

2h
� 1

Re

ui;j+1 � 2ui;j + ui;j�1

h2
= 0; u > 0; (3.5)

from which it follows

ui;j =
4ui�1;j � ui�2;j +

2
uReh

(ui;j+1 + ui;j�1)

3 + 4
uReh

; u > 0: (3.6)

The coe�cient of ui�2;j is negative. Hence, an increase or decrease of ui�2;j will always lead to a

decrease or increase, respectively, of ui;j , and thus to possible spurious non-monotonicities in the

numerical solution. Note that because the three-point backward di�erence formula is applied to

all �rst-order velocity derivatives in mainstream direction, the above non-positivity is present in all

discrete equations. It is assumed, though, that the ow solution is in general su�ciently smooth in

mainstream direction so that non-physical solution oscillations are not to be expected. Since the three-

point backward di�erence formula is not self-starting, care has to be taken that no non-smoothness is

introduced in the �rst marching step.

3.3 Stability

Marching with the parabolic part. In this section we will continue by analyzing the stability properties

of a downstream marching method applied to (3.5). In text books, it can be read that stability is

guaranteed indeed for the speci�c discretization at hand, and { furthermore { that it is unconditional

(see, e.g., [12], p. 190). Since we do not know books in which the unconditional stability is really

shown, for completeness, we will do so here. For this purpose, consider again an equidistant grid with

�x = �y = h and introduce the discrete Fourier-series component

ui;j = U�iei�2j ; �� � �2 � !2h � �; (3.7)

where � is the ampli�cation factor sought for. Substitution of (3.7) into (3.5) yields the following

quadratic equation for �

u
3� 4

�
+ 1

�2

2h
� 1

Re

ei�2 � 2 + e�i�2

h2
= 0; u > 0; (3.8)

from which it follows

�1;2 =
2�p1� �

3 + �
; � =

8

uReh
sin2

�
�2

2

�
; u > 0: (3.9)

The stability requirements are: �1 � �1;2 � 1, for any value of the mesh Reynolds number Reh and

for any grid mode �2. The requirement �1;2 � 1 translates into � � �3, which, given u > 0, is always

satis�ed. The requirement �1;2 � �1 boils down to (� + 5)2 � 1� �, which is also satis�ed without

any constraints, given u > 0. This con�rms the stability of the downstream marching method for the

discrete parabolic part.

Relaxation of the elliptic part. The pressure relaxation is done through the momentum equation

in mainstream direction. In PARNASSOS, both downstream and upstream relaxation sweeps are

applied. In this report, downstream relaxation sweeps will be looked at only. (This will yield a

reasonable amount of information from which �rst conclusions can be drawn.) The model system

considered is (3.2) with the coe�cients in the nonlinear terms frozen, yielding three free parameters:
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u; v and Reh. By introducing the superscript n as the counter for the relaxation sweeps, the discrete

equations to be considered then, are

1

4

��
3uni;j�1 � 4uni�1;j�1 + uni�2;j�1

�
+
�
3uni;j � 4uni�1;j + uni�2;j

��
+
�
vni;j � vni;j�1

�
= 0; (3.10a)

1

2
u
�
3uni;j � 4uni�1;j + uni�2;j

�
+

1

2
v
�
uni;j+1 � uni;j�1

�
+
�
pn�1i+1;j � pni;j

�
�

1

Reh

�
uni;j+1 � 2uni;j + uni;j�1

�
= 0; (3.10b)

1

4
u
��
3vni;j � 4vni�1;j + vni�2;j

�
+
�
3vni;j+1 � 4vni�1;j+1 + vni�2;j+1

��
+ v

�
vni;j+1 � vni;j

�
+

�
pni;j+1 � pni;j

�
� 1

2

1

Reh

��
vni;j+1 � 2vni;j + vni;j�1

�
+
�
vni;j+2 � 2vni;j+1 + vni;j

��
= 0: (3.10c)

To analyze the convergence properties of the pressure relaxation, we introduce the following Fourier

form for the local solution

qi;j =

0
@ u

v

p

1
A

i;j

=

0
@ U

V

P

1
A ei�1iei�2j ; �� � �1 � !1h � �; �� � �2 � !2h � �: (3.11)

Then, the pressure relaxation can be rewritten as

~Lqni;j =
~Lqn�1i;j � Lqn�1i;j ; with (3.12a)

L =

0
BBBBBBBBBBB@

1
4

�
3� 4e�i�1 + e�2i�1

��
1 + e�i�2

�
1� e�i�2 0

1
2
u
�
3� 4e�i�1 + e�2i�1

�
+

1
2
v
�
ei�2 � e�i�2

�
� 0 ei�1 � 1

1

Reh

�
ei�2 � 2 + e�i�2

�

1
4
u
�
3� 4e�i�1 + e�2i�1

��
ei�2 + 1

�
+

0 v
�
ei�2 � 1

�
� ei�2 � 1

1
2

1

Reh

�
ei�2 � 2 + e�i�2

��
ei�2 + 1

�

1
CCCCCCCCCCCA

and

(3.12b)

~L = L�
�

0 0 0

0 0 ei�1

0 0 0

�
: (3.12c)

In here, in Fourier form, L is the target operator to be solved and ~L the approximate operator to be

inverted. Note that ~L is very close to L. The ampli�cation matrix of the pressure relaxation is de�ned

as

M = ~L�1
�
~L� L

�
: (3.13)

Its three eigenvalues determine the convergence properties of the pressure relaxation. Thanks to the

close resemblance of ~L and L, two of the three eigenvalues � of M equal zero:

�1 = �2 = 0; �3 =
ei�1 ~L1;1

~L3;2

~L1;1
~L3;2 � ~L1;2

~L2;1
~L3;3

; (3.14)
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with the ~Li;j 's the matrix elements of ~L. As long as ~L is so close to L that we know in advance that

only a single eigenvalue of the corresponding ampli�cation matrix is non-zero, in the remainder of this

paper, for the pressure relaxation's convergence analysis, instead of (3.11), we can also directly make

the following Ansatz:0
@ u

v

p

1
A

n

i;j

=

0
@ U

V

P

1
A �nei�1iei�2j ; �� � �1 � !1h � �; �� � �2 � !2h � �; (3.15)

with � denoting the ampli�cation factor. Substitution of (3.15) into (3.10) yields

0
BBBBBBBBBBB@

1
4

�
3 � 4e�i�1 + e�2i�1

��
1 + e�i�2

�
1� e�i�2 0

1
2
u
�
3� 4e�i�1 + e�2i�1

�
+

1
2
v
�
ei�2 � e�i�2

�
� 0 1

�
ei�1 � 1

1

Reh

�
ei�2 � 2 + e�i�2

�

1
4
u
�
3 � 4e�i�1 + e�2i�1

��
ei�2 + 1

�
+

0 v
�
ei�2 � 1

�
� ei�2 � 1

1
2

1

Reh

�
ei�2 � 2 + e�i�2

��
ei�2 + 1

�

1
CCCCCCCCCCCA

�
u

v

p

�n

i;j

=

�
0
0
0

�
:

(3.16)

Note that the matrix in (3.16), say A, is related to the foregoing matrix L as

A = L+

 
0 0 0

0 0
�
1
�
� 1

�
ei�1

0 0 0

!
: (3.17)

An expression for the ampli�cation factor � can be directly derived from (3.16) by setting the deter-

minant of the matrix equal to zero. Here, it appears that the resolvability of � depends on the being

non-zero of the matrix element corresponding with the @u
@x
-term from the continuity equation and the

one belonging to the derivatives of v in the y-momentum equation. Hence, a simpler model equation

does not seem to be possible. (E.g., replacing y-momentum equation (3.10c) by the boundary-layer

equation @p

@y
= 0 will make � unresolvable already.) From (3.16), it follows as expression for �

� = �
�
u; v;Reh; �1; �2

�
=

ei�1A1;1A3;2

A1;1A3;2 �A1;2A2;1A3;3
; (3.18)

with the Ai;j 's the elements of the matrix in (3.16). Note that, given relation (3.17), � is indeed

identical to �3 in (3.14), which con�rms the correctness of (3.15).

For analysis purposes, expression (3.18) is still too intricate. To simplify the analysis, v is set to

zero. (This elimination of v does not do much harm to the practical relevance of the analysis, v is the

least important of the three free parameters.) Then, the corresponding expression for the ampli�cation

factor becomes of the remarkably simple form � = � (�1; �2). Thus, for v = 0, the ampli�cation factor

depends on the elliptic part only. The expression for the ampli�cation factor (for v = 0) is

� =
ei�1

�
3� 4e�i�1 + e�2i�1

�
(3� 4e�i�1 + e�2i�1) + 8 tan2

�
�2
2

� : (3.19)

In Figure 4, j�j = j� (�1; �2)j according to (3.19) has been plotted. Investigation of (3.19) learns that

j�j � 1, 8�1; �2, and that for �2 = 0 it reaches its maximum value: j� (�1; �2 = 0)j = 1;8�1. So, all

errors that are constant in the direction normal to the mainstream direction are not removed by the

relaxation. In the real (i.e., the non-periodic) PARNASSOS practice, boundary conditions will hamper



12

the occurrence of most of these (�2 = 0)-errors. For the still remaining (�2 = 0)-errors, it may be

assumed that they are simply convected out of the computational domain (at the outow boundary)

and not fed in at the same rate at inow. So, these remaining errors may slow down convergence,

but they will not stop it. (However, note that the slowing-down may be signi�cant deep down in the

boundary layer, where the ow speed is low.) Concerning the suitability of the pressure relaxation for

multigrid acceleration, it has to be concluded that this is modest, because of the locally rather large

values of j�j in the high-frequency domain (j�1j ; j�2j) 2 f[0; �]� [0; �] j j�1j 2
�
�
2
; �
�
_ j�2j 2

�
�
2
; �
�
g.
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Figure 4: Modulus ampli�cation factor downstream pressure relaxation, v = 0, existing PARNASSOS

discretization.

3.4 Convergence rate

The convergence rate of the complete solution method is determined by that of the outer iteration,

the pressure relaxation. To investigate its convergence, we look at

uni;j
3uni;j � 4uni�1;j + uni�2;j

2h
+ vni;j

uni;j+1 � uni;j�1

2h
+
pn�1i+1;j � pni;j

h
�

1

Re

uni;j+1 � 2uni;j + uni;j�1

h2
= 0: (3.20)

From (3.20) directly follows the equation for the evolution of pi;j :

pni;j � pn�1i;j = h

 
uni;j

3uni;j � 4uni�1;j + uni�2;j

2h
+ vni;j

uni;j+1 � uni;j�1

2h
+
pn�1i+1;j � pn�1i;j

h
�

1

Re

uni;j+1 � 2uni;j + uni;j�1

h2

�
; (3.21)

from which it appears that pi;j evolves at fastest linearly with h. So, halving the mesh size slows down

convergence by (at least) a factor 2. Full convergence to steady state may be slowed down by an even

larger factor. We proceed by investigating the asymptotic convergence rate, making use of expression

(3.19) for the ampli�cation factor.
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For the ratio between the initial pressure error, say j�pj0, and that after n (downstream) relaxation

sweeps, j�pjn, it can be written
j�pjn

j�pj0
= j�jn, with � the ampli�cation factor. For the number of

correct pressure digits m gained in n relaxation sweeps, we write
j�pjn

j�pj0
= 10�m and hence m ln 10 =

�n ln j�j. De�ning next the convergence rate, Rc, as Rc � m ln 10
n

, with the above relation between

the ampli�cation factor and the number of correct digits, it can be written as:

Rc = � ln j�j : (3.22)

From the analysis in Section 3.3, it is known that the error modes which are most critical for conver-

gence lie around �2 = 0 (Figure 4). Taylor-series expansion around �2 = 0 of � according to (3.19)

yields

j�j = 1� 1� cos �1

5� 3 cos �1
�22 +O

�
�32
�

(3.23)

and thus, with (3.22) and the de�nition �2 � !2h:

Rc =
1� cos �1

5� 3 cos �1
!22h

2 +O(h3): (3.24)

From (3.24), it follows that the method asymptotically converges at an O(h2)-rate, which is one order

slower than the global convergence rate predicted in the beginning of this section. Assuming that the

O(h2) convergence-rate estimate is also valid in 3D, this means that halving the mesh size in a 3D

PARNASSOS situation may lead to a 32 times larger CPU time for full convergence to steady state.

3.5 Conclusions so far

In summary, the following can already be concluded on the existing numerical method. The dis-

cretization is almost second-order accurate; only the di�erence formula for @p

@x
is �rst-order accurate.

Concerning the solution method, the pressure relaxation shows the following property that may ask

for some further attention. Good convergence is not guaranteed for all error modes; the pressure

relaxation's asymptotic convergence rate may be O(h2) only. In the next sections, some possible

modi�cations to PARNASSOS will be investigated.

4. Modifications with no or negative effect expected

4.1 First-order backward di�erences for u@u
@x

and u @v
@x

To improve the convergence properties of the pressure relaxation, one might start by replacing some

higher-order accurate discrete x-derivatives by �rst-order ones. This may yield better stability and

convergence properties without the formal loss of an order of accuracy since the discretization is already

�rst-order accurate. For this replacement, the three-point backward di�erence formulae applied to

the terms u@u
@x

and u @v
@x

are no candidates. Replacement of these di�erence formulae by �rst-order

accurate ones does not change ampli�cation factor (3.19), since this depends on the elliptic part alone.

4.2 First-order backward di�erence for @u
@x

in continuity equation

Replacement of the three-point backward di�erence formula for @u
@x

in the continuity equation, by the

two-point backward formula, is a possibility. Then, maintaining the staggering in y-direction, instead
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of (3.16), one gets

0
BBBBBBBBBBB@

1
2

�
1 � e�i�1

��
1 + e�i�2

�
1 � e�i�2 0

1
2
u
�
3� 4e�i�1 + e�2i�1

�
+

1
2
v
�
ei�2 � e�i�2

�
� 0 1

�
ei�1 � 1

1

Reh

�
ei�2 � 2 + e�i�2

�

1
4
u
�
3� 4e�i�1 + e�2i�1

��
ei�2 + 1

�
+

0 v
�
ei�2 � 1

�
� ei�2 � 1

1
2

1

Reh

�
ei�2 � 2 + ei�2

��
ei�2 + 1

�

1
CCCCCCCCCCCA

�
u

v

p

�n

i;j

=

�
0
0
0

�
;

(4.1)

leading to a slightly improved ampli�cation factor (Figure 5). So, only a very small improvement

of the pressure relaxation's convergence is expected. Given the slightly deteriorated accuracy of the

discretization, no net positive e�ect is anticipated from this discretization.
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Figure 5: Modulus ampli�cation factor downstream pressure relaxation, v = 0, �rst-order upstream

di�erence for @u
@x

in continuity equation.

4.3 Second-order central di�erences for @u
@x

in continuity equation and for @p
@x

In Section 2.1, it has been shown that the continuity equation and the pressure derivatives cause

the ow equations to be partly elliptic. In this elliptic part, there is no directional preference.

Hence, instead of an upstream discretization of @u
@x

in the continuity equation and a downstream

discretization of @p
@x
, central discretizations seem to be more natural. A consequence is that, when

sticking to plane relaxation, besides pi+1;j (as occurring in the di�erence formula for @p

@x
), one now

has two extra downstream unknowns: ui+1;j and ui+1;j�1 in the di�erence formula for @u
@x

in the

continuity equation. I.e., in (3.10a), 1
4

��
3uni;j�1 � 4uni�1;j�1 + uni�2;j�1

�
+
�
3uni;j � 4uni�1;j + uni�2;j

��
is replaced by 1

4

��
un�1i+1;j�1 � uni�1;j�1

�
+
�
un�1i+1;j � uni�1;j

��
. (In (3.10b), pn�1i+1;j � pni;j is replaced by

1
2

�
pn�1i+1;j � pni�1;j

�
.) So, for analyzing the convergence of the pressure relaxation, Ansatz (3.15) can
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no longer be made. Writing the pressure relaxation again as (3.12a), instead of (3.12b) and (3.12c),

we now have

L =

0
BBBBBBBBBBB@

1
4

�
ei�1 � e�i�1

��
1 + e�i�2

�
1 � e�i�2 0

1
2
u
�
3� 4e�i�1 + e�2i�1

�
+

1
2
v
�
ei�2 � e�i�2

�
� 0 1

2

�
ei�1 � e�i�1

�

1

Reh

�
ei�2 � 2 + e�i�2

�

1
4
u
�
3� 4e�i�1 + e�2i�1

��
ei�2 + 1

�
+

0 v
�
ei�2 � 1

�
� ei�2 � 1

1
2

1

Reh

�
ei�2 � 2 + e�i�2

��
ei�2 + 1

�

1
CCCCCCCCCCCA

and

(4.2a)

~L = L�
 

1
4
ei�1

�
1 + e�i�2

�
0 0

0 0 1
2
ei�1

0 0 0

!
: (4.2b)

From (4.2), it can be seen that as opposed to (3.12), here the ampli�cation matrix M = ~L�1
�
~L� L

�
has only one eigenvalue equal to zero (�1 = 0). The two non-zero eigenvalues �2 and �3 are plotted

in Figure 6. From the two graphs, it clearly appears that the convergence properties to be expected

from this change to central di�erences are bad.

4.4 Collocation of residuals

A consequence of the staggering of the equations is that for v 6= 0 the convergence of the relaxation

of the elliptic part does not only depend on the discretization of that part, but also on that of the

parabolic part and its coe�cients (say u; v and Reh). For the standard collocated grid approach, it

can be quickly shown that this is not the case. For that purpose, consider again the continuous system

(3.1) and for its discretization: (i) an equidistant grid with �x = �y = h and (ii) di�erence formulae

that are arbitrary, except for the facts that downstream inuence still occurs through the di�erence

formula for @p

@x
only and that corresponding velocity derivatives in the x- and y-momentum equations

are discretized by the identical, non-staggered formulae. Then, applying, just as in PARNASSOS,

pressure relaxation through the x-momentum equation, with Fourier analysis through Ansatz (3.15)

(which is valid here), instead of (3.16), we get the more general system0
B@

ux(�1) vy(�2) 0

ufx(�1) + vfy(�2)�
1

Reh
fyy(�2) 0 px(�; �1)

0 ufx(�1) + vfy(�2) �
1

Reh
fyy (�2) py(�2)

1
CA
�

u

v

p

�n

i;j

=

�
0
0
0

�
:

(4.3)

In here, ux; vy ; px; py; fx; fy and fyy denote the (arbitrary) di�erence formulae. Deriving an expression

for the ampli�cation factor �, from (4.3), we get

px(�; �1) =
�vy(�2)py(�2)

ux(�1)
; (4.4)

which con�rms that by not applying staggering, for any u; v and Reh, the convergence properties

of the relaxation of the elliptic part depend on the discretization of the elliptic terms only, i.e., the

velocity derivatives in the continuity equation and the pressure derivatives.

For the derivatives in (4.4), as an example, we take the same di�erence formulae as in PARNASSOS

(apart from the staggering), i.e., in Fourier form:

px(�; �1) =
1

�
ei�1 � 1; (4.5a)
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Figure 6: Moduli non-zero eigenvalues ampli�cation matrix downstream pressure relaxation, v = 0,

second-order central di�erences for @u
@x

in continuity equation and @p

@x
.
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ux(�1) =
1

2

�
3� 4e�i�1 + e�2i�1

�
; (4.5b)

vy(�2) = py(�2) =
1

2

�
ei�2 � e�i�2

�
: (4.5c)

With (4.5), it then follows from (4.4)

� =
ei�1

�
3� 4e�i�1 + e�2i�1

�
(3� 4e�i�1 + e�2i�1) + 2 sin2 �2

: (4.6)

In Figure 7, j�j according to (4.6) has been plotted. Comparing Figure 7 with Figure 4, it has to

be concluded that this collocated residual approach is a bad alternative. Thus, in fact, an important

motivation has been found for the staggering in y-direction, as it is applied in PARNASSOS.
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Figure 7: Modulus ampli�cation factor downstream pressure relaxation, collocated (for the remainder:

PARNASSOS-discretization).

5. Modifications with unclear effects

5.1 Crank-Nicolson scheme for parabolic part

A widely used discretization method for parabolic partial di�erential equations is the Crank-Nicolson

scheme. Compared to the three-point backward di�erence formula as applied in PARNASSOS, it has

better accuracy and monotonicity properties. This will be shown. An important di�erence is that it is

more compact. The greater compactness implies self-startingness and { maybe { a smaller sensitivity

to grid irregularities in ow direction. We make analyses of the accuracy, monotonicity and stability

on the basis of model equation (3.4). Considering again an equidistant grid with �x = �y = h, for

u > 0, the Crank-Nicolson discretization of (3.4) yields

u
ui;j � ui�1;j

h
� 1

2

1

Re

(ui;j+1 � 2ui;j + ui;j�1) + (ui�1;j+1 � 2ui�1;j + ui�1;j�1)

h2
= 0; u > 0:

(5.1)
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The corresponding modi�ed equation in point i; j is�
1� h

2

@

@x
+
h2

4

@2

@x2

��
u
@u

@x
� 1

Re

@2u

@y2

�
� h2

12

�
u
@3u

@x3
+

1

Re

@4u

@y4

�
= O(h3); (5.2)

which boils down to

u
@u

@x
� 1

Re

@2u

@y2
=

h2

12

�
u
@3u

@x3
+

1

Re

@4u

@y4

�
+O(h3): (5.3)

For the three-point backward di�erence formula, the corresponding modi�ed equation is

u
@u

@x
� 1

Re

@2u

@y2
=

h2

4

�
�u@

3u

@x3
+

1

6

1

Re

@4u

@y4

�
+O(h3): (5.4)

So, for the very high-Reynolds number ows occurring in ship hydrodynamics, the Crank-Nicolson

scheme is expected to yield more accurate results.

As far as the monotonicity of the Crank-Nicolson scheme is concerned, from (5.1) it follows

ui;j =

�
1� 1

uReh

�
ui�1;j +

1
2

1
uReh

(ui;j+1 + ui;j�1 + ui�1;j+1 + ui�1;j�1)

1 + 1
uReh

; u > 0; (5.5)

which guarantees monotonicity if u > 1
Reh

. For the three-point backward di�erence formula, there is

no guarantee at all for monotonicity (Section 3.2).

A known de�ciency of the Crank-Nicolson scheme is that it has a poor damping of high-frequency

errors, see, e.g., [5], p. 69, [4], p. 241 and [7], p. 429. We verify the stability properties of the Crank-

Nicolson scheme. Consider again a grid with �x = �y = h and the Fourier form (3.7). Substitution

of this form into (5.1) yields as expression for the ampli�cation factor �

� =
1� �

1 + �
; � =

2

uReh
sin2

�
�2

2

�
; u > 0: (5.6)

The stability requirements �1 � � � 1 are satis�ed for all uReh, u > 0 and all �2. However, it holds

limuReh#0 � (�2 = ��) = �1. So, high-frequency errors (in j-direction), in the limit uReh # 0, appear
to be neutrally stable.

Particularly because of its greater compactness (and thus its smaller sensitivity to strong grid

irregularities), the Crank-Nicolson scheme might be an interesting alternative for the three-point

backward scheme. When striving for overall compactness, the discretization of, e.g., the @u
@x
-term in

the continuity equation needs to be reconsidered as well.

5.2 Alternative pressure boundary conditions at outow

In PARNASSOS, a Neumann condition for the pressure is imposed at the outow boundary, @p

@n
= 0.

To suppress the downstream exponential solution growth found in Section 2.2, a Dirichlet condition

is much more e�ective than a Neumann condition. On the other hand, a Dirichlet condition may

behave worse than a Neumann condition with respect to the reection of iteration errors. Instead of
@p
@n

= 0, one may also take the presumably even less reective condition @p
@n

= @p
@x

= �u@u
@x
� v @u

@y
�

w @u
@z

+ 1
Re

�
@2u
@y2

+ @2u
@z2

�
, where the terms in the righthand side can be extrapolated from the interior

ow domain. A mixed (Robin) boundary condition is also a possibility.

6. Modifications with expected positive effects

6.1 Underrelaxation of the elliptic part

In the present section, it will be investigated whether under- or overrelaxation can improve the con-

vergence properties of the pressure relaxation, as found in Section 3.3. Consider the plain relaxation
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formula (3.10b) in the rewritten form

1

2
u
�
3uni;j � 4uni�1;j + uni�2;j

�
+

1

2
v
�
uni;j+1 � uni;j�1

�
+
�
pn�1i+1;j � pn�1i;j

�
+
�
pn�1i;j � pni;j

�
�

1

Reh

�
uni;j+1 � 2uni;j + uni;j�1

�
= 0 (6.1)

and introduce as the pressure correction ~pni;j � pn�1i;j to be accepted:

~pni;j � pn�1i;j = !
�
pni;j � pn�1i;j

�
; (6.2)

with ! the relaxation factor and pni;j � pn�1i;j the pressure correction following from plain relaxation

formula (3.10b). Substituting (6.2) into (6.1) and dropping the~on ~pni;j , instead of (3.10b), we get its

under- or overrelaxation version
1

2
u
�
3uni;j � 4uni�1;j + uni�2;j

�
+

1

2
v
�
uni;j+1 � uni;j�1

�
+�

pn�1i+1;j �
�
1

!
pni;j +

�
1� 1

!

�
pn�1i;j

��
�

1

Reh

�
uni;j+1 � 2uni;j + uni;j�1

�
= 0: (6.3)

Maintaining (3.10a) and (3.10c) and taking again the Ansatz (3.15), instead of (3.16), we get the

system0
BBBBBB@

1
4

�
3 � 4e�i�1 + e�2i�1

� �
1 + e�i�2

�
1 � e�i�2 0

1
2
u
�
3 � 4e�i�1 + e�2i�1

�
+

1
2
v
�
ei�2 � e�i�2

�
� 0 1

�
ei�1 �

�
1
!

+

�
1� 1

!

�
1
�

�

1

Reh

�
ei�2 � 2 + e�i�2

�

1
4
u
�
3 � 4e�i�1 + e�2i�1

� �
ei�2 + 1

�
+

0 v
�
ei�2 � 1

�
� ei�2 � 1

1
2

1

Reh

�
ei�2 � 2 + e�i�2

� �
ei�2 + 1

�

1
CCCCCCA
�

u

v

p

�n
i;j

=
�

0

0

0

�
:

(6.4)

For v = 0, it follows from (6.4) as expression for the ampli�cation factor

� =

�
!
�
ei�1 � 1

�
+ 1
� �
3� 4e�i�1 + e�2i�1

�
(3� 4e�i�1 + e�2i�1) + 8! tan2

�
�2
2

� : (6.5)

For the ! = 1-relaxation case, in Section 3.3, we already saw that it is neutrally stable for errors that

are constant in j-direction. From (6.5), it is derived

j� (!; �1; �2 = 0)j =
p
1 + 2!(! � 1)(1� cos �1); (6.6)

from which it appears that underrelaxation is convergent for all (�2 = 0)-errors, except for the (�1 =

�2 = 0)-error, which forms no problem since it is supposed to be absent in case of boundary conditions.

From (6.6), it also appears that the best result is obtained for ! = 1
2 . In Figure 8, the ampli�cation

factor's modulus for ! = 1
2
has been plotted over the complete frequency domain. Comparison with

the graph for the plain relaxation (Figure 4) clearly shows the positive e�ect of the underrelaxation

with ! = 1
2
. Particularly interesting is that it has signi�cantly better smoothing properties than plain

relaxation.

Convergence rate. Analogous to pressure evolution formula (3.21), for underrelaxation it can be

derived the formula

pni;j � pn�1i;j = !h

 
uni;j

3uni;j � 4uni�1;j + uni�2;j

2h
+ vni;j

uni;j+1 � uni;j�1

2h
+
pn�1i+1;j � pn�1i;j

h
�

1

Re

uni;j+1 � 2uni;j + uni;j�1

h2

�
: (6.7)
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Figure 8: Modulus ampli�cation factor downstream pressure relaxation, v = 0, existing PARNASSOS

discretization, underrelaxation with ! = 1
2
.

So, from (6.7) it appears that pi;j still evolves at fastest linearly with h. As in Section 3.4, we also

consider the asymptotic convergence rate. From Figure 8, it is seen that the errors which are most

critical for the asymptotic convergence rate lie around �1 = �2 = 0. For ! = 1
2
, Taylor-series expansion

of (6.5) around �1 = �2 = 0 yields (using expression (3.22) together with the de�nitions �1 � !1h and

�2 � !2h):

Rc =
1

8

!41 + !42
!21

h2 +O(h3): (6.8)

So, also for underrelaxation with the optimal value ! = 1
2
, the asymptotic convergence rate is still

O(h2) only. Fortunately, good multigrid acceleration seems to be attainable. In the ideal case, this

leads to grid-independent (i.e., O(h0)) convergence rates.

6.2 Linearization of the parabolic part

The nonlinearity in the reduced, continuous Navier-Stokes equations is present in the parabolic part

only, in 3D turbulent practice: through the coe�cients u; v; w and 1
Re . In PARNASSOS, at each i-

station, the corresponding discrete nonlinear system (with coe�cients ui;j;k; vi;j;k; wi;j;k and
1

Rei;j;k
) is

solved through a Newton technique. The discrete nonlinear system can be simply linearized (without

reducing its order of accuracy), by replacing the above coe�cients by their second-order accurate

extrapolants from backward sweep direction. For the downstream and upstream relaxation sweep,

respectively, these extrapolants are

qi;j;k = 2qi�1;j;k � qi�2;j;k; (6.9a)

qi;j;k = 2qi+1;j;k � qi+2;j;k ; (6.9b)

with q � (u; v; w;Re). (Note that this higher-order extrapolation of the nonlinear coe�cients does

not combine that well with the Crank-Nicolson scheme; it undoes its compactness.)
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Figure 9: O-type grid planes around half-hull cross sections.
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Figure 10: H-type grid planes around half-hull cross sections.

6.3 HH-type grid

As already seen in Section 1.2, where the hull cross sections are not slender and free of corners, an

O-type grid plane is a good choice (Figure 9a). However, the more slender the hull's cross section is,

the less regular the grid plane is (Figure 9b). In the wake, the O-type grid plane contains a genuine

singularity. Now, a �x to the ship-stern singularity may be to take an H-type grid at the present

planes as well. This leads to a more regular, though, not yet perfectly regular grid: in case of the

non-slender hull cross section (Figure 10a), the grid line along the hull shows a kink at the ship's

symmetry plane. However, behind the ship (Figure 10c) and maybe also at the ship stern itself, the

grid is perfectly regular. As opposed to the HO-type grid from Section 1.2, the present resulting

HH-type grid will normally give a computational domain with rectilinear far�eld boundaries only

(Figure 11), say a cube-type instead of a cylinder-type domain (Figure 1). Besides the cube-type and

cylinder-type domain, the possibility of a sphere-type domain still exists (Figure 12). The natural

grid in the latter domain is of OO-type, with as natural direction for the polar axis the z-direction.

Unfortunately, such a regular grid is no good option for the reduced Navier-Stokes equations (for full

Navier-Stokes equations, it may be so), because in the ship-stern region, the mainstream ow will

not be grid-aligned. There, it will switch from circumferential to radial direction. In conclusion, the

OO-type grid type is no alternative grid type which is already worth to be investigated, the HH-type

on the contrary, is.
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7. Conclusions

Of the promising modi�cations proposed to the solution method for the elliptic part of the reduced

Navier-Stokes equations, the simplest is downstream underrelaxation with ! = 1
2 . It is particularly

promising because it has good error-smoothing properties and { thus { good multigrid-acceleration

properties. (It has not yet been investigated whether the (! = 1
2
) downstream underrelaxation is

appropriate for fully second-order accurate discrete equations as well.) In numerical experiments with

alternative numerical techniques for the elliptic part, it may be worthwhile to investigate the e�ect

of a Dirichlet (or mixed) condition for the pressure at outow, instead of the existing homogeneous

Neumann condition.

For the solver of the parabolic part of the equations, it may be interesting: (i) to linearize it

(by second-order accurate extrapolation in backward sweep direction), or (ii) to replace the three-

point backward di�erence scheme by the Crank-Nicolson scheme. The Crank-Nicolson scheme is

more compact in ow direction and { therefore { possibly less sensitive to grid irregularities in ow

direction. (Use of the Crank-Nicolson scheme for reasons of compactness excludes the second-order

accurate linearization.)

With respect to the grid, it may be worth the e�ort to use an HH-type grid instead of an HO-type

grid. This replacement may remove the grid singularity.

The suggested modi�cations can be combined in various ways.
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