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ABSTRACT

In this paper, we propose some algorithms to solve the system of linear equations arising from the finite

difference discretization on sparse grids. For this, we will use the multilevel structure of the sparse grid space

or its full grid subspaces, respectively.
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1. Introduction

Sparse grids and related methods already have a long tradition in numerical quadrature
and approximation theory (see e.g. [12, 16, 2, 3, 18]. During the last decade, since the
introduction of sparse grid methods into the numerical treatment of elliptic boundary
problems by Zenger [19], several authors (e.g. [1, 4, 7, 8, 14]) have contributed to this
field. Most of these papers were concerned with finite element methods.

Recently, also finite difference methods for sparse grids have been developed [5, 15].
The corresponding matrix of the system of linear equations is ill-conditioned. So, it
takes (even in the preconditioned version [15]) many iterations of an iterative solver to
obtain a solution. The finite difference operator on a sparse grid described in [5, 11, 15]
is operating on the space of piecewise linear functions on the sparse grid. If one
considers these spaces for sparse grids of different levels one observes [8, 17] that they
form a (interpolatory) multiresolution analysis. On the other hand, the sparse grid
space is a sum of full grid spaces (see Section 2). For the finite element approach, these
properties have been used to develop multiplicative subspace correction algorithms (see
[6]). Of course, the question comes up whether or not one can use one or both of these
subspace properties to develop multilevel-type algorithms also for the finite difference
approach.

We will describe two possible types of multilevel-type algorithms for finite difference
discretizations on sparse grids. The first one is similar to multiplicative subspace
correction algorithms for the finite element case using the full grids contained in the
sparse grids. We present several versions of this algorithm and discuss the arising
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problems. The second algorithm is a V-cycle of the sparse grid spaces of several levels,
here, the full grids of one level can be treated in parallel as in [13].

2. Notation

We want to solve elliptic partial differential equations with a finite difference approach
using sparse grids. For our tests, we restrict ourselves to the model problem of Poisson’s
equation with homogeneous Dirichlet boundary conditions,

∆u = f in Ω (2.1)

u|δΩ = 0

on the cube Ω = (0, 1)3 in 3D and a regular sparse grid.
We will use the usual multi-index notation m = (m1,m2,m3) ∈ N3

0 with |m| = m1 +
m2 +m3. We choose dydadic mesh-widths hk = (hk1, hk2 , hk3) ∈ R3

+ with hki = 2−ki to
form dyadic (full) grids Ω+

k = {xk,j = jhk = (j1hk1 , j2hk2, j3hk3)} and the sparse grid
Ω+
` =

⋃
|k|=` Ω+

k .

From the univariate hat function ϕ(x) = max(0, 1− |x|), we build the trilinear basis
hat functions ϕk,j(x) =

∏3
i=1 ϕ(xi/hki − ji). The corresponding spaces of piecewise

trilinear functions are Vk = span{ϕk,j : supp(ϕk,j) ⊂ Ω} for the full grid Ω+
k and

V` =
∑
|k|=` Vk for the sparse grid Ω+

` . Approximation results for these sparse and full

grid spaces can be found e.g. in [10].
A given continuous function u ∈ C0(Ω) can be approximated by a function uk ∈ Vk

by trilinear interpolation on the full grid Ω+
k

uk =
∑

j

u(xk,j)ϕk,j. (2.2)

We do this for all full grids belonging to the sparse grid Ω+
` and call the collection of

(2.2) with |k| ≤ ` the nodal or E-representation of the approximation. Of course, the
coefficients u(xk,j) have to coincide if the evaluation points xk,j coincide on the different
grids. So, a certain concistency is required and the E-representation is redundant.
During an approximation process the approximations on all the full grids Ω+

k do not
necessarily satisfy this consistency condition. In order to get a consistent representation
one can use then hierarchical smoothing (cf. [13] or see Section 4).

Another form to represent a given function on a sparse grids is the hierarchical or
H-representation in terms of the hierarchical basis

u` =
∑

|k|≤`, j odd

ak,j ϕk,j. (2.3)

Here, j odd has the meaning that either ji is odd or ki = 0 (i.e., ji lives on the coarsest
grid in xi-direction). Of course, one obtains full grid parts (2.2) as partial sums

um =
∑
k≤m

(∑
j odd

ak,j ϕk,j

)
=
∑
k≤m

wk, (2.4)
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where wk denotes the hierarchical surplus on grid Ω+
k . For further purpose, we denote

by Hk,m the projector of hierarchical surplus, realizing Hk,mum = wk.
For trilinear functions, one can use fast pyramid algorithms to convert an E-represen-

tation into an H-representation, and vice versa (e.g. [5]). This can be done in O(N)
operations where N denotes the total number of degrees of freedom.

We discretize the Laplace operator by finite differences. On full grids Ω+
k , this

discretized operator Ak applied to an E-representation is the usual 7-point stencil. On
the sparse grid Ω+

` , things are more complicated. The discretized operator A` has to
be build from a combination of transformations between H- and E-representations and
one-dimensional difference operators in each direction (cf. [5, 15]). An explicit formula
for A` applied to the H-representation can be found in [11].

Example 2.1 We will apply the algorithms proposed in Sections 3 and 4 to the fol-
lowing 3D-problem. Solve (2.1) with the right-hand side

f(x) = −3π2
( 3∏
i=1

sin πxi + 8
3∏
i=1

sin 8πxi

)
starting from the zero function u

(0)
` ≡ 0. We denote by f` = R`f ∈ V` the piecewise

trilinear interpolant of the right-hand side on the sparse grid and by u` ∈ V` the current
approximation of the solution in the sparse grid space.

3. An algorithm with sequential treatment of the full grids

This section is devoted to algorithms similar to the multiplicative subspace correction
methods for finite elements on sparse grids as described in [6]. That means, the dis-
cretized Laplacian A` on the sparse grid Ω+

` will be approximated by the discretized
Laplacians Ak on the full grids Ω+

k . On the different full grids, sub-problems with
defect-corrected right-hand sides are solved visiting the full grids sequentially in order
to obtain a solution of the discretized problem on the whole sparse grid. We propose
three versions of such algorithms and present numerical results for one of them (the
convergence rates are not so different).

Here and in the sequel, we denote N` = #{k ; |k| = `}, and j = 1, . . . , N` belongs
to a certain k with |k| = `. Because Vk ⊂ V` for |k| ≤ `, we can use the natural
imbedding P`,k : Vk → V` as a prolongation. The restriction R`,k : V` → Vk to a full
grid space Vk is realized by trilinear interpolation on the grid Ω+

k . Both operations can
be carried out easiest in H-representation.

With this, the multiplicative subspace correction algorithm would read as

v
(0)
` = u

(i)
` ,

v
(j+1)
` = v

(j)
` − ω

(
P`,kA

−1
k Rk,`(A`v

(j)
` − f`)

)
, j = 0, . . . , N` − 1, (3.1)

u
(i+1)
` = v

(N)
`
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Here and in the following algorithms, we built in damping parameters ω and (later)
ω0. Later we will discuss why this is useful and necessary.

In the Algorithm (3.1), the defect correction step is carried out within the loop. But
the evaluation of the sparse grid finite difference operator is by far the most expensive
step here. So, we may think of doing the defect correction of the right-hand side always
with the same residual which is computed before the loop

v
(0)
` = u

(i)
` ,

v
(j+1)
` = v

(j)
` − ω

(
P`,kA

−1
k Rk,`(A`u

(i)
` − f`)

)
, j = 0, . . . , N` − 1, (3.2)

u
(i+1)
` = u

(i)
` + ω0(v

(N)
` − u(i)

` ).

One can simplify this further by carrying out the complete defect correction step before
the loop what gives the more complicated looking algorithm

v
(0)
` = u

(i)
` ,

v
(j+1)
` = v

(j)
` + P`,kRk,`(u

(i)
` − v

(j)
` )− ω

(
P`,kA

−1
k Rk,`(A`u

(i)
` − f`)

)
, (3.3)

j = 0, . . . , N` − 1,

u
(i+1)
` = u

(i)
` + ω0(v

(N)
` − u(i)

` ).

In more algorithmic form, it becomes more clear that the defect correction step is
outside the loop:

r` := f` − A`u`
uk := Rk,`u`
gk := Akuk +Rk,`r`
v` := u`
for ∀k, |k| = `
do voldk := Rk,`v`

solve Akv
new
k = gk

v` := v` + ω(P`,k(vnewk − voldk ))
enddo
u` := u` + ω0(v` − u`).

In the following examples, we have set ω = 1 (no damping within the loop) to
see what is a proper damping parameter ω0. The results are given for ω0 (chosen
experimentally) as big as possible such that the algorithm converges. We did not try
to really optimize for the best possible damping parameter. The linear systems for the
full grids are solved using BiCGStab.
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Example 3.1 We apply Algorithm (3.3) to Example 2.1.

level ` damping ω0

4 1.000
5 0.667
6 0.385
7 0.215
8 0.110
9 0.056

L=9
L=8

L=7
L=6

L=5
L=4

5e±3

1e±2

5e±2

1e±1

5e±1

1e0

5e0

1e1

Residual

2 4 6 8 10 12 14 16 18 20
Number of cycles

M-cycles with |k| = L = 4,...,9

Example 3.2 We apply Algorithm (3.3) to Example 2.1, taking the loop over all levels
|k| ≤ ` instead of over |k| = `.

level ` damping ω0

4 1.000
5 0.500
6 0.250
7 0.125
8 0.062
9 0.031

L=9
L=8

L=7
L=6

L=5
L=4

5e±3

1e±2

5e±2

1e±1

5e±1

1e0

5e0

1e1

Residual

2 4 6 8 10 12 14 16 18 20
Number of cycles

M-cycles for |k| <= L = 4,...,9

We see that already for our well-behaved example, the convergence rate and the
necessary damping depend very much on the level ` of the sparse grid. The damping
parameters become fairly small with growing level. The reason is the following: The
finite difference operators for the Laplacian on full grids depend on the grid but not on
the point of evaluation. On sparse grids, this is quite different, here the step sizes for
finite differences in different directions depend on the evaluation point (cf. [11]). For
this reason, the full grid matrices can not be written as Galerkin approximations of the
sparse grid matrix. In this sense, the finite difference operators on the full grids are no
good approximations of the finite difference operators on the sparse grid. If we have
a closer look [11] on the difference operators for the second derivative in xν-direction
(full grid: Aνk, sparse grid: Aν` ) at the point xj,m being hierarchical on grid Ω+

j , then
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we see the reason for the damping: Beside restriction and prolongation, we have to
scale the row responsible for xj,m by the factor 2kν−jν−`+|j| to obtain Aνk from Aν` . The
damping parameters have to meet the needs of all points and all directions, so they
have to be small and decrease with growing level ` of the sparse grid. In Example 3.2,
we used the same damping parameter ω0 for all grids on the different levels. So we had
to use even smaller damping parameters (here we chose: ω0 = 24−`) than in Example
3.1 and we also got a slower convergence.

We do not have such a phenomenon in the Galerkin approach using the hierchical
basis or the generating system of the nodal bases for the sparse and the full grids. There,
the stiffness matrices for the full grids are submatrices of the stiffness matrix for the
sparse grid by construction. In this case [6], the multiplicative subspace correction
methods can be interpreted as block iteration methods for the sparse grid stiffness
matrix.

4. A V-cycle with parallel treatment of the full grids on a level

In this section, we use the multilevel structure of the sparse grid spaces V0, V1, V2, . . .
to establish some kind of V-cycle for finite differences on sparse grids. This means,
that we use approximations from coarser grids to improve the approximation of the
solution on the finest grid. If we would work with a V-cycle in the closer sense of the
word we would do iterations with the sparse grid operator A` and try to improve it
with solutions from A˜̀, ˜̀< `. This approach is discussed elsewhere [11, 9].

What we present here is in the spirit of [13, Section 5.4] . On each level, we do not
iterate with the operators A˜̀ on sparse grids but on each of its grids (of this level)
separately. Of course, for this approach we need different restriction and prolonga-
tion strategies because starting with an E-representation, we obtain a non-consistent
representation by correcting on the grids. We make the following choice. For the re-
striction, we take mean values from the 3 possible finer grids (one per direction, either
full weighting or function values). The prolongation is even more delicate. Here, we
use the hierarchical smoothing procedure described e.g. in [13]. This means, that
u` := P`,`({uk, |k| = `}) stands for hierarchical smoothing of the given solutions uk on
level `, following the algorithm

for all levels m = `− 1(−1)0

do uk :=
1

3

3∑
s=1

Rk,k+esuk+es (∀k, |k| = m)

wk := Hk,k uk (∀k, |k| = m+ 1) (4.1)
enddo

u` := u0 +
∑

0<|k|≤`

wk,

where the projection Hk,k is described in Section 2. The hierarchical smoothing routine
delivers a consistent approximation u` for the sparse grid Ω+

` . If we use the notation
P`+1,`({uk, |k| = `}) we mean hierarchical smoothing on level ` and then interpolation
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to grid Ω+
`+1, i.e. in the last line of Algorithm (4.1), the left-hand side has to be replaced

by u`+1. With this, we obtain a consistent approximation u`max after each cycle.
Note, that on each level, we apply the iterative solver on all full grids separately

(this means that on each level the iterations can be done in parallel). Because of the
relative inconsistency, it is not necessary to accurately solve the systems on each full
grid, a few iterations (pre- or postrelaxations) are sufficient. This is quite different
from the algorithms presented in the previous section. There, the full grids are treated
sequentially and is was necessary to really solve the systems on the full grids sufficiently
accurate to obtain convergence.

Below we describe the full algorithm, given a lowest level `min and a highest level
`max of sparse grids, the number ν1 of prerelaxations and ν2 of postrelaxations, and a
damping parameter ω0. We start with a current approximation uold`max ∈ V`max . Then,
one cycle is given by

r`max := f`max − A`maxuold`max
uk := Rk,`maxu`max (∀k, |k| = `max)
gk := Akuk +Rk,`maxr`max (∀k, |k| = `max)
for all levels ` = `max(−1)`min + 1
do ν1 steps of an approximate solver (smoother) for Akuk = gk (∀k, |k| = `)

for ∀k, |k| = `− 1

do uk :=
1

3

3∑
s=1

Rk,k+esuk+es

gk := Akuk +Rk,`maxr`max (4.2)
uoldk := uk

enddo
enddo
Solve on level `min: Akuk = gk (∀k, |k| = `min)
for all levels ` = `min(+1)`max − 1
do uk := uk +Rk,`P`+1,`({(un − uoldn ), |n| = `}) (∀k, |k| = `+ 1)

ν2 steps of an approximate solver (smoother) for Akuk = gk (∀k, |k| = `+ 1)
enddo
u`max := P`max,`max({uk, |k| = `max})
u`max := uold`max + ω0(u`max − uold`max)

In the following examples, we used Gauß–Seidel iteration as a smoother and BiCGStab
as a solver on the coarsest grids. The same damping parameter ω0 has been used after
each cycle. Again we need this damping parameter which has to go down with the
level for exactly the same reason as discussed in the previous section.
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Example 4.1 We start with a two-level algorithm using only two levels `max and
`max − 1 in Algorithm (4.2). We use it with ν1 = 1 prerelaxation and ν2 = 1 postre-
laxation obtaining the following damping parameters and convergence behaviour.

level `max damping ω0

4 1.000
5 0.350
6 0.085
7 0.080
8 0.070
9 0.040

L=9
L=8

L=7
L=6

L=5
L=4

5e±3

1e±2

5e±2

1e±1

5e±1

1e0

5e0

1e1

Residual

2 4 6 8 10 12 14 16 18 20
Number of cycles

2-cycles with L = 4,...,9, l = L–1

Example 4.2 In the following example, we apply a V-cycle using all levels from `max
down to `min = 0 in Algorithm (4.2). We use it with no (ν1 = 0) prerelaxation
and ν2 = 1 postrelaxation. Then we obtain the following damping parameters and
convergence behaviour.

level `max damping ω0

4 0.900
5 0.750
6 0.600
7 0.450
8 0.300
9 0.150

L=9
L=8

L=7
L=6

L=5
L=4

5e±3

1e±2

5e±2

1e±1

5e±1

1e0

5e0

1e1

Residual

2 4 6 8 10 12 14 16 18 20
Number of cycles

V-cycles with L = 4,...,9, l = 0
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Example 4.3 For better comparison, we now use the same damping parameter for
all levels (the one for the highest level ` = 9) and repeat the two-level algorithm from
Example 4.1 with ω0 = 0.040 (top) and the V-cycles from Example 4.2 with ω0 = 0.150
(bottom).

L=9
L=8

L=7
L=6

L=5
L=4

5e±3

1e±2

5e±2

1e±1

5e±1

1e0

5e0

1e1

Residual

2 4 6 8 10 12 14 16 18 20
Number of cycles

2-cycles with L = 4,...,9, l = L–1

L=9
L=8

L=7
L=6

L=5
L=4

5e±3

1e±2

5e±2

1e±1

5e±1

1e0

5e0

1e1

Residual

2 4 6 8 10 12 14 16 18 20
Number of cycles

V-cycles with L = 4,...,9, l = 0

The convergence behaviour depends much on the choice of a good damping parameter
which has to go down with growing level. Again, we see that the speed of convergence
slows down with growing level (as it seems mainly because of the necessary damping).

At last we give a comparison for the algorithms under consideration and the multi-
plicative cycle with the adapted full grid operators from [11]. These adapted full grid
operators are Galerkin approximation of the sparse grid operator. We compare the
number of cycles and the computing times (relative to the fastest algorithm) necessary
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for level `max = 9 to reach a residual which is (in L2-norm) less than 5 · 10−3 (i.e.,
approximately the discretization error for level 9). We did not exploit parallelization
for the V-cycle in Example 4.2.

Algorithms Number of cycles Time units
Example 3.1 (One-level multiplicative algorithm) 123 3.25
Example 3.2 (Multilevel multiplicative algorithm) 223 8.44
Example 4.2 (V-cycle, ν1 = 0, ν2 = 1) 60 1.00
One-level multiplicative Algorithm (26) from [11] 28 23.87
Multilevel multiplicative Algorithm (27) from [11] 17 23.22

We see, that the use of adapted full grid operators results in less iteration cycles,
compared to the multiplicative algorithms with damped finite difference operators on
the full grids. But the algorithms presented here in Section 3 are less expensive per
cycle so that they are more efficient. The V-cycle from Example 4.2 is the best of our
algorithms. We need the least number of cycles (compared only with the algorithms
treated in this paper) and the best time (compared with the algorithms from this paper
and from [11]).
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