
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Application of the Over-set Grid Technique to a Model Singular 
Perturbation Problem

E.D. Havik, P.W. Hemker, W. Hoffmann

Modelling, Analysis and Simulation (MAS)

MAS-R9931 October 31, 1999



Report MAS-R9931
ISSN 1386-3703

CWI
P.O. Box 94079
1090 GB  Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB  Amsterdam (NL)

Kruislaan 413, 1098 SJ  Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199



Application of the Over-set Grid Technique to a Model Singular
Perturbation Problem

E.D. Havik, P.W. Hemker and W. Hoffmann

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

and

KdV Institute, University of Amsterdam

Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands

ABSTRACT

The numerical solution of a singularly perturbed problem, in the form of a two-dimensional convection-

diffusion equation, is studied by using the technique of over-set grids. For this purpose the Overture

software library is used. The selection of component grids is made on basis of asymptotic analysis. The

behavior of the solution is studied for a range of small diffusion parameters. Also the possibilities of

rotating the grid with the convection direction is considered.

In order to fit global properties of the solution, the composite grid used is made parameter dependent.

In view of possible ε-uniform convergence, in the resulting composite grid the number of grid points is

kept constant for the different values of the small parameter. Only the grid spacing is adapted, depending

on the parameters. We see that, even with careful adaptation of the grid, no ε-uniform convergence is

achieved.
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1. Introduction

Over-set grids, overlapping grids or chimera grids are names used for the technique in
which a discretization domain is covered by a set of overlapping component grids. All of
these component grids are regularly structured grids, with a regular rectangular topology.
Figure 1 gives a typical example of a overlapping grids. The combination of component
grids is called a composite grid. As each component grid is structured, it is suitable for
application of finite-difference methods. At overlapping regions, function values must be
interpolated from one grid to an other and vice versa.

The overlapping grid technique has a lot of advantages. The capability to generate a
grid describing a domain with a difficult shape is often mentioned, but also for a simpler
domain there are advantages. It is e.g. possible to avoid polar singularities in a coordinate
system, and it is also possible to construct a grid which handles the boundary conditions
in a relatively easy way. Furthermore it is easy to rotate/translate a component grid,
to change the number of grid lines of a grid in a certain direction, to change stretching
parameters etc.. This great flexibility is a major argument for using over-set grids.

We want to apply this technique to a model singular perturbation problem. The
Overture software system [1], to be discussed later, will be our tool. The model problem
is described by the convection diffusion equation, with a small diffusion parameter ε. If
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this parameter becomes smaller, the solution tends to a discontinuous function, and sharp
boundary and interior layers appear. For any fixed grid with a specified number of points
there is always a small ε > 0 for which the numerical solution is a bad approximation.
To obtain a better solution one may increase the number of points, but as it increases the
complexity of the computation, this is something that we want to avoid. In this paper
we describe a way of constructing composite grids, in which a-priori knowledge about the
solution is used for the construction. This is realized with the help of so-called stretching
functions. These functions contain parameters used to condense the grid lines in regions
where the solution varies rapidly. For varying ε, the number of grid lines will be kept
constant on all component grids in order to investigate if some practical ε-uniformity can
be achieved.

Thus, the purpose of this paper is to study the behavior of the numerical solution
for a range of parameters ε. We start with three component grids in order to fit the
obvious features of the solution. Since, in principle, there are many free parameters
in the numerical method, such as the priorities of the component grids (that should
be specified by the user), we start with a simple case in order to make a first general
selection and reduce the number of input parameters.

Our final composite grid will have a diffusion-parameter dependent grid spacing, and
will take into account the direction of convection. The results will be calculated for the
following values of the convection parameter: ε = 0.01 ·4−m,m = −2,−1, 0, 1, 2. Further
we select two directions of convection: a direction aligned with the x-axes (i.e., aligned
with the main grid, α = 0◦) and a direction at an arbitrary corner with the x-axes, for
which we choose, α = 18◦.

Figure 1: A standard example in which over-set grids are useful. The resulting grid is
called a composite grid.

2. The mathematical problem

In this paper we concentrate on the two-dimensional convection-diffusion equation [3],

ε∆u− v · ∇u = 0, ε > 0, (2.1)
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which is defined on the exterior of the unit disc, i.e. on Ω = {(x, y) ∈ IR2|x2 + y2 ≥ 1},
with boundary conditions:

u = 1, if x2 + y2 = 1,
u→ 0, for x2 + y2 →∞. (2.2)

The convection in the direction v = (cos(α), sin(α)) makes the problem symmetric with
respect to a line through the origin, at an angle α with the x-axis. Further the shape of
the solution is independent of α.

Obvious properties of the solution are its formal smoothness, its monotonicity, and the
fact that for smaller values of ε a sharp boundary layer appears at the upwind side of
the circle, and a long ‘shadow region’ appears at the downwind side. In the limit there
is a discontinuity between the shadow (where the limit solution u = 1), and the ‘exposed
part’ of the solution (where u → 0). At the boundary of the shadow region an interior
layer appears.

3. The discrete problem

To numerically solve the problem by a discretization method, the infinite domain must
be truncated to a finite region of interest. On the one hand the region should be large
enough to contain the specific details of the solution and on the other hand not too
large, to reduce the amount of computational work. To make the decision, our a-priori
knowledge about the analytic solution is used.

3.1 Choice of the finite domain and boundary conditions
Because for α = 0 equation (2.1) describes convection to the right, we select the finite
domain

Ω = [−3, 9] × [−3, 3] ∩ {(x, y)|x2 + y2 ≥ 1}. (3.1)

In this way the domain can show a significant part of the solution: the boundary and
interior layers, and the shadow region of the solution.

Although on this finite domain the problem is not symmetric with respect to an arbi-
trary α, we use this fixed domain also for the case α 6= 0. For the angles α we treat, the
domain Ω is still the domain of interest for the solution of (2.1). For α 6= 0 the typical
features of the solution which do not align with the obvious grid, may cause numerical
difficulties.

For the truncated, finite domain Ω we have to introduce artificial boundary conditions
at the outer boundary. We choose these also according to our a-priori knowledge about
the problem. We apply a homogeneous Neumann boundary condition v · ∇u(x, y) = 0
at the outflow boundary ∂Ω, where v ·n > 0, with n the outward pointing normal vector
at ∂Ω. Where v · n ≤ 0 we apply homogeneous Dirichlet boundary conditions u = 0. At
the unit circle we always apply the Dirichlet boundary condition (2.2).

3.2 Over-set grids
Here we first give some definitions of the terms we need in relation with overset grids.
We define the open physical domain

Ωo = (−3, 9) × (−3, 3) ∩ {(x, y)|x2 + y2 > 1}. (3.2)

We cover the closure of this domain, Ω = Ωo, by a number of K (boundary-fitted)
component domains, Ω(k), so that

⋃K
k=1 Ω(k) ⊃ Ω, where we take care that different
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component domains have sufficient overlap. Some of the domains Ω(k) are placed so that
each part of the boundary of our domain of interest, ∂Ω = Ω \ Ωo, is covered by the
boundary of some component domain. Other component domains may be placed so that
they are in some sense (hopefully) aligned with features of the expected solution.

With each component domain Ω(k) is related a smooth injective mapping M(k) :
[0, 1]2 → Ω(k) from the unit square onto Ω(k), and for each Ω(k) a regular rectangular
grid E(k) is chosen on [0, 1]2, so that

E(k) =
{

(i/N (k), j/M (k))
∣∣∣ i = 0, · · · ,N (k), j = 0, · · · ,M (k)

}
. (3.3)

Thus, by means of the mappings M(k) we generate (topologically) regular N (k) ×M (k)

grids, G(k) :=M(E(k)) ⊂ Ω(k) ⊂ Ω in physical space. We say E(k) lives in computational,
and G(k) in physical space.

UNIT SQUARE UNIT SQUARE PHYSICAL SPACE

STRETCHING MAPPING

(r,s) (t,u) (x,y)

R(k) T (k)

E(k) F (k) G(k)

Figure 2: The decomposition of the mapping M(k) = T (k) ◦ R(k); the unit square with
uniform spacing, the unit square with stretched grid lines and the component grid.

The mappings M(k) are most conveniently described by decomposing them into two
mappings, by M(k) = T (k) ◦ R(k) where R(k) : [0, 1]2 → [0, 1]2 is a mapping that re-
distributes the gridlines over the unit square, and T (k) maps the unit square into the
physical space. The mapping R(k), being responsible for the distribution of the gridlines,
is taken of the form R(k)(x, y) = (R(k)

1 (x), R(k)
2 (y)), where each R

(k)
i : [0, 1] → [0, 1],

i = 1, 2, is a continuous invertible function such that R(k)
i (0) = 0 and R(k)

i (1) = 1. These
functions R(k)

i are called stretching functions, and the resulting

F (k) = {(R(k)
1 (r), R(k)

2 (s))|(r, s) ∈ E(k)} (3.4)

is a regular rectangular, stretched grid on the unit square. Obviously, if stretching is not
needed in some direction, we take R(k)

i (x) = x.
The component mapping T (k) is in general a (simple) smooth injection from the unit

square into physical space:

T (k) : [0, 1]2 → Ω(k) ⊂ IR2. (3.5)

Figure 2 illustrates the above mappings, where (r, s) ∈ E(k). The variables (t, u) =
((R(k)

1 (r), (R(k)
2 (s)) ∈ F (k) note the stretched coordinates on the unit square and (x, y) =

T (k)(t, u) denotes the physical coordinates.
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The restriction of the component mapping M(k) to the grid E(k) is called the compo-
nent grid mapping M(k)

h , and M(k)
h (E(k)) := G(k) is the kth component grid in Ω. The

composite grid is the union of all component grids:

G =
K⋃
k=1

G(k) =
K⋃
k=1

(M(k)
h (E(k))) .

We notice that in practical applications the mapping M(k) may be unknown, but the
mapping M(k)

h should be available for the computation, possibly by means of a table.
By the choice of the component domains Ω(k), the mappingsM(k) and the grids E(k),

it may appear that large parts of the physical domain are covered with large parts of
overlapping Ω(k). Computation on all these overlapping grids might result in a large,
superfluous computational effort. Therefore we allow an overlap algorithm to cut away
parts of the mutually overlapping component grids. Component grids, with overlapping
parts cut out, we still call component grids.

To make a choice which parts of the overlapping component grids have to be cut,
the overlap algorithm needs a priority ranking of the component grids. This ranking
should be specified by the user. Based on this information and the geometry, the overlap
algorithm determines what parts of G will be considered superfluous, and it distinguishes
between two types of remaining grid points: interpolation points, for which the value is
obtained by interpolation from another grid, and discretization points, for which the value
can be determined by the discretized PDE (i.e., a point for which a discretization stencil
should be constructed). In this way a different specification of the priority between the
various component grids may essentially determine the shape (and the quality) of the
final composite grid. Compare Figures 1 and 3 showing the influence of the priority
ranking.

Figure 3: The square grid has the higher priority in this composite grid. This is in
contrast with Figure 1 where the annular grid has the higher priority.

The details of a real overlap algorithm are quite technical and we only mention some
main features. The most recent overlap algorithm known to us, is implemented in Ogen
[8], which is part of the Overture framework, see Section 4. In fact it is an improvement
of an earlier algorithm that was implemented in the FORTRAN-code CMPGRD. In [2]



4. Overture 6

detailed information about this overlap algorithm can be found. A similar algorithm,
with a few nice additional features, is described in [14] and implemented in the C-code
Xcog [13].

The overlap algorithm automatically constructs an optimal overlapping (composite)
grid and classifies each point on the user-defined component grid. The points that are
cut away from the component grid are also called hole points or void points, so that all
points in the grids are classified as (i) discretization point, (ii) interpolation point, or
(iii) void point. Interpolation points are further characterized by the component grid
G(k) from which they receive the interpolation information. The overlap algorithm will
remove excessive interpolation points and optimize for the number of void points.

In order to improve on the flexibility of the construction, we also can allow a component
grid to contain points that lie outside Ω, provided that each part of the boundary ∂Ω is
captured by a gridline of a component grid.

Now, two interpolation techniques can be distinguished: (i) explicit interpolation,
where the interpolation stencil for one grid contains only discretization points from the
other grid (the donor grid), and (ii) implicit interpolation, where the interpolation stencil
may contain both interpolation and discretization points from the donor grid.

At a discretization point one should construct the required discretization stencil for
this point on its component grid. This stencil may contain other discretization points,
(e.g., boundary points) or interpolation points. For the computations reported in this
paper, we have chosen to use explicit interpolation only, which means that more overlap
is required compared with the amount of overlap needed for implicit interpolation.

The composite grid, in a slightly more general sense than used above, is the collection
of component grids, together with the information about the character of each grid
point. Void points are not drawn in our figures. Thus, the resulting composite grid
clearly depends on the priorities specified for the component grids and the width of the
(interpolation and discretization) stencils.

4. Overture

Overture is a software system for the solution of two and three dimensional PDEs on
complex domains by the use of over-set grid methods. It is under development at LLNL.
It contains a comprehensive object-oriented software library written in C++ [1, 5]. The
software, its documentation, a tutorial, etc. is freely available from the Overture web
page http://www.llnl.gov/casc/Overture. The software system contains a number
of major modules: an overlapping grid generator (Ogen) [8], a solver for PDEs on over-
lapping grids (Oges) [9], a view facility (plotStuff) [11] and much more. It is possible to
use finite-difference or finite-volume methods in an object-oriented way [6]. In the doc-
umentation [12] clear examples are shown how Overture can be used for solving PDEs.

Our present experience is with Overture version 15. The results in this paper are
obtained by using Ogen, Oges, plotStuff and the show-file class [10], which is a data
format developed for visualization. The composite grid data structure (output of the
grid generator) is stored in the Hierarchical Data Format (HDF), which is an efficient
standard for sharing scientific data. See http://hdf.ncsa.uiuc.edu .

5. The use of asymptotic properties for grid generation

Some a-priori knowledge about the solution will be used for the selection of the compo-
nent grids and for the construction of the stretching parameters needed to properly place
the grid lines.
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The problem (2.1)-(2.2) is a typical example of a singularly perturbed problem. For
small values of the parameter ε we distinguish sharp layers in the solution [3]. The three
main solution features are: the outer solution as approximated by the reduced equation,
a boundary layer at the upwind side of the circle and two interior layers at the edge of
the shadow. The outer solution is approximated by the solution of v ·∇u = 0. It contains
the ‘shadow’ part (u ≈ 1) downwind from the circle and an ‘exposed’ part (u ≈ 0) in the
remainder of the domain.

At the upwind side of the circle (x ≤ −1 if α = 0◦) the solution is approximated by
u(x, 0) = e(x+1)/ε, i.e., there the boundary layer is O(ε). The transition between the
shadow and the exposed part of the solution runs in the v direction. It is described by a
parabolic internal layer with an O(ε1/2) thickness, cf. [3]. We will handle this transition
by a simple Cartesian grid.

To apply the over-set grids we first use a simple strategy, restricting ourself to three
simple component grids corresponding with the three major features in the solution.
Thus, we cover Ω with the following three component domains:

1. A background domain: {(x, y) ∈ IR2|(x, y) ∈ [−3, 9] × [−3, 3]}. All boundaries of
this domain are boundary-fitted and correspond with the outer boundary of the
physical domain.

2. An annulus: {(x, y) ∈ IR2|1 ≤ x2 + y2 ≤ 2}, with the inner side fitted to the
boundary of the circle in the the physical domain.

3. A strip: {(x, y) ∈ IR2|(x, y) ∈ [0, 9] × [−2, 2]} for α = 0. For α 6= 0 the strip is
rotated around (0, 0) over an angle α.

For the background grid we take a rectangular grid with a fixed mesh width, independent
of the parameter ε. For the annular grid in one direction a periodic boundary condition is
introduced. In the other direction we condense the grid lines in the radial direction with
a maximum at the edge of the unit disk, where a mesh-width O(ε) is used. The third
component grid, the strip, should take care of the interior layers. For this component grid
the grid lines will be condensed with two clusters at the interior layers of the solution.
Here we make the mesh-width of O(1) along the layer and O(ε1/2) perpendicular to the
layer, as described in more detail below.

The function R
(k)
i (x), used to control the grid refinement in the composite G(k), is

the ‘inverse hyperbolic tangent stretching function’ as introduced in [7]. It is a one-
dimensional mapping [0, 1] → [0, 1] that is best described by its inverse function R

(k)
i :

[0, 1] → [0, 1] so that R(k)
i

(
R

(k)
i (x)

)
= x. The function R

(k)
i is of a simple nature, in

which one can add a finite number of m(k)
i so-called layer functions U (k)

i,j to describe grid
condensation in some neighborhood, whenever needed. As before, i denotes the axis and
k the k-th component of the composite grid. We here choose the function R

(k)
i (x) to be

of the form

R
(k)
i (x) =

x+
∑m

(k)
i

j=1 [U (k)
i,j (x)− U (k)

i,j (0)]

1 +
∑m

(k)
i

j=1 [U (k)
i,j (1)− U (k)

i,j (0)]
, (5.1)

with the layer function U
(k)
i,j defined by

U
(k)
i,j (x) =

1
2
a

(k)
i,j tanh[b(k)

i,j (x− c(k)
i,j )]. (5.2)
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grid axis lines layers
k i N

(k)
i m

(k)
i a

(k)
i b

(k)
i c

(k)
i,0 c

(k)
i,1

0 0 12N + 1 0 - - - -
0 1 6N + 1 0 - - - -
1 0 9N + 1 0 - - - -
1 1 2N 1 2 0.16

ε 0 -
2 0 9N + 1 0 - - - -
2 1 6N + 1 2 1

4
1.6√
ε

1
4

3
4

Table 1: Parameters used for stretching functions

Notice that, for m(k)
i = 0, i = 1, 2, no stretching takes place and F (k) will be a regular

rectangular grid. For m(k)
i,j 6= 0, local refinement takes place in the xi-direction near c(k)

i,j .

The parameter b(k)
i,j determines the slope and a

(k)
i,j the amount of the grid refinement.

Thus U (k)
i,j determines each local condensation in a particular area by three parameters.

The parameter b(k)
i,j is proportional with the maximal derivative of the stretching func-

tion and hence determines the minimal grid spacing. The parameter a(k)
i,j is proportional

with the number of grid lines that are stretched. In Table 1 we show the parameters
used for a first computation with α = 0. By the symmetry of the problem we can write
a

(k)
i,0 = a

(k)
i,1 := a

(k)
i and b

(k)
i,0 = b

(k)
i,1 := b

(k)
i . The parameter N determines the number of

grid lines in each direction and will be fixed to a constant so that the number of gridlines
will be independent of ε. I.e., a strategy is followed that is comparable with the one
leading to Shishkin meshes. For each stretching we take the number of gridlines inside
and outside the layer of the same order, so that -in this sense- an essential property of
a Shishkin mesh [4] is mimicked. In the calculations shown we take N = 5. Further,
the parameters are chosen such that, where possible, the grid spacing at overlapping
regions is of equal order. On all grids central discretization is used, and bi-quadratic
interpolation is used, which means that both discretization and interpolation stencils are
3× 3 points wide. Thus the overall accuracy of the method is second order.

Overture constructs the composite grid by calling the grid generator ‘Ogen’ and solves
the problem by using ‘Oges’. The solution is stored in a ‘show-file’ [10]. Also the graphical
results in this paper are produced by using this system. As a measure to judge the quality
of the solution, the minimum and maximum function values (undershoot and overshoot)
of the computed solution are determined (using the adage ‘Don’t kill the wiggle, it is
telling you something’).

6. First results

As a first trial we calculated the solution for all six possible priority rankings of the
three component grids. For ‘large’ parameter values, like ε = 0.16 these priorities are
less relevant, because the solution is smooth and all component grids are reasonably well
able to represent the solution. But for smaller values of ε the influence of the priority
ranking becomes more clear. From our experiments we conclude that the best results
are obtained if we give the background grid a lower priority than the annular grid. In all
cases where this is has not been done, significant numerical errors arise at the upwind
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Figure 4: The composite grid with the priority ranking: 0: background grid; 1: annulus;
2: strip, constructed for ε = 0.01.

ε umin umax

0.16 0.0000000 1.0000000
0.04 -0.0008200 1.0000000
0.01 -0.0035112 1.1419837
0.0025 -0.0837866 1.2844765
0.000625 -1.0026414 1.7415791

.

Table 2: Minimum and maximum values for the computed solution, obtained with the
best priority ranking: 0: background grid; 1: annulus; 2: strip (highest priority).

side of the circle, a peak in the neighborhood of (−1, 0) appears since, in that case, grid
points of the annular grid are removed by the overlap algorithm. Having determined
this, three possibilities remain. The best result follows if the priority of the annular
grid is between the background and the ‘strip’. This means that the strip should have
highest priority. The criteria used is minimization of |umax − 1| + |umin|, where umin

and umax denote the minimum (maximum) value of the computed solution over all grid
points. Although our decision about the priority ranking is based on the ε = 0.01 case,
we see that the highest priority of the ‘strip’ is consistent with the expected behavior of
the solution for smaller values of ε. If the ‘strip’ were given a priority higher than the
background grid, the overlap algorithm would remove almost all significant grid points.
In this way we are also able to catch features of the α 6= 0 case by rotating the strip.

With our priority ranking, the solution is calculated for α = 0 and for our range of
diffusion parameters. The composite grid used is shown in Figure 4 and the results are
shown in Table 2. The case α 6= 0, i.e., rotation of the strip is presented in Section 7.

Figure 5 shows the two computed solutions z = u(x, y), for ε = 0.01 and for ε = 0.0025.
The solution for ε = 0.01 is smooth except for two small regions in the shadow of the
circle where spurious peaks appear. For ε = 0.0025 these peaks become higher and other
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Figure 5: The solution for ε = 0.01 and ε = 0.0025 for the composite grid consisting of
three components.

errors appear in the strip region. For ε = 0.000625 the solution becomes worse. In this
case large peaks appear periodically at a distance of twice the cell width, as is typical
for central discretization. Thus we see that numerical problems appear even if we catch
the asymptotic behavior in the boundary and interior layers. For large values of ε (if
ε ≥ 0.4) the peaks are not present and the solution is smooth over the whole domain, as
expected.

7. Difficulties and remedy

If we study the above composite grid in more detail for small ε, we see that the inter-
polation points in the strip interpolate from points of the annular grid, behind the circle
but relatively far from the circle. Since most annular grid lines are close to the circle,
the strip interpolates from the coarse part of the annulus. This can be improved if we
decrease the stretching of the annulus in that region. Indeed, we have found that the
solution at the downwind region of the annular grid improves: the peaks disappear if
the stretching parameter becomes smaller. The price to pay is that another peak arises
at the upwind side of the circle (as expected for a coarser grid), because there a grid
condensation is required corresponding with the O(ε) behavior of the boundary layer in
the solution.

The remedy is to divide the annular grid in two parts, one in the upstream and the
other in the downstream direction. Technically we did this by adding a half annular
grid at the upwind side of the circle. The overlap algorithm removes a part of the
underlying full annular grid due to the given priorities. We will give the part at the
upwind side of the circle a smaller grid spacing in the radial direction than the radial
grid spacing at the downwind side of the circle, which is handled by the full annular
grid. Corresponding with the asymptotic properties the latter will get O(ε2/3) thickness.
Furthermore, taking into account more detailed asymptotics [3], an improvement will
also follow from stretching all grids, except the background grid, in the direction along
the layers. For this we introduce an O(ε1/3) behavior, which is also obtained from [3].
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εO(   )

εO(   )

εO(   )

εO(   )

εO(   )
εO(   )

0

1

2

3

on 1

on 3

on 3

on 2

on 2
on 1

1/3

2/3

1/3

1/3

1/2

Figure 6: The layer thickness of each component grid is given in each direction. At the
right the priorities of the various components are shown.

The new patch
The new part, the half annulus, with a priority higher than the full annular grid, but
lower than the ‘strip’ lies in the following region:{

α = 0 : {(x, y) ∈ IR2|1 ≤ x2 + y2 ≤ 2, x ≥ 0}
α 6= 0 : The same domain rotated around (0, 0) over an angle α.

To determine the parameters, we use Table 3, which shows the derivatives of the stretch-
ing function R

(k)
i (x) for large values of b(k)

i (i.e., the mesh-density for small values of ε).
This determines the asymptotic mesh width in the inner and outer region. At the points
of maximum clustering we couple R(k)

i to the asymptotic behavior of the solution in the
following way:

R′
(k)
i (c(k)

i,0 ) = R′
(k)
i (c(k)

i,1 ) =
K

(k)
i

ενi,k
. (7.1)

By this the relation between ε and b is determined. The constant K(k)
i denotes a chosen

ratio between the maximum slope of the stretching function and the asymptotic behavior
of the solution, which requires a layer thickness O(ενi,k).

In Section 5 we took νi,k = 1 for the annular grid and a value 1
2 for the ‘strip’.

Corresponding with the additional a-priori knowledge about the asymptotics that we
want to use, we now choose some new parameters corresponding with the details shown
in Figure 6. Table 4 summarizes all parameters of the improved composite grid in order
of the priority ranking. The rotation of the full annular grid is performed by changing
the location of the two layers.

For the constants K(k)
i we take K

(1)
0 = 1, K(1)

1 = 0.005, K(2)
0 = 1, K(2)

1 = 0.05,
K

(3)
0 = 1, K(3)

1 = 0.1. To prevent the value of b becoming too small (or even negative)
for larger values of ε, we replace b by max(b, 1), which is allowed since in that case the



8. Results and conclusion 12

Location of layer(s) Derivative at layer(s) Derivative far from layer(s)

c = 0 R
′(0) = 1+ab

2
1+a

2
R
′(1) = 1

1+a
2

c1 = 1
4 , c2 = 3

4 R
′(c1,2) = 1+ab

2
1+2a R

′(0) = R
′(1

2) = R
′(1) = 1

1+2a

c1 = 0, c2 = 1 R
′(0) = R

′(1) = 1+ab
2

1+a R
′(1

2) = 1
1+a

.

Table 3: The derivatives of the function R
′, at the relevant points.

grid axis lines layers
k i N

(k)
i m

(k)
i a

(k)
i b

(k)
i c

(k)
i,0 c

(k)
i,1

0 0 12N + 1 0 - - - -
0 1 6N + 1 0 - - - -

1 0 18N + 1 2 1
4

K
(1)
0

ε1/3

(
2+4a

(1)
0

a
(1)
0

)
− 2

a
(1)
0

1
4

3
4

1 1 2N + 1 1 1 K
(1)
1

ε2/3

(
2+a

(1)
1

a
(1)
1

)
− 2

a
(1)
1

0 -

2 0 12N + 1 2 1
4

K
(2)
0

ε1/3

(
2+2a

(2)
0

a
(2)
0

)
− 2

a
(2)
0

0 1

2 1 2N + 1 1 1 K
(2)
1
ε

(
2+a

(2)
1

a
(2)
1

)
− 2

a
(2)
1

0 -

3 0 9N + 1 1 1 K
(3)
0

ε1/3

(
2+a

(3)
0

a
(3)
0

)
− 2

a
(3)
0

0 -

3 1 6N + 1 2 1
4

K
(3)
1√
ε

(
2+4a

(3)
1

a
(3)
1

)
− 2

a
(3)
1

1
4

3
4

Table 4: A summary of the parameters, here 0 is the background grid, 1 the full annular
grid, 2 the half annular grid and 3 the ‘strip’. For α 6= 0 grids 1, 2 and 3 are rotated.

precise stretching of the grid becomes irrelevant. Figure 7 gives the resulting composite
grid for the case α = 0◦. As can be seen from this figure, only the background grid
takes the outflow boundary conditions and the ‘strip’ interpolates from this grid and
vice versa. Since the ‘strip’ will be rotated it is not possible to fit this grid with the
outflow boundaries.

8. Results and conclusion

Table 5 shows the results obtained with our composite grid. If we compare these results
with those obtained with the previous grid (Table 2) we see they have much improved.
There is less overshoot as we can see in the table or in Figure 8. For ε = 0.01 the peaks
almost completely disappeared. However, for smaller values of ε the results become less
accurate again. For ε = 0.000625, for instance, several peaks appear in the shadow
region of the solution, although the result is much better than would be possible with
a composite grid consisting of three simple components. We note that, for securing
stability, a first-order Neumann boundary condition is applied at the right side of the
grid (i.e., at x = 9) instead of the default second order accuracy Overture uses. Figure 9
shows the skew grid and the corresponding solution obtained. Since the standard second-
order Neumann boundary condition is applied in this case, this gives rise to errors at the
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(a)

(b)

Figure 7: The resulting composite grid constructed for ε = 0.0025; (a) global view, (b)
detail. Priority ranking as in Figure 6 is used.

boundary as can be seen in this figure. For a first-order Neumann boundary condition
this error will not occur, and the calculated solution will show a smooth outflow as we
have seen for the α = 0◦ case (where the first-order condition was applied).

Nevertheless, these experiments clearly show that for our non-trivial model problem we
do not get a numerical method that is ε-uniformly accurate with respect to the number
of mesh points, even if we make use of more advanced asymptotics. With the solution
method as described in this paper one can never get a perfect composite grid for values
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ε umin umax

0.16 0.0000000 1.0000001
0.04 -0.0073076 1.0000011
0.01 -0.0060746 1.0063686
0.0025 -0.0074955 1.0435394
0.000625 -0.0226137 1.1181593

.

Table 5: Minimum and maximum values for the computed solution (α = 0), obtained
with the priority ranking shown in Figure 6.

Figure 8: The solution for ε = 0.01 and ε = 0.0025. First-order accurate Neumann
boundary condition applied to the right boundary.

of ε that can become arbitrarily small. Because for any choice of components, the use
of stretching for adapting each individual grid to the local asymptotic behavior without
increasing the number of grid points, will always imply that next to overlapping regions
with roughly equal grid spacing there will exist overlapping regions with grid spacing
that differ in order of magnitude.

Thus, it remains an open question whether it is possible to find ε-uniformly accu-
rate methods for this model problem, and –seeing that the use of even detailed a-priori
knowledge does not yield such result– one might raise the question if it makes sense pur-
suing such direction rather than using non-ε-uniform, but efficient, self-adaptive solution
strategies.
Acknowledgment
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Figure 9: The rotated grid and the solution for ε = 0.01. A second-order accurate
Neumann boundary condition applied at the outflow boundaries.
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