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by the Sparse-Grid Combination Technique
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ABSTRACT

Detailed error analyses are given for sparse-grid function representations through the combination technique.
Two- and three-dimensional, and smooth and discontinuous functions are considered, as well as piecewise-
constant and piecewise-linear interpolation techniques. Where appropriate, the results of the analyses are
verified in numerical experiments. Instead of the common vertex-based function representation, cell-centered
function representation is considered. Explicit, pointwise error expressions for the representation error are given,
rather than order estimates. The paper contributes to the theory of sparse-grid techniques.
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1. INTRODUCTION

1.1 Sparse-grid techniques

Sparse grids were introduced in 1990 by Zenger [1], in order to significantly reduce the number of
degrees of freedom that describe the solution to a discretized partial differential equation (pde), while
causing only a marginal increase in representation error relative to the standard discretization. Rep-
resenting a solution as a piecewise-d-linear function on a conventional d-dimensional grid of mesh
width h requires O(h~¢) degrees of freedom, while the representation error is O(h?). The piecewise-
d-linear sparse-grid representation requires only QO(h~!(log h~')?~1) degrees of freedom. In fact, this
is only a one-dimensional complexity, while the representation error is O(h?(log h~')4~1), which is
only slightly worse than for the conventional, full-grid representation. In 1992, Griebel, Schneider
and Zenger [2] showed that, for two and three dimensions, the sparse-grid complexity and represen-
tation error can also be achieved by the so-called combination technique. This technique combines
O((log h=1)471) representations on conventional grids of different mesh widths in different directions,
each containing O(h™!) points, into a representation on the conventional, full grid. One advantage
of the combination technique relative to the sparse-grid technique, as introduced in [1], is that the
former involves a straightforward discretization and solution of the pde’s on the O((logh~')¢~!) con-
ventional grids while the latter requires discretization through a set of hierarchical basis functions,
leading to a linear algebra problem with nearly full matrix. Since the problems to be solved on the
O((log h~1)4~1) conventional grids are all independent of each other, the combination technique is
inherently parallelizable.

In the current work, combination techniques, for two- and three-dimensional functions, are analyzed
in detail. In particular, expressions for the corresponding representation errors are derived. Within
the current setup, only a single two-dimensional combination technique yields a representation error of
order O(h?logh!). Likewise, only one three-dimensional combination technique yields a representa-
tion error of order O(h?(logh~1)?). For these techniques, pointwise expressions for the representation
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errors are obtained. The expressions are power series that describe the errors without approximation,
thus allowing a derivation of leading-order terms. Furthermore, a heuristic error analysis is given for
the representation of two-dimensional discontinuous functions. It is shown that for a two-dimensional
step function, the L;-norm of the representation error is O(h'/?). Contrary to [2], the present deriva-
tions do not rely on the error results for sparse grids, as given in [1]. Instead, direct analyses are
given of the steps that comprise the combination technique. An important advantage of the current
approach is that for smooth functions, explicit expressions for the representation error are obtained,
instead of just order estimates. Numerical results that confirm the analyses are presented.

The work is directed towards the numerical solution of large-scale transport problems, governed
by systems of partial differential equations of the advection-diffusion-reaction type. These equations
play a prominent role in the mathematical modeling of pollution of, e.g., atmospheric air, surface
water and ground water. The three-dimensional nature of these models and the necessity of modeling
transport and chemical reactions between different species over long time spans, requires very efficient
algorithms. When using full-grid methods, computer capacity (computing time and memory) is and
will probably remain to be a severe limiting factor. Sparse-grid methods hold out the promise of
alleviating these limitations.

In order to successfully implement sparse-grid methods for complex time-dependent problems, a
good understanding of the interaction between sparse-grid representation errors, discretization errors
and time-integration errors is crucial. The current derivations yield expressions for the sparse-grid
representation error that are sufficiently detailed to be used for the study of this interaction.

1.2 The combination technique
The two-dimensional combination technique is based on a grid of grids as shown in Figure 1.

level = O 1 2 N=3

wo o

Figure 1: Grid of grids

The task at hand is to express a given function f(z,y) on the grids QN0 QVN-L1 00N and on
QN_I’O, QN_M, . ,QO’N_I and then to construct from these coarse representations a representation
fNN on the grid O™V, Throughout, upper indices label grids and lower indices label grid-point
coordinates within a grid. In sparse-grid literature, it is common to use vertex-centered grids. Yet, for
our future application we intend to use cell-centered grids and therefore the current work deals solely
with cell-centered grids, i.e., grid-function values are located in cell centers. Furthermore, grids extend
over the unit square in two dimensions and over the unit cube in three dimensions. In two dimensions,
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the total number of degrees of freedom contained in the coarse representations, for two-dimensions,
is given by 2¥(IN — 1) + 1, as can be seen by simply counting the total number of cells. The test
procedure comprises the following steps:

1. The given function is restricted to the coarse grids QN0 ... Q0N QN-10 —  QO.N-1,

2. The information on the coarse grids is used to construct a representation fN N on the finest

grid.

3. The representation error is determined by comparing the representation fN’N with fNVN ie.,
with the function f(z,y) directly restricted to the grid Q™.

All restrictions are done by injection, i.e., to a cell Qi;”, a function value

iy = sy = 1 (G4 2+ )
is assigned. In step 2, the fine-grid representation is not found directly from the coarse-grid rep-
resentations. Rather, given the representations on {Q5™ 1+ m = N, N — 1}, representations on
{Qb™ 1 +m = N + 1} are generated and this process is then repeated up to [ +m = 2N. Further-
more, representations are not generated from all representations on the previous levels but only from
nearest neighbor representations, i.e., the representation f“ is generated only from the representa-
tions fl,mfl, flfl,m and f‘lfl,mfl_

2. ERROR ACCUMULATION
2.1 Introduction
In the following we analyze the representation error E“™ which we define as

El,m = f'l,m _ fl7m- (21)

The quantity that we are interested in is E™V"V, the representation error on the finest grid. At this
point, we introduce prolongation operators P“™ which are linear operators that map grid functions
from a grid Q'™ into grid functions on the finer grid Q4™ (I > I';m > m'). We consider representa-
tions that satisfy the following relation

{ fom, for I +m < N,

£lom
mo_ R . N 2.2
f aPl,mflfl,m_FﬂPl,mfl,mfl -f-’)/Pl’mfl*l’m*l, for l—l—m > N. ( )
The coefficients a, 3 and +, together with the choice of prolongation operator P"™, define the com-
bination scheme. In Section 3, it will be shown that the choice « = 8 = 1, v = —1 causes a number
of error terms to cancel, leading to a representation error of the desired order, EV'N = O(h?logh™1).
We denote this choice by the [1, 1, —1] scheme. Likewise, [, 0] and [0, 0, —1] schemes are considered.

272
The local error €™ is defined according to
el,m = aPl,mflfl,m + ﬂPl,mfl,mfl + ,YPl,mflfl,mfl _ fl,m’ (23)
in terms of which the following recursive relation for E-™ is obtained
El,m — el,m + aPl,mElfl,m + ﬂPl,mEl,mfl + ,yPl,mElfl,mfl‘ (24)
Equation (2.4) shows that to find the representation error EN'" we have to find an expression for the
local error e and solve EN'N from (2.4) such that E™V is expressed solely in terms of local errors.

In the remainder of this section, we obtain expressions for the representation error EN>V in terms of
local errors €™ by solving the recursive relation (2.4) for the [1, 1 0], the [1,1,—1] and the [0,0, —1]

2720
schemes. Furthermore, it is shown that these schemes can also be replaced by equivalent direct schemes
that directly prolongate the coarse representations on QN0 ... Q0N QN-L0 — O0N-1 onto the

finest grid Q.
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2.2 The [, %,0] combination scheme
For the [$,%,0] combination scheme, the recursive relation (2.4) reduces to

Evl m 6 ;Pl mEl 1,m %Pl,mEnl,m—l. (25)

Using (2.5) and the fact that E™ = 0 for [ + m < N, we prove the following theorem

Theorem 1 Fora == %,’y = 0, the sparse-grid representation error on the finest grid is given by

N 1
2N —1l—m

_ l4+m—2N N,N _I,m

—222 ( N -1 )P e, (2.6)

=1 m=1

Proof:
Assume that

Zz”Z( >PNNN’N " 42T mz< )PNNEN’N mi (2.7)

i=0 i=0

holds for a certain m. (Note that it is true for m = 1 because then it simply reduces to (2.5).) Then,
by substituting (2.5) into (2.7), we obtain

ENN Zm—ol 9-n " . ( n )PN,NeN—i,N—n-H _9-m Zmo < m )pN,NeN—i,N—nH-i
n= 1= Z’ i= Z
— 9-(m+1) Zm ( m (PN,NENfifl,meJri _+_PN,NEN7i,N7m+i71)
= i
— 9—(m+1) Zerl ( m >PN,NEN—i,N—m+i—1

1—1

m PN,N pN—=i,N—m+i—1
i

+2 (m+1) <
_ (m+1) m N,N ;N —i,N—m+i—1
ez ()4 (1)) o
+27(m+1) (PN,NEmefl,me _{_PN,NE'N,mefl)

1

— 2—(m+1) 27;1 PN,N pN—i,N—m+i—-1

_+_27(m+1) ( <

= 2-(m+1) yomi m+1 )PNvNEN—ivN—(mH)H
(3

m +
]
m+1 pNNpEN-m-1,N-m [ ™ +1 PN.NEN.N-—m-1
m+1 0

(2.8)
and thus
T m+1
ZQ nz( )PNN N—i,N-nti | 9—(m+1) Z ( . )PN,NEN—i,N_(m+1)+i_
=0 i—0 )
(2.9)

Therefore, if (2.7) holds for m, then it holds for m+ 1 and since it is true for m = 1 it follows that (2.7)
holds for all m > 1. Substituting m = N into (2.7) and using the fact that E"™ =0 for [+ m < N,
yields

22"Z< )PNNN’N e (2.10)

1=0

which, after substituting l = N —i and m = N —n + 4, yields (2.6). O
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Theorem 2 For a == %,7 = 0, the representation on the finest grid is given by

ol N
NN _ o—N N,N ¢I,N—1
N =2 ,Z;(N—l)P foN—t (2.11)
Proof: Assume that
NN _ o—m S m N,N ;N—i,N—m-+i
fNN =29 ;<i>P f (2.12)

holds for a certain m. (Note that it holds for m = 1 because then it reduces to (2.2).) Then, by
substituting (2.2) into (2.12), we obtain,

fN,N

g-m ( T > % (PN,Nfoifl,meJri +PN,NfN7i,N7m+i71)

— 9-(m+1) (ergl ( iTl )PN,Nf-N—i,N—(m-H)-H + Z?;o PN,Nf-N—i,N—(m+1)+i>
—(m m m m N fFN—i,N—(m i

= 92— +1)Ei:1 i ; PNN fN=i,N=(m+1)+
+PN,Nf‘N,N7(m+1) + PN,Nfo(erl),N

— 9-(m+1) Z?gl < mz‘l >PN,Nf-N—i,N—(m+1)+i.

(2.13)

Therefore, if (2.12) holds for m, then it holds for m + 1 and since it is true for m = 1 it follows that
(2.12) holds for all m > 1. Substituting m = N into (2.7) and using the fact that ™ = fbm for
[+ m < N, yields

NN .
FNN 9N < Z_ ) PN pN-ii (2.14)

=0
which is equivalent to (2.11). O

2.3 The [1,1,—1] combination scheme
For the [1,1, —1] combination scheme, the recursive relation (2.4) reads

El,m — el,m +Pl,mEl71,m 4 Pl’mEl’m71 _ Pl,mElfl,mfl. (215)

Using (2.15), we proof the following theorem

Theorem 3 For a = 3 = 1,7 = —1, the representation error on the finest grid is given by
N 1
ENN _ Z Z PNNlm (2.16)
=1 m=1

Proof Assume that

EN.N _ nf Xn: PN-NN—i,N—n+i iPN,NENfi,meJri _ iPN,NENfi,meH*l (2.17)

n=0 i=0 i=0 i=1
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holds for a certain m. (Note that it is true for m = 1 because then it reduces to (2.15).) Then, by
substituting (2.15) into (2.17), we obtain

N,N _ N,N N—iN—n—i—i
E Zn OZ; OP
_ Z (PNNEN i—1,N— m+z PN,NEN—i,N—m—H—l_PN,NEN—i—l,N—m+i—1)
- 0
TSm' pN.N pN—i,N—m+i-1
Z ZPNNE'Nle m+z_z PNNE'Nle m+i— 1+PNNENNm1
1 1
Zm+ pPN.NEN—i,N—m+i-1 Zm+ pPN.NpEN—i,N—m+i— 2+PNNENNm1,

i=1 i=1
(2.18)
hence,
m m+1 m+1
E ZZPNN N—i{,N—n+i + Z PN NEN i,N— (m+1)+ Z PN,NEN—i,N—(m—i-l)—i-i—l.
n=0 ¢=0 i=0 i=1
(2.19)

Thus, if (2.17) holds for m, then it holds for m + 1 and since it holds for m = 1, it follows that (2.17)
holds for all m > 1. Substituting m = N into (2.17) and using the fact that E-™ =0 for [ +m < N,
yields

N-1 n
ENN = 37N pNN NN n (2.20)

n=0 i=0
which is equivalent to (2.16). O

Theorem 4 For a = 3 = 1,7 = —1, the representation on the finest grid is given by

N N-1
FNN Z PN LN Z pNN gLN-1- (2.21)
=0 =0

Proof: The proof is given by induction. Assume that

m m—1
fN,N — Z PN,Nfoz,N7m+z _ Z PN,Nfolfz,meJrz (222)
=0 =0

holds for a certain m. (Note that it holds for mn = 1 because then it reduces to (2.2).) Then, by
substituting (2.2) into (2.22), we obtain

fN,N E 0 (PN NfN i—1,N—m+i + PN NfN i ,N—m+i—1 PN,Nfoifl,N7m+i71)
_lmleNlezN m-+1
_ Ez PN NfN i, N—m+i—1 PN,Nfoifl,meJrifl + PN,Nfomfl,N
Zm+1 PN NfN i, N—(m+1)+i _ Zmo PN,NfN—i—l,N—(m—i—l)—i—i_

1=

(2.23)

Therefore, if (2.22) holds for m, then it holds for m + 1 and since it is true for m = 1 it follows that
(2.22) holds for all m > 1. Substituting m = N into (2.17) and using the fact that fo™ = fbm for
Il +m < N, yields

N N—1
N _ 2 pNN pN—ii _ Z pNN pN-1=ii (2.24)
i=0 i=0

which is equivalent to (2.21). O
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2.4 The [0,0,1] combination scheme
For a = 3 =0, v = 1, the recursive relation (2.4) reduces to

Bhm — el,m + plmpl=1,m-1 (2.25)

It is straightforward to show that (2.25) leads to

N
ENN _ Z PNl (2.26)
I=[N/2]+1
and to
NN — pN.N ([N/2],[N/2] (2.27)

where [N/2] denotes the integer part of N/2.

2.5 Discussion
In the current section, the representation error was expressed in terms of the local errors e/ for
the [+, 20], the [1, 1, —1] and the [0, 0, —1] schemes; see equations (2.6), (2.16) and (2.26), respectively.

EN’N

299
Furthermore, expressions (2.11), (2.21) and (2.27) were obtained. They express the representation
FNN directly in terms of the coarse representations fV:0, fN=11 . fON apnd fN-1.0 ¢N=21" fO.N-1

Equation (2.21) corresponds to the combination technique as introduced in [2]. Inspection of (2.21)
shows that the combination technique can be viewed as an extrapolation technique, see [4] and [6]
for discussions of the combination technique from the extrapolation point of view. Note that for the
[1,1, —1] scheme, the expression for the representation error (2.16) simply states that the representa-
tion error EN'N is equal to the sum of the local errors on the grids Q5™ satisfying N > [ +m < 2N
(the lower-right half of the grid of grids depicted in Figure 1).

3. LOCAL ERRORS
We now turn to analyzing the local error e/ for two-dimensional functions f, i.e., we will determine
the error that we make when we approximate a grid function f“ by the combination

aPl,mfl—l,m +,3Pl’mfl’m_1 +’)/Pl’mfl_1’m_1. (31)

In Figure 2, corresponding sections from the grids Q!=1m Qbm=1_Ql=lm=1 and QL™ are shown.
The squares mark locations for which function values are defined on Q'~1™~1_ Likewise, the circles
and the diamonds belong to Q'~1™ and Q6™~! respectively. The cross (x) represents the location
of the cell center, on Q™ at which the combination (3.1) will be generated. For the prolongations
plmfl=tm plm glm=1 554 plm fl=1,m=1 e take linear combinations of the function values on grids
Qi=tm Obm=1 and QI=1m=1 respectively, i.e.,

l, l’, r _ 17717 ! lly r
(Prg), =S 3:2)
i’7j’

X )%

—l,m'—m
2!
on iy and jx is suppressed in the notation. The function values

Note that in Figure 2 both ix and jx are even; the 1/15
l"f_l,mlfm
i’
fll:;'f’ at positions (:nZL’,y;’,), corresponding to the squares, circles and diamonds, are expressed as
Taylor series taken at the location of the cross (x), yielding

oo 00 G p m' q apaq U',m'
U,m' U'—t,m'— Az I'—t,m'— Ay T2y Jix,j
f.”]r_vrz — (X'r"/ m —m =" yh- m —m X J X , (33)

in (3.2) also correspond to this case,

the dependence of the

o 2 plq!



3. Local errors 8

Qllm—l Qllm
ol o O Olojolo]o
X X
1| ©O o 1lo|lo| oo
0 1 01 2 3
ghmi ghm <A_3f
0o o | o | o0 Jaxm
1 o < 1
21 o X ¢ 2 X
X g R 3 7
l 0 1 01 2 3
j!yg'

Figure 2: Sections of grids involved in combination

where
-4 —4
1, 11T -3 =3 _ _1nT -2 -2
o= (), o= ey ,
0 0 (3.4)
2 2 )
01 rvronT_ [ =3 —3 -3 -3
o =1y 1—( LT )
Note that Xll, —hm'=m and Yl ™ are scalars; they are elements of the matrices [Xl’_l’m’_m] and

[Y’ —tm! *m], respectively. The indices on the matrix elements start at zero, i.e.,

Ao Ao
[4] = Ao A

Again, the matrices [Xl””m”m] and [Yl”“ml’m], as given by (3.4), are valid when iy and j are

both even, as in Figure 2. Combining equations (2.3), (3.2) and (3.3), the following expression for the
local error is obtained,

m 1)t At —1)ix Aym\ 1 OROLFI
eix:]x_ l><7]>< ZZ@W( > <( )2 Y > 2 (3.5a)

!
p=0 ¢=0 plq!

azl ozj 01/} (X*LO)p (Yi;l,o)q
B, Yyl (X7, *l)p(yi?fl)q (3.5b)
721 OZ] 01/}71 1 (X 171)1’ ()/;7]'1,71)‘1.

QSIMI

+ o+
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The factors (—1)%* and (—1)7x have been inserted to ensure that (3.5a) is valid for arbitrary iy and
jx while [wl’_lvm’_m}, [Xl’_“”’_m] and [Yl’_lvm’_m] are taken to correspond to even iy and jyx.
We refer to (3.5a) as the error expansion. We will now work out the error coefficients ¢, 4 for two

specific prolongations, i.e., for specific choices of the interpolation weights wﬁ: ;’7’

3.1 Piecewise-constant interpolation
For the prolongations, the simplest choice is piecewise-constant interpolation, which amounts to taking

w1 1) = = (0 0 1 o) )

From (3.5b), we find that this leads to

a+08+y a+y a+y

B+ Y v
[¢] = B+ ~ N (3.7)

and therefore, according to the error expansion (3.5a), to

porfim,
ei’:?jx (cz%—ﬁ%—y—l)flXJX +B+7)> ( —1)ix Az) p'
qulm
+(a+v)> ( —1)dx Ay ) qxv]x
A\ 9 OROLFET
+vzp12q 1( 1”“) (o 2gm) ===

(3.8)
From (3.8), it is apparent that, to obtain consistency, a + 3 + v = 1 must hold.

The [2, 5,0] piecewise-constant scheme.  For a combination scheme that requires representation on
only a single level of grids, either v = 0 or @« = # = 0 must hold. In principle, the choice v = 0 leaves
us the freedom of choosing a and 3, provided they satisfy a + 8 = 1. However, we only consider the
choice a = 8 = % This choice is not completely arbitrary, it provides a symmetric dependence of the
local error €™ on Ax' and Ay™. We thus obtain the [%, L 0] piecewise-constant scheme, to which
corresponds the following local error

m 1 - ix papfx: X 1 .- j Aym aqley X
iy =33 (oA ) iy L5 (e S B 39)

2’2’

!
p=1 P ¢=1
: : : N,N lI,m
Using (3.9) and (3.2), we obtain the following for ||P e ||oo
m 0o 1\P [—N,m—N i’ L,m
|petm| = || & (8F) S ek N ) ran sl

AT () e v
< by & (38) on sl + 3 & (28) ees
= e () 1ol + (222) ol )

To obtain the desired expression for EN'V | equation (3.10) is now substituted into (2.6), yielding

N ~ IN — 1 —
[P € ST Tl T 2 (VL

(05) e sl + (22 os) L} -

(3.10)

(3.11)
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Since the grids QY™ extend over the unit square, we can write Az! = 27! and Ay™ = 27™. Substi-
tution of these relations into (3.11) gives

2N — 1 —
||EN7N||OO S %Zp—l p! Zl 12 21+m 2N< N—l m)

(3.12)
{202 s Il + 27 lops] ) -

Performing the summations over [ and m yields

+1P1—2 N(2p 4 1)V
2% < Z — o {lozfll + sl } - (3.13)

Writing out the first few terms of this error expansion gives
N,N 1((3\N _ (1\N

Y, < (V-3 ){na Flloo + 1055110} (3.14)

+ 5 (@Y =AM {1l + ozl +-

so, to leading order,

N N
120 < 5 (3) 410usl + 1071 + 0 ((2) ) . 315)

On the finest grid QV>V, the mesh widths in z- and y-directions are identical, h = Az = AyN =27V,
Rewriting (3.15) in terms of this mesh width yields

[EYV, < 5hE8 (0.l + 10,71} + O (P-155) (3.16)

Equation (3.16) shows that the [
—log, 3 ~ 0.42.
As a test of the above derivations, we examine the simple case f(z,y) = = + y. This case is
particularly attractive because it allows us to obtain an explicit expression for ||EN N ||oo (in contrast
to an upper bound). For f(z,y) = « + y, equation (3.9) reduces to

%, %, 0] piecewise-constant scheme has a representation error of order

ei’:’?jx = (1) Az! + (=1)7x Ay™) (3.17)
and thus
!
1 —l—-m 2N — l - m— — i 9—m
B S =72 2,2 ( )Ew’-N Y(EnTet e (=) (38

For piecewise-constant interpolation

%:;Y’m_N = Ofi, 21N =it [, 2m=N]—jr (3.19)

where § is the Kronecker delta. Using (3.19), we transform (3.18) into

l><y.7>< _ Z Z ol+m—2N ( 2N]\7i;m ) ((_1)[ix2l*"’]2—l + (_1)[jx2m*N]2_m)_ (3.20)

llmO

This expression is maximal for ix = jx = 0, thus
OIN —l—m \ (ot \ o 3\V o\
BN = 5 ; 2021+m 2N ( N1 ) (27 +27) = (Z) B <§> ' (8-21)

Numerical tests show that, for f(z,y) = = +y, the error || EN-N|| _is indeed exactly given by (%)N —

(5"
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[1,1, —1] piecewise-constant scheme. Equation (3.8) reveals that when we take a +v =+ v =0,
the error terms that depend only on Az or only on Ay vanish. Combining these requirements with
a+ B+ =1 gives

a=03=1, ~v=-1 (3.22)

This choice of «, 8 and 7y constitutes the [1,1, —1] combination scheme. For the present case, [1,1, —1]
combination with piecewise-constant interpolation, equation (3.8) yields

l,m
TN ) oY (RS g (R =
i 2 plq!
and thus
oo 0 1 A p A q
||PN,Nel,m||OO < Z Z — <_a:> (_y) ||5£azf||oo . (3.24)
o ot plq! 2 2

Substitution of (3.24) into (2.16) yields

oy N l
[F2ated /I Z Z 2 lorodf|| Dy 2 (3.25)

||
p=1qg=1 p-q =1 m=1

Asymptotically, this yields

ENN <1 1 NNaa O 0" 3.26
1B <7 (5 10:0,fllo +O | (5) |- (3.26)

in terms of the mesh width A, this becomes
1 _
||EN’N||OO < Zhlog2 ! 1020y fll, + O (h). (3.27)

Thus, the [1,1, —1] piecewise-constant, scheme has a representation error of order hlog, h™!.
Again we examine a simple test case, viz. f(z,y) = zy, which yields

(/" NS R
NN _ (1 (1 1
=1 ((3) - () + (3)) 529
Numerical results confirm that representation of f(z,y) = zy by the [1,1,—1] piecewise-constant
scheme agrees with (3.28) within machine accuracy.

[0,0, 1] piecewise-constant scheme. ~ We now consider the choice « = 3 =0, v = 1. This choice does
not represent a real sparse-grid combination scheme because it constructs fN N from only a single
coarse grid-function, e.g., from fIV/21.IN/21| Yet, we do include the [0,0, 1] scheme for comparison, in
particular with the [£,1,0] scheme. We make thls comparison because Hemker [3] pointed out that
direct prolongation of fIN/2LIN/21 should be superior to the [2, ;,0] scheme. It will turn out that
this is indeed true. The [0, 0, 1] piecewise-constant local error is given by

I ) 1\ P 87 f“" A q 92fhm,
= () e e (e S
qapan

P (3.29)
SOOIl (C )lxM) (G S R
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therefore,

p m\ 4
|p¥vetm| < b (A8) el + o & (B5) ees ]l

[e's} 0o p m\ 4 (330)
X S (B2) (BF) ozous]l..
Substitution of (3.30) into (2.26) yields
1BV < o S {lonsl, + 1ol b
o] oo 9~ N(p+a) | _gp+a)(N/2+1) (331)
+ Zpil Zq:l plg! 1-—2pr+q ||8£85f||00 ’
or, asymptotically,
NN 12\ A
2%, <2(277)" (l0usll 1 + 0 (5) ) 3.32)
In terms of the mesh width A, this reads
[EVN] ., < 202 {1100 F | + 10y Fllg} + O () - (3.33)

We see that, for piecewise-constant interpolation, the [0,0,1] scheme has a representation error of
order %, which is superior to the order 2 — log, 3 ~ 0.42 for the [1, £, 0] piecewise-constant scheme.
3.2 Piecewise bi-linear interpolation

Next, we consider bi-linear interpolation as a means of prolongation. The prolongations are therefore
described by the following interpolation weights

1 3 00 ;O
L 6 16 N T 1
prl= T = = L) 339
6 16 00 70
leading to the following error coefficients
atf+y 0 (B+7)A2 (B+7)os
0 0 0 0 e
(6] = (@+7)As0 0 A2 YAos L A, = (=3P +3(-3)7+3
0 ,)//\3’2 7/\3’3 AN 4 4

(+7)A30

(3.35)

and the following local error expansion
l,m_

0o . p Bgfi J
iy = (@t By = DT (k) Dol Ano (FD)% A ) =

Ix,Jx x>Jx p!

l,m
q09f
1,m
g 020l f

+(B+7) Xols Aoy ((_1)jx ¥) K
TS (00’ (o)

Ap,g = (_3?#(_3?#'

(3.36)

Again, for consistency, we must have a + 8+ v = 1.
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[2, 2,0] piecewise-bi-linear scheme.  For bi-linear interpolation, the choice a = g = %,7 = 0 gives
the following expansion for the local error

[eS) 00 l,m
I,m _ 1 (_3)1) +3 '>< P apf Ix,Jx 1 q + 3 i Ay 6 Ix ] x
=50 — 1 (U —2 — t3 Z (=07 = ¢
q=

p=2 P!
(3.37)
We write the first terms of the summations separately, yielding
l,m l,m L,m
eixe = % {(A ) 62flx ,Jx + (A ) aZflix} (3 38)
+3 ZP 3 4p' {((_l)lx AZx ) apftx,Jx ((_1)jx Ag ) aqflxdx}
For the prolongation of the local error we obtain
pNNelm — 3y w’ N (At o2+ (Aymy a2 f )
)P+3 I-N, N
+§ Zp:3 4pl Zz’ NE 1/) " » (3 39)
A N l .
{(=07a) arsim + ((—1)3 A7) o pim |
2 3
= S {(ad) oz 4 (Aym) 927NN 4 0 ((Aah) + (Ag™)?).
In obtaining (3.39), use has been made of the following property of bi-linear interpolation
Z'/’l N.m=N elm _ pN.N gbm _ (NN 4 () ((Awl)2 + (Aym)z) . (3.40)

P
]

Substitution of (3.39) into (2.6) yields

NN _ L[5 2 NN 2 ¢N,N 9\"
ENN =Z2(2 {af + 09, f™ }+0 , (3.41)
8\8 16
or, in terms of the mesh width h,
EN’N _ 1 h(3—10g2 5) 82 N,N 82 N,N O h(4—10g2 9) 42
=3 (2N 4 2NNy 4o ( )- (3.42)
Thus, the 1 5 5 bi-linear combination scheme has a representation error of order 3 — log, 5 ~ 0.68.

[1,1, —1] piecewise-bi-linear scheme.  Just as for the piecewise-constant case, taking a4+~ = f+v =0

removes the error terms that depend only on Az or only on Ay. So, again the choicea =g =1,y = -1
raises the order of the local error. For this choice we obtain
l,m
(=3)7+3 A\ - Ay™\ 7 ORdIf
= — -1 Ix — 7 -1 Ix ><y.7><- 4
22 2 (oS (et (3.43)

Substitution of (3.43) into (2.16) yields

ENN oy, y, a s (e
p=2 Liq=2 pq' 4 I Nom-N (3.44)

N l _
Y Yot 27T wz’x,jx (—1)bertixagpog fim,

which, in leading order, can be written as
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EN,N:_E 1 NN5262fN7N+O 1 " (3.45)
64 \ 4 =%y 1) ) '

or, in terms of the mesh width h,
3 _
ENN = — P logy h 1207 7NN + 0 (k). (3.46)
So, the [1,1, —1]-bi-linear scheme has a representation error of order h?log, h™1.

[0,0, 1] piecewise-bi-linear scheme. For a = f =0,y = 1 and prolongation by bi-linear interpolation
we obtain

pNNebm — < {(Aml) 2NN 4 (Ay™)? aijvN} +0 ((Aml) +(Ay™)® + (Az!)” (Ay )2) .
(3.47)
Substitution of (3.47) into (2.26) yields, asymptotically,

N 1\
ENN _ o <§> {8£fN,N n 6§fN,N} ! ((Z) > ) (3.48)

In terms of the mesh width A, this reads
ENN =2n {02 NN + 02 YN} 4+ O (h?). (3.49)

We see that, for bi-linear interpolation, the [0, 0, 1] scheme has a representation error of order 1, which
is superior to the order 3 —log, 5 = 0.68 for the [%, %, 0] bi-linear scheme.

3.8 A numerical test

We now turn to analyzing the representation error, corresponding to the [1,1, —1] piecewise-bi-linear
scheme, for a specific example. We take

f(z,y) = sin(mz) sin(7y) (3.50)

and compare the numerically observed error with the expression for the leading-order error term (3.45)
and with the full error expansion (3.44). According to (3.45), the error corresponding to (3.50) is given

by
34 /1\N NN
NN _ o7 (1 . Ny o N 1
E o1 <4> N sin(rz;" ) sin(7y;") + O <<4> > . (3.51)

In Figure 3, the solid line represents the analytical result (3.51) for the leading-order error term,
the dotted line represents the numerically observed error. We consider the pointwise error measured
at a grid point nearest to x = y = % (four grid points qualify, but due to the symmetry of the
function this is not a problem). From Figure 3, it appears that the experimental error is indeed

converging to the analytical leading-order result as N increases. In Table 1, the ratio (Eﬁ;llytﬁ;l —

ﬁl;trjlgll) / (nggytical —Eﬁ’rﬁferical) is listed for several values of N. Table 1 indicates that nggytical -
Eﬁfﬁerical =0 ((1/4)N), as it should be according to (3.45). Figure 4 displays EN'Y for N = 4,5,6.

In this Figure, we do indeed recognize the product of sines prescribed by (3.51).

As atest of the validity of the error expansion (3.44), the numerically observed error is also compared
with higher-order approximations of the error. The expansion (3.44) is evaluated for the test case
(3.50) up to p+ ¢ < 4,5,6,7,8 and compared with the numerically observed error. The results are
displayed in Table 2. Table 2 clearly suggests that the series (3.44) converges to the numerically
observed error, as max(p + ¢) increases.
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3.4 Discussion

In this section, the local errors "™ were determined for the [$,1,0] , [1,1,—1] and [0, 0, 1] piecewise-
constant and piecewise-bi-linear schemes. The local errors were inserted into the expressions for the
representation error E™V>VV, yielding error results for the six schemes. For the piecewise-constant
schemes, upper bounds were given instead of pointwise expressions. The motivation for this is that
for pointwise expressions for the piecewise-constant schemes, the summation over the grid of grids
cannot be performed due to the factors (—1)¥x? and (—1)7x¢ in the local error e/"™. This complication
does not appear for the bi-linear schemes since for these schemes the leading-order term corresponds
to p = ¢ = 2, which guarantees that (—1)x? = (=1)x¢ = 1.

The [1,1, —1] piecewise-bi-linear scheme is clearly the most interesting of the schemes considered
since it has the smallest approximation error. In fact, the [1,1,0] and [0,0,1] schemes were only
included for comparison, they are not intended for actual use. When the leading-order error result is
insufficient (on coarse grids or when higher derivatives are not small), it may be necessary to predict
the error with the full error expansion. For the [1,1, —1] piecewise-bi-linear scheme, the full error
expansion is given by (3.44).

analytical (leading order)

> X
- -2 .
Z 102t numerical

-3

Figure 3: Numerically observed error converges to analytical leading-order result for N — oo

4. EXTENSION TO THREE DIMENSIONS

The current derivation for the sparse-grid representation error can easily be extended to three spatial
dimensions. The given function f(z,y,z) is then restricted to grids Q™" satisfying [ +m +n =
N —2 N —1,N. The total number of degrees of freedom contained in these grids is given by



4. Extension to three dimensions

N—T,N—1 N—T,N—1
A —F -
analytical numerical
N, N N, N
E R
analytical numerical

3.7553
3.9332
3.9817
3.9962
3.9984
3.9996

0~ O UL W Z

Table 1: Orders of convergence

E* E>® 138
0.04 0.04 0.04
0.03 0.03 0.03
0.02 0.02 0.02
0.01 0.01
0- 1 - "/”;"
1 1 05 00

Figure 4: Spatial error distributions for N =4,5,6

max(p + q) Ei4 e

p analytical numerical
4 0.0131

) 0.0068
6

7

8

0.0036
0.0010
0.0005

Table 2: Higher-order error approximations

16
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2N (N2 —3N + 2) — 1. The three-dimensional representations are taken to satisfy

fl,m,n

0,0,0

(%
—1,m',n'

«
al',fl,n'

al',m',fl —

fl,m,n

)
{ 22:—1 Z?nr:_1 E?y:—l al"m”nIPl’m’nle"m+m”n+nl
0,

0if I =0,
0if m =0,
0if n=0.

17

forl+m+n <N,
forl+m+n> N,

(4.1)

The last three relations ensure that no reference is made to non-existing grid-functions. Note that, due

to the last three relations, the coefficients «

l/ I ’
,ym ,n

is suppressed in the notation. The local error is now given by

are now dependent on I, m and n. This dependence

0 0 0
’ ’ ! A ’ ’ !
el,m,n — E E E Cll ,m',n Pl,m,nfl+l ym4+m’,ntn’ _ fl,m,n‘ (42)
I'=—1m/'=—1n'=—1
The recursive relation for E»™" for the three-dimensional case, reads
0 0 0
Ehmn — el,m,n + § § E : al’,m',n'Pl,m,nEl+l',m+m',n+n' (4 3)
l!'=—1m'=—1n'=-1
For the two-dimensional case, the optimal combination scheme was found to be [a = =1,y = —1].
For the three-dimensional case, the choice
a=100  — 40=10  _ ,00—1  _  —1,-1,—1 _ 1 (0.4
a-L=10 = =101 _ ,0-1,-1 _ 1 .

represents the optimal combination scheme. Analogous to (2.16) for the [a = 3
the combination scheme given by (4.4) leads to

ENNN _ Z PN.N.N Lmn

0<i,m,n<N
N<l+m+n

To evaluate (4.5), we need the following equivalent form

EN.N,N

N l
=y PN.N,N glm,0

m

N l
+ 26\?1 an:l PN,N,Nel,O,n
+ Zl:m Zn:m PN,N,NeO,m,n

+

1,y = —1] scheme,

(4.5)

(4.6)

N N N N-2N-1-l —~N—I—
(Zl:l D=l 2on=1 ~ 2=l Dom=1 Dun=1 m) PN Nlmon,

Just as for the two-dimensional case, the combination scheme given by (4.1) and (4.4) can be expressed

in a direct form that expresses fN-N-N directly in terms of the coarse representations { f>™" [+m+n =
N —2,N —1,N}. The direct form reads

fN,N,N _

0<lI

Z _9 Z + Z PN,N,Nfl,m,n.

,m,n<N 0<i,m,n<N 0<t,m,n<N

[+m+n=N l+m+n=N-1 +m+n=N—-2

(4.7)
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The three-dimensional local error is given by

l,m, _ L,
Cinimky = T ke T g0 2oge0 2areo P
T areIar (4.8a)

(( );Aw) (( )J;Ay ) (( );A~) ”y;ql':‘!’ix’kx,

0 0 0 N
(f) — Z Z Z l m'n 1/1l ,m',n' l',m',n' Yl m',n’ Zl m',n’
D,q,r = 1,5,k i,j,k i,5,k i,5,k ’

(4.8b)
where
',m',n' .
ik = —4-0"+2(1 -1,
v} ';; = 4 —m/ +2(1 —m)j, (4.9)
Zl ”,;" = —4-n+2(1-n)k.
4.1 Piecewise-constant interpolation
For piecewise-constant interpolation, the interpolation weights z/)ijrz ' are given by
Zbijnlz =00 102 Op—2 - (4.10)
Substitution of (4.10) into (4.8b) yields
¢p,q,r = Z Z Z 6l’+1 + 6l’ ) ((Smr+1 + 6m,6q) ((Snr+1 + 6n,6r) all’ml’n,. (411)

I'=—1m'=—1n'=-—1

Substitution of (4.11) into (4.8a) and next of (4.8a) into (4.2) yields

| ENNN < Ly 1N||aaa~f|| +O|N 1 ! (4.12)
oo—16 2 rryTEdlleo 2 ’ '

or, in terms of the mesh width,
1 _ _
|[ENNN] 0o < l—ﬁhlog‘;’ h=110,0,0. fll . + O (hlog, h™"). (4.13)
Thus, in three-dimensions, the piecewise-constant scheme has a representation error of order h logg h~t.

4.2 Piecewise tri-linear interpolation
For tri-linear interpolation, the ! ™ "

i are given by

l ’ 0 0 0 7 ! !
Y i]n]z SN DR D DM DD ¢ X5 Xk s (4.14)
Xi = Opdi—2 + 041 (iéz + %51'—1) .

Substitution of (4.14) into (4.8b) yields

QSWN‘ = Z?’:—l Z?n’:—l Z?y:q (5l’+1( s + A1/ 6. ) (5m’+1(_3?# + 5m’5q)
N R

(4.15)
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Substitution of (4.15) into (4.8a) and next of (4.8a) into (4.2) yields

oo oo oo

ENNN — Z Z (nxy)p’q + Z Z (nzz)pyr + Z Z (nyz)qyr + Z Z Z nwyz p’q’r ) (4.16)

p=2 q=2 p=2r=2 q=2 r=2 p=2 q=2 r=2
where
g (=3P +3(— SQ+32 P P
= 9—Ilp—mg
l—-N,m—N,—N « « ,m,0
Z I/}ixdxrjlk'x (_1)1 ri qapaq lx@x:’“x
Exdx ok x
s (=3P +3(- 3) +327pT
(M22)"" = 4 plr! 222 e
=1 n=1
S R T
Ixdx ok x
gr _  (=3)"+3(=3)+3277" g
(1y2) = 4 4 q'r! ZZQ
m=1n=1
Z ._N.’m,;N’T_N(—].)JXq+kX raqarfo ,m, nk
Tx )% Rx Ix,J %k x
Exdx ok x

N N N—-2N—-1-IN—-l—m
[N - (_3)1) +3 (_3)q +3 (_3)7‘ +327P—97T
—Ilp—mg—nr I—-N,m—N,n—N ix M T r el,m,n
2 ” ! Z djixeJ"x (_1) Ptk 6paqa flx WJxoakx
Iy sdx ok x

The corresponding leading-order term is

NN Z 9 e (] Na262a2fNNN+O N(L ! (4.17)
ik 1024 4 ik 4 ’ -

or, in terms of the mesh width,

NNN 9 o N,N,N _
Eid',k 1024h21 h™ laiajaffz gk T 0 (h2 log, h 1) . (4.18)

Thus, the three-dimensional piecewise-tri-linear scheme has a representation error of order A2 logg h~L.

4.8 The semi-sparse grid
The combination procedure in the current section started with restricting f(x,y,2) to grids Qbmn
satisfying [+m+n = N —2, N —1, N. As an alternative, we now consider the semi-sparse approach as
introduced in [5], which amounts to restricting the function to the grids Q""" satisfying [ +m +n =
2N —2,2N —1,2N, causing the number of degrees of freedom to increase to 22V =3(7N2429N +1). This
is an asymptotically two-dimensional complexity, as opposed to the one-dimensional complexity of the
sparse-grid approach. Of course, the semi-sparse approach is expected to have a smaller representation
error.

For the semi-sparse, three-dimensional combination technique, the representations are taken to
satisfy

fl,m,n _ fhmn, for i + m +n < 2N,
a Z?':—1 Z?n’:—l 22':—1 ol'sm'sn’ plomon flAlmtmintn’ - for | 4m 4 n > 2N.
(4.19)
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The coefficients o ™" are again taken to be given by (4.8b), yielding the following direct form of
the semi-sparse combination technique

fN,NN _9 PN.N.N £lm,n
! Z 0<l,m,n<N Z 0<l,m,n<N + Z 0<l,m,n<N f
l+m+n=2N [+m+n=2N—-1 [+m+n=2N—-2
_ PN.N.N flm,n
E =N + Z m=N + Z n=N f
o<m,n<N 0<l,n<N 0<l,m<N
I+m+n=2N-1 I+m+n=2N-1 I+m+n=2N-1

(4.20)

The error coefficients ¢ are the same as for the truely-sparse approach, e.g., for piecewise-constant
prolongation they are given by (4.11) and for piecewise-tri-linear prolongation they are given by (4.15).
The representation error is now given by

ENNN _ Z ebman (4.21)
0<l,m,n<N

2N<l+m+n

For piecewise-constant prolongation, the error expansion reads

oo oo oo

N,N,N _ const p,q,T
BYMN =R 30> ()

p=1g=1r=1
where

9—p—gq-r N

const\P-&" —Ilp—mg—nr
ey = LUEIS Yy e
plg'r! _
=1 m=N+1—In=2N+1—Il—m
[-N,m—N,n—N/  (\ixp+jixq+kxrapagqr gl,m,n
Z wix:jx:’cx ( 1) 8 a 8 flx’JxJ‘fx

IxJx kx

The corresponding leading-order result is

H NNNH 2<1> 5.0 6fNNN+O<N <1>N> (4.22)
ok 4 4 ’ ’

or, in terms of the mesh width,

1
HE%V NH < o log3 h10,0,0. £ + O (W logy h ). (4.23)

For piecewise-tri-linear prolongation, the error expansion reads

oo oo oo

ENN.N — ZZZ s )Pt (4.24)

p=2 q=2 r=2

where
N

in > — (_3)p +3 (_3)!1 +3 (_3)T +327P1" N N
)™ = i 1 > X X

P
p-q I=1 m=N+1—-In=2N+1—-l—m
27lp7mq7nr E 1/)l.7N’m7N’n7N(_]_)l>< P+ixat+kx Tapaqarfl ,m,n

Ix,Jx kx ix,Jx o kx "

IxJx sk x
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The corresponding leading-order term is

pVN = 9 e (L Na2a2a2f.NfN’N+O N(L ! (4.25)
bk 1024 16 TTy TRk 16 ’ ’

or, in terms of the mesh width,

9
N,N,N __ 4 23 -1929292 (N,N,N 4 -1
Ex = @h logy h™1 030,02 f, 7" + O (h*logy h™1) . (4.26)
4.4 A numerical test

As a test of the derivations in the current section, consider the following test case

f(z,y,2z) = sin(rz) sin(wy) sin(nz).

In Figures 5 and 6, the first-order error expressions (4.17) and (4.25) for the sparse and the semi-sparse
schemes, respectively, are compared with corresponding numerical results. The errors are evaluated
at a grid point nearest to z =y = z = % (eight grid points qualify but due to the symmetry of the
function this is not a problem). From Figures 5 and 6, it appears that the asymptotic expressions
(4.17) and (4.25) indeed describe the numerical error of the sparse and the semi-sparse schemes,
respectively, for N — oco. Convergence of the error expansions (4.16) and (4.24) for the sparse and
the semi-sparse schemes to the corresponding numerical results as max(p + g + ) — oo is shown in
Figures 7 and 8, respectively.

4.5 Discussion

In the current section, the error analysis introduced in Sections 2 and 3 was extended to three dimen-
sions. Besides the sparse grid, also a so-called semi-sparse grid was considered. The semi-sparse grid
was shown to have a representation error of O (h* log3 h=1). If the (semi-) sparse-grid representation
error would be the only error to deal with, then the semi-sparse-grid approach would be superior to
the sparse-grid approach. This is illustrated in Figure 9, in which the numerically observed error at
a grid point nearest to x =y = z = % is plotted versus the number of degrees of freedom for the
tri-linear sparse and semi-sparse schemes, for the test function f(z,y,z) = sin(nz)sin(ny) sin(7z).
Figure 9 suggests that the semi-sparse-grid approach yields a smaller error for the same number of
degrees of freedom than the sparse-grid approach. However, this suggestion is misleading since the
sparse-grid representation error is not the only relevant error.

In the current setup, the sparse and semi-sparse representations are piecewise-constant
or piecewise-d-linear and hence contain an additional error of O (h) or O (hz), respectively, when
evaluated outside grid points. A sensible comparison of the sparse and semi-sparse approaches includes
this error. In Figure 10, the sparse and semi-sparse approaches are again compared, now with inclusion
of the O (hz) tri-linear representation error. This error is included by comparing the average of grid-
function-values nearest to x =y = z = % with the exact value at x =y =2z = % From Figure 10, it
is apparent that when the tri-linear representation error on the finest grid is included, the sparse-grid
approach yields a smaller error than the semi-sparse-grid approach for the same number of degrees
of freedom, as was expected. In Figure 10, we also plotted the conventional tri-linear representation
erroratr =y =2z = % versus the complexity of the conventional grid, 23V . Figure 10 clearly indicates
that for the current test function, the sparse-grid representation is more efficient than the conventional
representation and, for more than 10° degrees of freedom, the semi-sparse representation is also more
efficient than conventional representation, but less efficient than a truely-sparse representation.

If we would only be interested in the solution at grid points of the finest grid QV>-V> then we might
argue that there is no reduction in representation error for the semi-sparse approach and hence that
the semi-sparse approach is more efficient than the truely-sparse approach. However, so far, we have
assumed that the function f is known exactly at the points contained in the coarse grids. Of course,

f'N,N,N
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when solving a differential equation this is not true. Then, the coarse-grid functions are subject to
a discretization error. In general, a discretization error of order O (b, ) on the coarse grids leads
to an error of order O (h") on the finest grid Q-V:N. Therefore, a very common discretization error

of O (hZyarse) also reduces the representation error of the semi-sparse approach to O (h?). To exploit
the O (h*logs h™!) representation error of the semi-sparse approach, a discretization of O (h,,..)

would be required. However, if such a discretization were feasible, then it would be wiser to stick to
the conventional full grid, since this would be more efficient then.

5. DISCONTINUOUS FUNCTIONS
In this section, we do not require f to be a smooth function. In particular, we examine the behavior
of the error in the case that f is a two-dimensional step function of the type

1, (Q+Nz+(1-Ny<Ll
flz,y) = 0, 1+Nz+(1-Ny=1 (5.1)
+1, 1+XNz+(1-Ny>1

We will obtain expressions for the local error /™ directly from its defining equation (2.3) by substi-
tution of values for «, 3,7 and z/)ign In general, we have

I, _ l, 3 1 —1,0 -1,0 y A
ei:?jx - _fixn?jx + azz’:() Zj:() I/Ji’j f CU%X +X i (_l)l T ,ij)
+ /322:0 E?:o 1/12’{1]” xéx,ij +Y0 L(—1)ix Ay
1 1 1,41 0,— A 1o -
Yo Dot (s + X051 A 4 Y (1 o)
(5.2)

where X "™ and Y ' are given by (3.4) and where the coefficients ’l/) " determine the prolongation.
Since now flz,y) 1s a step function, we assume that prolongatlon by bi-linear interpolation will
not be superior to piecewise-constant interpolation. Hence, we will only consider piecewise-constant
interpolation. For piecewise-constant interpolation, z/;ﬁj}-m’ is given by (3.6). Substitution of (3.6) into
(5.2) yields

L _ L N i Ay™
ei:?jx - _fixnyzjx + af ZU%X + (_1)1 AZI Y JX) +ﬂf( lx’ij + (_l)j g )

. m (5.3)
+of (s, (DA g 4 (1) A
5.1 The [%, %,0] piecewise-constant scheme.
For a = B = 1,7 = —1, the local error e>™ takes the form
1 At . Ay™
l,m L,m x X Y
Crix = “fivix T 51 (méx (=D = Jx) 3/ ( i Yjo (D=5 ) ' (5.4)

This expression is only non-zero for a limited number of points, determined by the line (14 Xz + (1 —
A)y = 1. In Figure 11, black triangles have been drawn that correspond to equation (5.4). Triangles
that are intersected by the line (1+ )z + (1 —\)y = 1 correspond to points for which /™ is of order 1
(proportional to the step). The number of triangles that are intersected is assumed to be proportional

to max (2’, }+§2m) if A > 0and A # 1, and to max (%2’,2’”) if A < 0and A # —1. Thus, for

A>0and A # 1, there is a k € R such that for all > 0 and m >0

||el’m||1 < 271=™m g max <2l, i—;2m> . (5.5)
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error is neglected
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For the [£,1,0] scheme, the representation error ENV is given by (2.6), which we use to obtain the
following expression for ||EN7N||1
N,N n N,N N i, N —n—+i
v, = s, (7 )P |
n . _ .
< Drem (] ) ey, 50
= En:ﬂl2 nZ?:O < 7 ) ||6N o n+l||1 )
Substitution of (5.5) into (5.6) gives
n _
|EYN|, < wyNlenyr 0( Z >2n 2N max (132, 2V o)
n n n— —1i —n+i
< kYN 2o Ezo<i>2 2N max (2N 4 2N —nH)
N—-1H— n n _ . .
= kYN 12 "2“)( ; >2 N max (274, 21) (5.7)

< 2Ny Nty 0( X )2—"
= (@Y -@)").

Thus,

=, =0 ((3)") 59

Rewriting the last equation in terms of the mesh width yields
|EMN|, = O (h?71o8e3) . (5.9)

Note that we have taken A > 0, A # 1. It is obvious that A < 0, A # —1 gives the same result. Thus,
for a step function described by (5.1), the [%, %,0] piecewise-constant scheme has a representation
error of order 2 —log, 3 ~ 0.42.
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5.2 The [1,1, —1] piecewise-constant scheme.

For a = = 1,7 = —1, the local error ™ takes the form
l,m _ l,m i % ! J A m.
€rix = Jivix T F (mix + (=1 ATm’yfni) +f (mi*’yjni DS ) (5.10)
. 1 . m .
F (s + (D% Ay (-1 A

This expression is also only non-zero for a limited number of points, determined by the line (1 + Az +
(1 =My = 1. In Figure 12, rectangles have been drawn that correspond to equation (5.4). Squares

023
] 1] ]

1-A M
1+A 2

AN S Y M ) A

ol
Figure 12: Counting errors, 1,1, —1 combination

that are cut, through a horizontal and a vertical side, by the line (1 + Az + (1 — A)y = 1 correspond
to points for which e/ is of order 1 (proportional to the step). The number of rectangles that
1-X

are cut, through a horizontal and a vertical side, is assumed to be proportional to min (2l, QO)

if A>0and A # 1, and to min (%21,2’”) if A <0 and A # —1. Thus, for A > 0 and X # 1, there
is a K € R such that for all I > 0 and m > 0

"™, < 27"k min <2l, —i J_r ;2’”) : (5.11)

For the [1,1, —1] scheme, the representation error E™-V is given by (2.16), from which we obtain the
following relation for ||EN7N||1

N-1 n

1B, < D0 e (5.12)

n=0 =0
Substitution of (5.11) into (5.12) gives

”EN,N”1 < & Zg:_ol S, 272N min (ﬁ_;\\QN—i, 2N—n+i)
< K Eg:_ol Z?:o gn—2N pin (2N7i, 2N—n+i)
_ N—1 n . n—i 9
= 2%k Znﬁo 121»:92111“1 (27%,2%) (5.13)
= 2'7Ng > n=o ?:0 2!

= () - @) 20w
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Rewriting in terms of the mesh width yields
BN, = 0 (n72). (5.14)

Thus, for a step function described by (5.1), the [1,1, —1] piecewise-constant scheme has a represen-
tation error of order 3.

5.3 The [0,0,1] piecewise-constant scheme
For a = 3 = 0,7 = 1, the local error "™ takes the form

- Agt . Ay™
l7m l7m Tx m X y
eix,jx = _fi><7jx + f (mix + (_1) 2 ’ij + (_l)J 2 ) .

(5.15)

This expression is again only non-zero for a limited number of points, determined by the line (1 +
A)z + (1 — ANy = 1. In Figure 13, diagonal lines have been drawn that correspond to equation (5.15).
Diagonal lines that are cut by (1+ A)z + (1 — A\)y = 1 correspond to points for which e"™ is of order

Q2'3

1-A ,M
1+A 2

ol
Figure 13: Counting errors, v = 1 combination

1 (proportional to the step). The number of diagonal lines that are cut is assumed to be proportional

to max (2’, };—§2m) if A > 0and A # 1, and to max (%2’,%) if A < 0and A # —1. Thus, for

A>0and A # 1, there is a k € R such that for all > 0 and m >0

le"™ ||, < 27"k max <2l, i—;2m> : (5.16)

For the v = 1 scheme, the representation error EMV is given by (2.26), from which we obtain the
following relation for ||EN7N||1

N-1
”EN,N”1 < Z ”el’l”l' (5.17)
I=N/2
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Substitution of (5.16) into (5.17) gives
N-1 o_
K El:N/Q 2~ (5.18)
N N .
2 (%) - ®Y).

Rewriting in terms of the mesh width yields

(e B

IN

|2¥N], =0 (n72). (5.19)

Thus, for a step function described by (5.1), the [0, 0, 1] piecewise-constant scheme has a representation
error of order %

5.4 A numerical test

To test the validity of the conclusion that the [1,1,—1] scheme has a representation error of order
(@) (hl/ 2) for the representation of a discontinuous function of the type (5.1), we now represent (5.1),
with the [1,1, —1] combination scheme, for A = 0 (a diagonal line through the domain). In Table
3, the representation error in the Li-norm is listed for N = 2,3,...,12, together with convergence
ratios. Table 3 shows that the Li-norm of the representation error on sparse grids with N even is
twice as small as on N — 1, while going from even N to (odd) N + 1 actually leads to a small rise in
error. The explanation that the diagonal step function is better represented for IV even than for N
odd is that for N even there is a grid Q~/2N/2 within the set of coarse grids {Q"™,l+m = N —1,N}
on which the diagonal step function can be reasonably described. A more important observation is
that the average convergence ratio (rightmost column) seems to tend to v/2, as it should according to
(5.14).

1
EN*I,N*I EN*Z,N*Z 2
N[ 1), | (H ||ENvN|1H1>
2 | 0.125000
3| 0.187500 |  0.666667
4 | 0.093750 | 2.000000 1154701
5| 0.109375 | 0.857143 1.309307
6 | 0.054688 | 2.000000 1.309307
7 | 0.058594 | 0.933333 1.366260
8 | 0.029297 | 2.000000 1.366260
9 | 0.030273 | 0967742 1391217
10 | 0.015137 | 2.000000 1.391217
11| 0015381 | 0984127 1.402945
12 | 0.007690 |  2.000000 1.402945

Table 3: Orders of convergence

5.5 Discussion

In the current section, it was shown that the combination technique has a representation error of order
@) (hl/ 2) when a step function is represented. This accuracy can also be obtained by interpolating
solely from the grid QV/2:V/2 e g by conventional representation on the grid Q~/2V/2 which contains
less degrees of freedom than the set of coarse grids {Q"™ 1 +m = N — 1, N} comprising the sparse
grid. For the representation of genuinely discontinuous functions, the combination technique is not

superior to conventional representation.
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6. CONCLUSIONS

The sparse-grid combination technique is an attractive alternative to the conventional representation
of a function on a full grid. The reason for this is that, for the same number of degrees of freedom, the
sparse-grid combination technique yields a significantly smaller representation error than conventional
representation; see for instance Figure 10.

By analyzing the steps that make up the combination technique, explicit expressions for the repre-
sentation error were obtained. The leading-order error terms contain cross derivatives of the function
to be represented, instead of single-variable derivatives like the conventional representation error. The
deficiency of the combination technique is that it will be less effective for functions that have large cross
derivatives. This problem may be alleviated by adapting the grids to the geometry of the problem at
hand.

For comparison, an alternative to the combination technique introduced in [2] was considered. This
alternative technique, the [%, %, 0] technique, appeared to perform less well than the technique in [2],
the [1,1, —1] technique. In fact, the alternative technique even appeared to be inferior to conventional
representation, such as the [0, 0, 1] technique.

It was shown that for a step-function, which is not aligned with the grid, the combination technique
performs less well than the standard representation. For such a non-aligned step-function, the order
of the representation error was found to be O (hl/ 2). (The explicit error expression derived may be
useful for a combination technique that relies on grid refinement.)

The representation for the 3D semi-sparse combination technique, as proposed in [5], was analyzed.
The representation error was found to be O (h4(logh’1)2). At first sight, this result implies that
the 3D semi-sparse combination technique is to be preferred above the 3D truely-sparse combination
technique. However, due to additional representation errors or discretization errors of O (h2), the
3D semi-sparse representation error reduces to O (h2), which makes it less attractive than the 3D
truely-sparse combination technique.
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