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ABSTRACT

In this paper, we give a unified approach to error estimates for interpolation on sparse Gauß–Chebyshev grids

for multivariate functions from Besov–type spaces with dominating mixed smoothness properties. The error

bounds obtained for this method are almost optimal for the considered scale of function spaces.
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1. Introduction

The Gauß–Chebyshev knots are quite often used as interpolation points for functions
given on the interval [−1, 1]. Beside the well–studied polynomial interpolation, one can
investigate interpolation by splines adapted to these special nodes.

Using generalized translates, the so–called Chebyshev–shifts, the interpolation of uni-
variate functions on Gauß–Chebyshev knots can be seen as interpolation by translates.
Shift–invariant spaces corresponding to such translates and their wavelet analysis are
described in detail in [11]. Forming tensor products yields interpolation on full Gauß–
Chebyshev grids. This is a reasonable choice for fairly small dimensions only.

For higher dimension, interpolation on sparse grids, using essentially less points,
is much more appropriate. It can be realized by j–th order blending. Some recent
papers use this fact for determining the quadrature error for smooth functions [6, 9,
10] or for investigating interpolatory wavelets for sparse Gauß–Chebyshev grids [15].
Interpolation and approximation on sparse grids has been fairly well investigated for
periodic functions [5, 12, 14]. It is closely related to hyperbolic approximation (see e.g.
[17]).

Error estimates for interpolation on sparse Gauß–Chebyshev grids were given up to
now only for functions from Sobolev–type spaces [16] and for polynomial interpolation
of functions with bounded mixed derivatives measured in the maximum norm [1].
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In the present paper, we give a unified approach to error estimates for interpolation
on sparse Gauß–Chebyshev grids for functions from certain Besov–type spaces to be
introduced in Section 3.

Therefore, we can adapt the concept of Strang–Fix conditions for this special situa-
tion, see Section 4. Furthermore, we use essentially the properties of the multivariate
function spaces which can be represented as tensor products of the univariate func-
tion spaces provided with uniform crossnorms. In this way, we propose interpolation
methods which are almost optimal for a wide range of Besov–type spaces.

2. Notation

We denote our reference interval by I := [−1, 1] and the Chebyshev weight by w(x) :=
(1− x2)−1/2 (x ∈ (−1, 1)). Let L2

w(I) be the weighted Hilbert space of all measurable
functions f : I −→ R, with∫

I

f(x)2w(x) dx <∞.

For f, g ∈ L2
w(I), the corresponding inner product is given by

〈f, g〉 := 2

π

∫
I

f(x)g(x)w(x) dx.

By Πn, we denote the set of all real valued polynomials of degree at most n restricted
on I. Furthermore, let Tn ∈ Πn be the Chebyshev polynomials

Tn(x) := cos(n arccosx).

They form a complete orthogonal basis

〈Tk, T`〉 =


2 for k = ` = 0,

1 for k = ` 6= 0,

0 otherwise,

of L2
w(I). With the help of the Chebyshev coefficients

ak[f ] := 〈f, Tk〉 , f ∈ L2
w(I), k ∈ N0,

we characterize the Wiener algebra

A(I) :=
{
f ∈ L2

w(I) ;
∑′

k∈N0

|ak[f ]| <∞
}
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of functions with an absolutely summable Fourier–Chebyshev series. Here and in the
sequel, we use the notation

∑′ if we halve the first term and
∑′′ where both the first

and the last term in the sum are halved. By GN , we denote the grid of the Gauß–
Chebyshev nodes

GN :=
{
gk := cos k π

N
; k = 0, . . . , N

}
.

The discrete Chebyshev coefficients are given as

aN
k [f ] :=

2

N

N∑′′

`=0

f(g`) Tk(g`) , k = 0, . . . , N.

For functions f ∈ A(I), one can prove the aliasing formula

aN
k [f ] =

∑
`∈N0

a2`N+k[f ] + a2(`+1)N−k[f ] , k = 0, . . . , N.

3. Function Spaces

We want to interpolate multivariate functions. Their smoothness will be measured
in the scale of Besov–type spaces. In this section, we give a definition of these func-
tion spaces via the summability of their Fourier–Chebyshev series. The Chebyshev
coefficient of an n–variate function is given in the usual way as

ak[f ] = 〈f, Tk1 ⊗ Tk2 ⊗ · · · ⊗ Tkn〉, for k ∈ Nn
0 .

Furthermore, we need the index sets

Qn
0 = {0},

Qn
j = {k ∈ Nn

0 ; kr < 2j , r = 1, . . . , n}
\ {k ∈ Nn

0 ; kr < 2j−1, r = 1, . . . , n}.
Definition 1 Let 1 ≤ q ≤ ∞ and s ≥ 0. Then we define the isotropic Besov–type
space Bs

2,q,w(In) as

Bs
2,q,w(In) :=

{
f ∈ L2

w(In) ; ‖f | Bs
2,q,w(In)‖

=
( ∞∑

j=0

2jsq
( ∑
k∈Qnj

a2
k[f ]

)q/2)1/q

<∞
}

for q <∞ and

Bs
2,∞,w(In) :=

{
f ∈ L2

w(In) ; ‖f | Bs
2,∞,w(In)‖

= sup
j∈N0

2js
( ∑
k∈Qnj

a2
k[f ]

)1/2

<∞
}
,

respectively.
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For the definition of the spaces of functions with dominating mixed smoothness
properties, we put the index sets

P n
j = Q1

j1
×Q1

j2
× · · · ×Q1

jn , j ∈ Nn
0 ,

and denote the inner product in Nn
0 by j · r := j1r1 + j2r2 + · · ·+ jnrn.

Definition 2 Let 1 ≤ q ≤ ∞ and r ∈ Rn
+. Then the Besov–type space Sr2,q,wB(In) of

n–variate functions with dominating mixed smoothness properties is defined as

Sr2,q,wB(In) :=
{
f ∈ L2

w(In) ; ‖f | Sr2,q,wB(In)‖

=
( ∞∑
j∈Nn0

2(j·r)q
( ∑
k∈Pnj

a2
k[f ]

)q/2)1/q

<∞
}

for q <∞ and

Sr2,∞,wB(In) :=
{

f ∈ L2
w(In) ; ‖f | Sr2,∞,wB(In)‖

= sup
j∈Nn0

2(j·r)
( ∑
k∈Pnj

a2
k[f ]

)1/2

<∞
}
,

respectively.

By construction, it holds that

B0
2,2,w(In) = L2

w(In) and S0
2,2,wB(In) = L2

w(In). (3.1)

Furthermore, we have the imbeddings

Ssi2,q,wB(In) ↪→ Bs
2,q,w(In) ↪→ Sso2,q,wB(In) (3.2)

between isotropic and dominating mixed smoothness spaces with si = (s, s, . . . , s) and
so = (s/n, s/n, . . . , s/n).

The Besov spaces of n–variate functions with dominating mixed smoothness proper-
ties can be characterized as tensor products

Bs1
2,q,w(I)⊗λ Bs2

2,q,w(I)⊗λ · · · ⊗λ Bsn
2,q,w(I) = Ss2,q,wB(In) (3.3)

of the corresponding univariate Besov spaces (equivalent norms). Here, the norm λ
which was used for the completion of the algebraic tensor product is the injective
tensor norm for 1 ≤ q < ∞ and a certain modification thereof for q = ∞, which can
be proved in the same manner as in the periodic case cf. [13]. These norms have the
main advantage to be uniform crossnorms, cf. [8, 13]. In particular, this (together
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with (3.1)) means that for n operators Pr ∈ L(Bsr
2,q,w(I), L2

w(I)), their tensor product
operator given by

P (f1 ⊗ f2 ⊗ · · · ⊗ fn) := (P1 ⊗ P2 ⊗ · · · ⊗ Pn)(f1 ⊗ f2 ⊗ · · · ⊗ fn)

:= P1(f1)⊗ P2(f2)⊗ · · · ⊗ Pn(fn)

is bounded, i.e., P ∈ L(Ss2,q,wB(In), L2
w(In)), and its norm can be estimated as

‖P | L(Ss2,q,wB(In), L2
w(In))‖ ≤ C

n∏
r=1

‖Pr | L(Bsr
2,q,w(I), L2

w(I))‖, (3.4)

with some constant C independent of P . Note that for Hilbert spaces the tensor norms
are uniform crossnorms by construction. In case of tensor products of Banach spaces,
this has to be proved for each example separately, see [8, 13].

Because of the imbeddings

Bs
2,q,w(In) ↪→ Bs

2,∞,w(In),

Ss2,q,wB(In) ↪→ Ss2,∞,wB(In),

for q <∞, in the following sections, we give the error estimates for the most interesting
case q =∞ only.

4. Univariate Interpolation by Generalized Translates

As a preparation for n–variate interpolation on sparse grids, we need to describe the
interpolation method for univariate functions first. To this end, we concentrate our
investigations on interpolation by generalized translates of a single function.

The Chebyshev shift (cf. [4, 11]) shf of a function f is defined by

(shf)(x) := 1
2
f
(
xh− 1

w(x)w(h)

)
+ 1

2
f
(
xh + 1

w(x)w(h)

)
, x ∈ I.

For interpolation, we use the special shifts σk := sgk , k = 0, . . . , N, into the Gauß–
Chebyshev nodes. The Chebyshev shift effects the Chebyshev coefficients ak[σnf ] =
Tk(gn)ak[f ] in the same multiplicative way as the usual shift effects the Fourier coef-
ficients of periodic functions [11]. We assume to know a modified Lagrange function
ΛN ∈ A(I) satisfying

σkΛN(g`) =
1

εk
δk,` , k = 0, . . . , N,

with

εk :=

{
1
2

for k = 0, N,

1 for k = 1, . . . , N − 1.
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For the construction of such a Lagrange function, we refer to [16]. Then, we can write
the corresponding interpolation operator interpolating in the Gauß–Chebyshev nodes
as

LNf =

N∑′′

k=0

f(gk) σkΛN .

In order to characterize the approximation properties of the modified Lagrange func-
tion, we impose conditions on the decay of the Chebyshev coefficients of ΛN , see [16].
They are the pendant for the interval of the strong cardinal Strang–Fix conditions [7]
and the periodic Strang–Fix conditions [3].

Definition 3 The Lagrange function ΛN ∈ A(I) satisfies the Strang–Fix conditions
(for Gauß–Chebyshev grids) of order m > 0 if for all k = 0, . . . , N the inequalities∣∣∣∣1− N

2
ak[ΛN ]

∣∣∣∣ ≤ b0 km N−m,∣∣∣∣N2 a2`N+k[ΛN ]

∣∣∣∣ ≤ b2` km N−m, ` ∈ N,∣∣∣∣N2 a2(`+1)N−k[ΛN ]

∣∣∣∣ ≤ b2`+1 km N−m, ` ∈ N0,

(4.1)

hold for some sequence {b`}`∈N0 ∈ `2(N0).

With the help of these quite general conditions we obtain the following estimate for
the univariate interpolation.

Theorem 4 Let m > s > 1/2. Let the Lagrange function ΛN ∈ A(I) satisfy the
Strang–Fix conditions (4.1) of order m. Then there exists a constant C (independent
of N) such that

‖f − LNf | L2
w(I)‖ ≤ C N−s ‖f | Bs

2,∞,w(I)‖,

for all f ∈ Bs
2,∞,w(I).

Proof: Throughout this proof, we denote by C a constant independent of N . The
value of C may differ even within the same equation.
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The Chebyshev coefficients of the interpolant to the function f ∈ A(I) can be com-
puted by using aliasing as

a2`N+k[LNf ] =
∑
r∈N0

(
a2rN+k[f ] + a2(r+1)N−k[f ]

) N

2
a2`N+k[ΛN ],

a(2`+1)N+k[LNf ] =
∑
r∈N0

(
a(2r+1)N+k[f ] + a(2r+1)N−k[f ]

) N

2
a(2`+1)N+k[ΛN ],

for k = 0, . . . , N − 1, ` ∈ N0.
First we prove the assertion for polynomials f ∈ ΠN−1. Using the Strang–Fix con-

ditions, we obtain

‖f − LNf | L2
w(I)‖2

≤
∑
k∈N0

(ak[f ]− ak[LNf ])2

=
N∑

k=0

∑
`∈N0

(
a2`N+k[f ]−

∑
r∈N0

(
a2rN+k[f ] + a2(r+1)N−k[f ]

) N

2
a2`N+k[ΛN ]

)2

+
(
a(2`+1)N+k[f ]−

∑
r∈N0

(
a(2r+1)N+k[f ] + a(2r+1)N−k[f ]

) N

2
a(2`+1)N+k[ΛN ]

)2

=
N−1∑
k=0

a2
k[f ]

((
1− N

2
ak[ΛN ]

)2

+
∑
`∈N

(N

2
a2`N+k[ΛN ]

)2

+
(N

2
a2`N−k[ΛN ]

)2)
≤

N−1∑
k=0

a2
k[f ]k2mN−2m

∑
`∈N0

b2
` .

Let 2r−1 ≤ N < 2r. Then

N−1∑
k=0

a2
k[f ]k2m =

r∑
`=0

∑
k∈Q1

`

k2m2−2`s22`sa2
k[f ]

≤ C
r∑

`=0

22(m−s)`22`s
∑
k∈Q1

`

a2
k[f ]

≤ C N2(m−s)‖f | Bs
2,∞,w(I)‖2.

This means that, for polynomials f ∈ ΠN−1, we proved

‖f − LNf | L2
w(I)‖ ≤ C N−s ‖f | Bs

2,∞,w(I)‖. (4.2)

Now, we consider the general case f ∈ Bs
2,∞,w. Because of s > 1/2 it holds that

f ∈ A(I). Therefore, interpolation is well–defined and aliasing is allowed. Let SN−1
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denote the (N − 1)–st Fourier–Chebyshev partial sum. The Strang–Fix conditions
applied with 1/2 < s′ < s and the Cauchy–Schwarz inequality yield

‖LN(f − SN−1f) | L2
w(I)‖2 ≤

∑
k∈N0

a2
k[LN (f − SN−1f)]

≤ CN−2s‖{b`} | `2(N0)‖

×
N∑

k=0

k2s′
[(∑

r∈N0

(2rN + k)−s′(2rN + k)s′a2rN+k[f − SN−1f ]
)2

+
(∑

r∈N0

(2(r + 1)N − k)−s′(2(r + 1)N − k)s′a2(r+1)N−k[f − SN−1f ]
)2

+
(∑

r∈N0

((2r + 1)N + k)−s′((2r + 1)N + k)s′a(2r+1)N+k[f − SN−1f ]
)2

+
(∑

r∈N0

((2r + 1)N − k)−s′((2r + 1)N − k)s′a(2r+1)N−k[f − SN−1f ]
)2

≤ CN−2s‖f − SN−1f | Hs′
w (I)‖2 sup

k=0,... ,N
k2s′

∑
r∈N0

(2rN + k)−2s′

+ (2(r + 1)N − k)−2s′ + ((2r + 1)N + k)−2s′ + ((2r + 1)N − k)−2s′,

where Hs′
w (I) denotes the Sobolev–type space with the norm

‖f | Hs′
w (I)‖2 :=

∑′

k∈N0

(1 + k2)s′ a2
k[f ],

as in [2]. Since s′ > 1/2, we have

sup
k=0,... ,N

( k

N

)2s′ ∑
r∈N0

(
2r +

k

N

)−2s′

+
(
2(r + 1)− k

N

)−2s′

+
(
2r + 1 +

k

N

)−2s′

+
(
2r + 1− k

N

)−2s′

≤ C <∞

and hence

‖LN(f − SN−1f) | L2
w(I)‖ ≤ CN−s′‖f − SN−1f | Hs′

w (I)‖.

One proves easily that for s > s′ it holds that

‖f − SN−1f | Hs′

w (I)‖ ≤ CNs′−s‖f | Bs
2,∞,w(I)‖. (4.3)

With this, it follows

‖LN(f − SN−1f) | L2
w(I)‖ ≤ CN−s‖f | Bs

2,∞,w(I)‖. (4.4)
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Now, our results (4.2), (4.4) and (4.3) applied with s′ = 0 imply

‖f − LNf | L2
w(I)‖

≤ ‖f − SN−1f | L2
w(I)‖+ ‖SN−1f − LN(SN−1f) | L2

w(I)‖
+ ‖LN(f − SN−1f) | L2

w(I)‖
≤ CN−s‖f | Bs

2,∞,w(I)‖.

This proves the theorem.

5. Examples

The interpolation on Gauß–Chebyshev grids is closely related to periodic interpolation
on equidistant grids. The function M := ΛN(cos ·)/2 is an even periodic fundamental
interpolant on the grid {2πk

2N
; k = −N, . . . , N−1}. IfM satisfies the periodic Strang–

Fix conditions of order m (see [3, 12]) with the constants {d`}`∈Z then ΛN satisfies
the Strang–Fix conditions for Gauß–Chebyshev grids of order m with the constants
b2` = πmd` and b2`+1 = πmd`+1, ` ∈ N0.

In this way, one obtains that the interpolatory scaling functions of the multiresolution
analysis for a bounded interval described in [11] fulfil Strang–Fix conditions of certain
order.

So the fundamental interpolant of the transformed B–spline of even order r satis-
fies Strang–Fix conditions of order r. The de la Vallée Poussin means of Chebyshev
polynomials also described in [11] are fundamental interpolants and satisfy Strang–Fix
conditions of arbitrary order m.

The constants {d`}`∈Z for the corresponding periodic functions can be found in [3, 12].

6. n–variate Interpolation on Sparse Grids

We now want to consider interpolation on sparse grids. Therefore, we choose N0 ∈ N
and set Nj := N0 2j and L0 = 0, Lj := LNj−1 , j ∈ N. Furthermore, we assume the
imbeddings Im Lj ⊂ Im Lj+1, j ∈ N. Therefore, the interpolation operators form a
chain, i.e., LjLj+1 = Lj+1Lj = Lj . The corresponding Lagrange functions ΛNj have to
satisfy the Strang–Fix conditions with the same sequence of constants {b`}`∈N0. For
our examples in Section 5, both assumptions are fulfilled.

Then, the interpolation operator on a sparse grid is the j–th order Boolean sum
(j–th order blending operator), cf. [5], Chap. 1,

Bn
j :=

⊕
|r|=j

Lr1 ⊗ Lr2 ⊗ · · · ⊗ Lrn ,
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with j ≥ n, |r| = r1 + r2 + · · ·+ rn and A⊕B := A + B −AB. The Boolean sum can
be rewritten in terms of ordinary sums (see [18])

Bn
j =

∑
j−n+1≤|r|≤j

(−1)j−|r|
(

n− 1

j − |r|

)
Lr1 ⊗ Lr2 ⊗ · · · ⊗ Lrn.

It interpolates on the sparse grid⋃
|r|=j

Gr1 × Gr2 × · · · × Grn .

These grids are also nested. The number NG = NG(j, n) of interpolation nodes in the
sparse grid belonging to Bn

j can be estimated as (see [9]) as

NG ≤ Cn jn−1 2j

The Boolean sum operators form a chain, i.e., Bn
j Bn

j+1 = Bn
j+1B

n
j = Bn

j .

Theorem 5 Let m > s > 1/2, s = (s, s, . . . , s). Let ΛNj satisfy the Strang–Fix
conditions of order m with the same sequence of constants {b`}`∈N0. The corresponding
interpolation operators form a chain. Then there exists a constant C (independent of
j) such that

‖f −Bn
j f | L2

w(In)‖ ≤ C jn−1 N−s
j ‖f | Ss2,∞,wB(In)‖

for all f ∈ Ss2,∞,wB(In).

Proof: Let In denote the natural imbedding Ss2,∞,wB(In) ↪→ L2
w(In). From Theorem

4, we obtain the estimates

‖I1 | L(Bs
2,∞,w(I), L2

w(I))‖ = 1,

‖I1 − Lr | L(Bs
2,∞,w(I), L2

w(I))‖ ≤ C 2−sr,

‖Lr − Lr−1 | L(Bs
2,∞,w(I), L2

w(I))‖ ≤ D 2−sr.

With E := C (max{2s, D})n−1 and the uniform crossnorm property (3.4) of the under-
lying Besov–type spaces of functions with dominating mixed smoothness properties,
one proves easily (see [18]) that

‖In −Bn
j | L(Ss2,∞,wB(In), L2

w(In))‖ ≤ E

(
j

n− 1

)
2−sj.

This proves the theorem.
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Corollary 6 Under the assumptions of Theorem 5, the error of interpolation on the
sparse grid can be estimated in terms of the number of grid points as

‖f −Bn
j f | L2

w(In)‖ ≤ C N−s
G (log NG)(s+1)(n−1) ‖f | Ss2,∞,wB(In)‖.

Remark 1. The interpolation on sparse grids is almost optimal (up to logarithmic
factors).

One can do better by substituting the interpolation operators in the definition of
Bn

j by the Fourier–Chebyshev partial sum operators. This would yield the hyperbolic
Fourier–Chebyshev sum SUnj

with all Chebyshev polynomials which have their degree
contained in the hyperbolic cross

Un
j :=

⋃
|r|≤j

P n
r ,

with the index sets P n
r as used in Definition 2. As usual (see [17]), one can estimate

‖f − SUnj
f | L2

w(In)‖ ≤ C 2−2js ‖f | Ss2,∞,wB(In)‖.

But, of course, here one has to use general linear information instead of function values
only.

Remark 2. Under the assumptions of Theorem 5 one can easily prove the estimate

‖f − (Lj ⊗ Lj ⊗ · · · ⊗ Lj)f | L2
w(In)‖ ≤ C N−s

j ‖f | Ss2,∞,wB(In)‖

for all f ∈ Ss2,∞,wB(In) using the tensor product interpolation on NT = Nn
j grid points.

One gets the same order of approximation already for the functions f ∈ Bs
2,∞,w(In), m >

s > n/2 from the corresponding isotropic Besov–type space. In terms of grid points,

we have an error of O(N
−s/n
T ) in both cases.

This means that for functions with dominating mixed smoothness properties, the
interpolation on sparse grids is essentially better suited than the tensor product con-
struction.

For functions from isotropic spaces, we would lose some approximation order in
sparse grid interpolation and obtain with (3.2) an error of order O(jn−1N

−s/n
j ) =

O((log NG)(s/n+1)(n−1)N−s/n
G ) only. So, for functions not providing dominating mixed

smoothness, the interpolation on sparse grids is less suited. But still it is only by a
logarithmic term worse than the full grid.

Remark 3. With the help of the Strang–Fix conditions, we obtain error estimates
for a wide variety of possible sparse grid constructions, including for instance splines
or polynomials, which are almost optimal for functions from all the Besov–type spaces
Ss2,∞,wB(In) up to the order of the Strang–Fix conditions (which can be seen to be
infinity for polynomials).
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