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ABSTRACT

In this paper we describe methods to approximate functions and di�erential operators on adaptive sparse grids.

We distinguish between several representations of a function on the sparse grid, and we describe how �nite

di�erence (FD) operators can be applied to these representations.

For general variable coe�cient equations on sparse grids, FD operators allow a more e�cient operator

evaluation than �nite element operators. However, the structure of the FD operators is more complex. In

order to examine the possibility to construct e�cient solution methods, we analyze the discrete FD (Laplace)

operator and compare its hierarchical representation on sparse and on full grids. The analysis gives a motivation

for a MG solution algorithm.
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1. Introduction

When applied to d dimensions, d � 2, all numerical methods using regular rectangular grids have one
problem in common: the curse of dimension. This means, that if one re�nes the grid | for instance by
repeatedly halving the mesh size | the number of grid points grows exponentially with the dimension,
i.e., like Nd in R

d where N = O(2n) denotes the number of points per direction. One way out is
to use sparse grids , where the number of points only grows like N (logN)d�1. Nevertheless, under
certain conditions on the mixed derivatives of the function, the approximation accuracy degrades only
by a logarithmic factor compared with the accuracy achieved on the regular grid with the same N ,
cf. Section 2.3 or [13, 23, 9].
Sparse grids and related methods already have a long tradition in numerical quadrature and approx-

imation theory (see e.g. [14, 19, 2, 3, 22]). During the last decade, since the introduction of sparse grid
methods into the numerical treatment of elliptic boundary problems by Zenger [23], several authors
(e.g. [1, 5, 9, 10, 15, 16]) have contributed to this �eld. Most of these papers were concerned with
�nite element methods.
Because the e�cient evaluation of general, variable coe�cient 3-dimensional �nite element operators

appears to be an unsolved problem, recently also �nite di�erence methods for sparse grids have been
developed [6, 8, 17, 18]. Note, that consistent �nite di�erence operators on sparse grids cannot be
chosen as simple stencils involving the nearest neighbors of a point, cf. [17, Appendix]. In [6, 17], the
whole machinery for �nite di�erences on sparse grids (which needs linear combination, multiplication
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and approximate di�erentiation) is provided. In Section 3, we present an alternative way of motivating
and describing the �nite di�erence discretization of �rst and second order derivatives on sparse grids.
In Section 4, we restrict ourselves to the special case of Poisson's equation and regular sparse grids in

order to analyze the �nite di�erence operator in detail. The resulting matrix is ill-conditioned. So, it
takes (even in the preconditioned version [17]) many iterations for an iterative solver (like BiCGStab)
to obtain a solution. Our purpose is to construct Galerkin relations which may motivate multilevel
algorithms, and to propose such algorithms suited for solving the �nite di�erence system of linear
equations in a better way. A few results for these algorithms are shown. More results, with di�erent
possible solution procedures, will be published elsewhere.

2. Representation

2.1 Basic notation

To be able to describe adaptive sparse grid (ASG) function representation, we �rst summarize some
necessary notation. For background see, e.g., [13].

� Domain 
 � R
d , with coordinates xj , j = 1; : : : ; d.

� Multi-integer: m = (m1;m2; : : : :md) 2 Z
d,

{ 0 = (0; 0; : : : ; 0), { e = (1; 1; : : : ; 1),
{ ej = (: : : ; 0; 1; 0; : : : ), the j-th unit vector,

{ jmj =
P

d

j=1mj , { m < n , mj < nj 8j = 1; 2; : : : ; d,

{ bmc = minj=1;::: ;dmj , { dme = maxj=1;::: ;dmj ,

{ kmk =
qP

d

j=1m
2
j
, { jjjmjjj =

Q
d

j=1mj .

� Dyadic mesh 
k, k � 0, mesh with dyadic mesh-width hk,

{ Mesh-width: h 2 Rd ; h = (h1; h2; : : : ; hd),

{ Mesh-size: khk =

qP
d

i=1 h
2
i
,

{ Mesh-volume: jjjhjjj =
Q

d

i=1 hi,

{ Dyadic mesh-width: hk = (hk1 ; hk2 ; : : : ; hkd) with hki = 2�ki .

{ Dyadic grid: 
+
k
= fxk;j j xk;j = j � hk = (j1hk1 ; j2hk2 ; : : : ; jdhkd)g \ 
,

{ Sparse grid: 
+
`
=
S
jkj=`


+
k
.

� Derivatives: Dm =
Q

d

j=1
@
mj

@xj
.

� Univariate hat function: '(x) = max(0; 1� jxj).

� Univariate Haar function: �(x) = 1 for 0 < x < 1, and �(x) = 0 for x < 0 or x > 1. In this
way, the Haar function is de�ned only almost everywhere. Therefore, we de�ne the left- and
right-continuous Haar function by respectively �L(x) = lim�%x �(x) and �R(x) = lim�&x �(x)

� Basis hat functions: 'k;j(x) =
Qd

i=1 '(xi=hki � ji).

� Basis Haar functions: �k;j(x) =
Qd

i=1 �(xi=hki � ji).

� Space of piecewise d-linear functions on 
k: Vk = spanf'k;j j j 2 Z
d;xk;j 2 
+

k
g.

� Space of hierarchical surpluses on 
k:

Wk = spanf'k;j j jjjjjjj odd; j 2 Z
d;xk;j 2 
+

k
g :
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Without loss of generality, we assume here that k = 0 yields \the coarsest grid".

With \jjjjjjj odd" we mean: for all i = 1; 2; : : : ; d, either ji is an odd integer, or ki = 0, (i.e., xk;j
lives on the coarsest grid in the i-direction). If ji is even and ki > 0, there is a coarser grid
on which the same point can be found. This implies that the phrase \(k; j) such that jjjjjjj odd"
means that (k; j) is the index of the point xk;j on the coarsest grid in which this particular
dyadic point appears.

� Norms for the function spaces used in Section 2.3 (p � 1, 0 � ` � d) :

{ kuk1 = kukL1 = supessx2
ju(x)j,

{ kukp = kukLp =
�R



ju(x)jp d


�1=p
,

{ kuk
W

n;`
p

=

�P
jmj=`
0�m�e

kDn+mukp
p
d


�1=p
.

{ kukW 1
p
= kuk

W
0;1
p

, the usual �rst order Sobolev norm.

2.2 Representation of ASG functions

The H-condition Given a continuous function u 2 C(
), we can approximate it by a function
un 2 Vn = spanf'n;jg by means of interpolation on the grid 
+

n , i.e.,

un(xn;j) = u(xn;j) 8xn;j 2 
+
n :

Obviously, the function un on 
n is given by

un =
X
j

an;j'n;j ; (2.1)

where an;j = u(xn;j). The error of approximation is well-known (see e.g. Section 2.3). However,
in contrast to classical approximation we are not interested in approximation for a �xed n, but in
approximation on (the union of) a number of grids 
+

n .
We can make the approximation (2.1) for all grids 
+

n with n � 0. For large enough n the approxi-
mation can be arbitrarily accurate, but the number of degrees of freedom increases geometrically with
jnj. Therefore, in practice we select a `smallest' n such that an accuracy criterion is satis�ed. Notice
that keeping the representations in all coarser Vk (all Vk, 0 � k � n) does not take essentially more
coe�cients than the representation on the �nest grid (i.e., in Vn) alone.
In order to obtain an e�cient approximation, it may be useful to distinguish di�erent subregions

of the domain 
, in each of which we make the �nest approximation of u in di�erent Vn. We make
full | and e�cient | use of the system fVn j n 2 N

d
0g, by in principle approximating a given

function u 2 C(
) in all fVn j n 2 N
d
0g, but using in practice only those coe�cients that contribute

to a su�ciently accurate representation. This implies that possibly, in practice, the function u is
represented in a particular Vn only on part of the domain 
. To introduce a (minimal) structure in
the family of approximating basis functions f'n;jg, we introduce the following condition H.
Condition H: If a basis function 'n;j(x) is used in the representation (2.1), all corresponding
coarser basis functions (i.e., functions 'k;i for which supp('k;i) � supp('n;j)) are also used for the
approximation.

E-, C-, D- and H-representation We call the representation of the approximation of a function
u 2 C(
) by a collection of such (partial) approximations in the family of spaces fVng, the nodal

representation, or the E-representation of the approximation. This E-representation requires the
coe�cients an;j = u(xn;j) corresponding with grid-points xn;j, to be equal on the di�erent grids 
+

n

at coinciding grid-points xn;j. Thus, because points from coarser grids coincide with those from
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�ner ones, a certain consistency is required (and an redundancy exists) in the E-representation of an
approximation.
During the computation in an approximation process, the representations of the approximations

on all di�erent grids 
+
k
do not necessarily always satisfy the consistency condition required for the

E-representation. In that case an approximation exists, that is of the form (2.1) on each separate grid

+
n , and the approximation on the whole system is not uniquely determined. Such a representation we

call the C-representation of a (non-unique) approximation. There, for di�erent n, the approximations
un(x) do not necessarily coincide at corresponding grid-points xn;j.
Another way of representing approximations on the family of grids f
+

n g is by partitioning the
approximation over the di�erent grids. Then, instead of (2.1) the approximation reads

uh =
X
n

X
j

an;j'n;j : (2.2)

In this case, of course, the set of coe�cients fan;jg always determines a unique function uh. An
approximation in this form we call a D-representation. However, for a given function uh, now the
coe�cients fan;jg are not uniquely determined because the f'n;jg are linearly dependent.
One way to select a special unique D-representation is by choosing the coe�cients an;j such that

an;j 6= 0 only for those (n; j) for which jjjjjjj is odd1. This implies that an;j = 0 except for a pair (n; j)
for which 
+

n is the coarsest grid which contains the nodal point xn;j. This representation

uh =
X

(n;j);jjjjjjj odd

an;j'n;j (2.3)

we call the H-representation because it represents the approximation in the hierarchical basis�
'n;j j n 2 Nd0 ; j 2 Z

d; jjjjjjj odd;xn;j 2 
+
n

	
; (2.4)

and the part of uh in

Wn = spanf'n;j j j 2 Z
d

;
jjjjjjj odd;xn;j 2 
+

n g

is the hierarchical contribution from the grid 
+
n to the approximation. We notice that

Vn =Wn +

dX
j=1

Vn�ej =
X

0�m�n

Vm ;

and the sparse grid space is de�ned by

VL =
X

0�jmj�L

Vm :

Interpolating the function u at the nodal points xn;j, the hierarchical coe�cients an;j in

u(xn;j) =
X

(n;j);jjjjjjj odd

an;j 'n;j(xn;j) (2.5)

are determined by (cf. [13])

an;j =

dY
i=1

�
�
1

2
; 1;�

1

2

�
hni

ei

u(jhn) ; (2.6)

1With \jjjjjjj is odd" we mean: for all i = 1; 2; : : : ; d, either ji is an odd integer, or ki = 0 (i.e., ji lives on the coarsest
grid in the i-direction), see Section 2.1.
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where
�
� 1
2
; 1;� 1

2

�
hni

ei
denotes the di�erence stencil for the mesh-size hni in the i-th coordinate

direction. Notice that this expression is well-de�ned for each odd j because Condition H requires that
all hi-neighbors are nodal points in the approximation. Another expression for the coe�cient an;j is
found in the following lemma, see [13].

Lemma 2.1 Let u2Ce+m, for a given m with 0 �m � e. Then, for each 'n;j2Wn, we have

an;j =

dY
i=1

�
�
1

2
; 1;�

1

2

�
hni

ei

u(jhn) (2.7)

= (�1)je+mj 2�d�jnj
Z



De+mu(x)De�m'(2nx� j) d
 :

Transformation of representations From the above, it is clear that each H-representation is a D-
representation and each E-representation a C-representation. For piecewise d-linear functions, it is
often described [4, 5, 6] how a pyramid algorithm can be used to convert an E-representation to a
H-representation, and vice versa. Such a conversion can be executed in O(N) operations, where N is
the total number of coe�cients (degrees of freedom). The transformation from a D-representation to
an H-representation is equally straightforward.
The E-, H-, D-, and C-representations can also be used for piecewise constant functions, and {

because of the tensor product structure { discrete function representations can be combined in the
di�erent coordinate directions. E.g., a discrete function can be piecewise constant in one and piecewise
linear in the other coordinate directions. Also for the piecewise constant functions, e�cient pyramid
conversion algorithms exist between the di�erent (H-, D-, E-) representation styles. In this case, it is
often useful to decide on left- or right-continuity at the discontinuities in the representation.

The data structure The data structure used to implement all the above possibilities of an adaptive
(sparse) grid representation can be e�cient and relatively simple. For the d-dimensional case (d =
1; 2; 3), we use the data structure BASIS3 [12] that takes the `patch' Pn;j as an elementary entity.
This Pn;j takes all information related to a right-open left-closed cell

3Y
k=1

�
jk2

�nk ; (jk + 1)2�nk
�
:

This implies that there exist as many patches in the data structure as there are points used in the
description of the approximation. The patches are related to each other by means of pointers in an
intertwined tree structure, where each patch has at most 15 pointers to related patches (3 fathers,
6 neighbors and 6 kids). The data structure is symmetric with respect to any of the coordinate
directions.

2.3 Approximation by ASG functions

The representation of functions as discussed in Section 2.2 includes as special cases the representation,
i.e. the d-linear interpolation of continuous functions both on full grids 
+

n , especially on regular grids

+
ne, and on sparse grids 
+

`
. In this section, we collect some approximation results from [13] in order

to recall the motivation for using sparse grids in the numerical treatment of elliptic boundary value
problems.

Errors on full grids Let un 2 Vn be the piecewise d-linear interpolant at
S
k�n


+
k

= 
+
n of a

continuous function u with �nite norm kDe+mukp, with p = 2;1, and 0 �m � e. Error bounds for
the approximation on full grids are well-known (e.g., [13, Thm.3.3]):

� ku� unk2 � 2�d3�3jmj=2
Pd

i=1 h
(1+mi)
ni kDe+muk2;
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� ku� unk1 � 6�jmj
Pd

i=1 h
(1+mi)
ni kDe+muk1.

It follows that for square grids, for which khn�ek
2 =

P
d

i=1 (2
�n)

2
= d2�2n, we have

� ku� un�ek2 � 3�2d khn�ek
2 kD2�euk2;

� ku� un�ek1 � 6�d khn�ek
2 kD2�euk1.

By simple counting, it is seen that for this approximation the number of degrees of freedom is O(2jnj),
and therefore for a square grid O(2nd).

Errors on sparse grids Let ûn 2 Vn be the piecewise d-linear interpolant at the sparse gridS
jkj�n


+
k

= 
+
n

of a continuous function u with �nite norm kDe+mukp, with p = 2;1, and

0 �m � e. Error bounds for approximations on these sparse grids [13, Thm.3.6] are given by

� ku� ûnkp � C jjjhjjj2 (log jjjhjjj�1)d�1 kD2�eukp;

� ku� ûnkp � C jjjhjjj (log jjjhjjj�1)d�1�jmj kDe+mukp;

� ku� ûnkp � C jjjhjjj1+`=d (log jjjhjjj�1)d�1 kuk
W

e;`
p
.

where ` is any integer, 0 � ` � d. Bounds for the errors on sparse grids in energy norm are [13,
Thm.3.7]:

� ku� ûnkW 1
p
� C jjjhjjj (log jjjhjjj�1)d�1 kuk

W
e;1
p
;

� ku� ûnkW 1
p
� C jjjhjjj kD2�eukp.

Notice that here jjjhjjj = 2�jkj is the volume of the �nest cells in the sparse grid.
For this approximation, by counting, we see that the number of degrees of freedom for the sparse

grid approximation is O(2nnd�1). This number is signi�cantly less than the O(2nd) for the full grid.

3. Evaluation of difference operators to ASG functions

Although �nite element discretization of a PDE on a sparse grid is feasible for a constant coe�cient
problem in two dimensions, �nite elements for more-dimensional problems and variable coe�cients
give problems. The di�culty arises because | with the hierarchical basis (2.4) for test and trial space
| the computational complexity of the evaluation of the discrete operator becomes too large. This
is caused by the fact that the intersection of the supports of an arbitrary trial and test function is
much smaller than the supports of these functions themselves. This has as a consequence that the
advantage of sparse grids is lost if the FEM discrete operator is evaluated.
The alternative, as it was already suggested in [6, 17], is the use of a �nite di�erence discretization.

Therefore, in order to solve PDEs on sparse grids, we should be able to apply (approximate) di�eren-
tiation to discrete representations of approximations as described in Section 2.2. The application of
linear di�erence operators approximating the linear di�erential operator

X
i;j

@

@xi

�
Aij(x)

@

@xj

�
+
X
i

Bi(x)
@

@xi
+ C(x) (3.1)

comes down to the construction of linear combinations of ASG functions, and pointwise multiplication
and approximate di�erentiation of such functions. In any of the representations (E-, H-, D- or C-), the
construction of a linear combination over the real numbers is directly computed by application of the
linear combination to its coe�cients. Pointwise multiplication is only possible in the E-representation,
in which the function values at grid-points are directly available (see [6, 17] for details). Below we
describe di�erentiation, which requires some more attention, distinguishing between the evaluation of
�rst and second order derivatives.
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3.1 First order derivatives

For a piecewise d-linear ASG function, the derivative @

@xi
uh(x) is well-de�ned almost everywhere, and,

written in D-representation (2.2) the derivative is simply described by

@

@xi
uh(x) � Diuh(x) =

X
n;j

an;jDi'n;j(x)

=
X
n;j

an;j Di

dY
k=1

'(2nkxk � jk)

=
X
n;j

an;j Di ('(2
nixi � ji))

dY
k=1;k 6=i

'(2nkxk � jk)

=
X
n;j

an;j (�(2
nixi � ji + 1)� �(2nixi � ji))

dY
k=1;k 6=i

'(2nkxk � jk)

This, again, is a function in D-representation, piecewise constant in the i-direction and piecewise linear
in the other directions. It can be described by coe�cients associated with nodal points if we decide
to choose either a left- or a right-continuous representation.
The functions are piecewise linear in all coordinate directions except for the i-th direction, where the

derivative is piecewise constant. Because of the discontinuities of @

@xj
'n;m(x) along segments parallel

to the j-th axis, the function is not in representation (2.1) because the coe�cients do not correspond
to function values. In order to identify such derivative by values at nodal points, we have to agree on
either left-continuity (i.e., '(x) = lim�&x '(�)) or on right-continuity (i.e., '(x) = lim�%x '(�)). Like
forward and backward di�erences, both possibilities have their advantages and disadvantages, and in
the implementation we allow left- as well as right-continuity, which are identi�ed by the labels � = �1
or � = 1, respectively.

3.2 Second order derivatives

The computation of second order derivatives of piecewise d-linear ASG functions, D2
i
uh(x), seems to be

less obvious because second derivatives of the piecewise d-linear functions vanish almost everywhere on

. Nevertheless the approximation of the second order derivatives is useful and can be easily derived
from the representation of uh.
In order to approximate D2

i
uh, we �rst construct the representation that is the H-representation

in the i-th coordinate direction and the E-representation in the other coordinate directions, i.e., we
apply the pyramid algorithm only in the i-th direction. This implies, cf. Equation (2.7),

an;j =

�
�
1

2
; 1;�

1

2

�
hni

ei

u(jhn) (3.2)

= �2�1�ni
Z
D2
i
u(x)'(2nixi � ji) dxi :

where xk = 2�nkjk for k 6= i.
For the H-representation of the second derivative, we see that the coe�cients in the expression (2.2)

are given by (2.7). It follows that the hierarchical coe�cient an;j with respect to the i-th coordinate
direction corresponds with a measure of D2

xi
uh(x) in the hn-neighborhood of xn;j.

Considering the i-th coordinate in (3.2), writing h = 2�n, and omitting higher order terms in h, we
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see

an;j = �
h

2

Z
D2
i u(x)'(x=h� j) dx

= �
h

2

Z �
D2
i
u(jh) + (x� jh)D3

i
u(jh) +

(x � jh)2

2
D4
i
u(z)

�
'(x=h� j) dx

= �
h

2

Z �
D2
i
u(jh) + (�h)D3

i
u(jh) +

(�h)2

2
D4
i
u(z)

�
'(�) d�h

= �
h

2

�
D2
i u(jh)

Z
'(�) d�h+D3

i u(jh)

Z
(�h)'(�) d�h +R

�
= �2�1�2nD2

i
u(j2�n) +R (3.3)

with

jRj �
h

2
kD4

i u(z)k

Z
(�h)2

2
'(�) d�h =

4

3

�
h

2

�4
kD4

i u(z)k :

Here k � k denotes the maximum norm in the hn-neighborhood of xn;j. Such coe�cients, and hence
such approximate second derivatives, are directly available at the hierarchical points (points with odd
j). At points with even j (not at the boundary), we can use

an;2j = �
h

2

Z
D2
i u(x) '(

x

h
� 2j) dx

= �
h

2

Z
D2
i u(x)

�
'
� x

2h
� 2j

�
�
'(x

h
� (2j � 1)) + '(x

h
� (2j + 1))

2

�
dx

=
1

2
(an�1;j � an;j�1 � an;j+1) : (3.4)

The values an�1;j are available (by recursion) from coarser grids, where we have

an�1;j � �21�2nD2
i
u(j21�n) :

This procedure can be used in any of the coordinate directions i. As a result, we �nd the nodal
representation of the (approximate) second derivative in the i-th direction. If we start with the H-
representation (in every direction) of the function, this procedure would deliver the second derivative
in the i-th direction in E-representation in the i-th direction and in H-representation in all other
directions.

4. Properties of the finite difference discretization of the Laplacian

In the remaining part of this paper, we analyze the discretized operator (3.1) as described in Section
3. For simplicity, we restrict ourselves to the model problem of Poisson's equation with homogeneous
Dirichlet boundary conditions,

��u = f in 
; (4.1)

uj�
 = 0;

on the cube 
 = (0; 1)d and a regular sparse grid. For this special case, we give explicit formulae for
the entries of the sparse grid �nite di�erence matrix. This will help us to establish relations between
the �nite di�erence discretization on di�erent sparse grid levels and the di�erence between sparse and
full grids. From this, we will �nally propose multilevel-type algorithms to solve the linear system of
equation resulting from the �nite di�erence discretization (on the sparse grid).
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Figure 1: The index sets J6 and H6

4.1 Characterization of sparse grid and hierarchical points

To start with, it is useful to investigate the index sets associated with sparse grid points and hierarchical
points, respectively. Consider a sparse grid 
+

L
of level L on 
 = [0; 1]d with a �nest cell volume

h = 2�L. Then, every sparse grid point is also a point of a regular grid 
+
Le (with step size h in each

direction). Now, we want to characterize the points of the regular grid which belong to the sparse
grid, i.e., we wish to characterize the index set JL with

JL = f` j xLe;` 2 
+
L
g :

For this, we use the notation of bit reversing. Let the integer k, satisfying 0 � k < 2`, have the binary
representation

k =

`�1X
s=0

ks 2
s; ks 2 f0; 1g ; (4.2)

then, the binary representation reected at position `� 1 (or in bit reversed order) is given by2

M`(k) =

`�1X
s=0

ks 2
`�1�s :

We de�ne the bit reversing of a multi-integer k with respect to a multi-integer ` as M`(k) =
(M`1(k1); : : : ;M`d

(kd)) and with a scalar m by Mm(k) =Mme(k).
For r 2 Nd0 , we also introduce the set of multi-integers (see Figure 1) within a dyadic range:

Kr = fk j ki = 2ri�1; : : : ; 2ri � 1; i = 1; : : : ; dg

in order to de�ne3 the family of multi-integers with dyadic range up to level L:

HL =
[
jrj�L

Kr :

2For 0 � k � 2`, we additionally de�ne M`(2
`) = �1 and M`(�1) = 2`.

3To include multi-integers k with dke = 2`, we denote N` = 2` for ` 2 N0 and N�1 = �1. and Kr = fk; ki =
Nri�1; : : : ;Nri � 1; i = 1; : : : ; dg.
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Then one can easily prove (generalization of [20, 21]) that the mapping of bit reversing between the
two index sets

ML : HL ! JL

is a bijection. Furthermore, the set
S
jrj=LKr exactly characterizes the grid points that are added to

the sparse grid of level L� 1 to obtain the sparse grid of level L.
One single set Kr represents (i.e., are bit reversed indices of indices of) the hierarchical points in

the subset 
+
r � 
+

L
. Thus, the hierarchical points in 
r are characterized by

fxr;Mr(k) = xLe;ML(k) j k 2 Krg:

Remark. The same technique can be used starting on a coarsest grid with smaller mesh width
1=2t0 instead of 1. Then M` has to be de�ned as a bit reversing w.r.t. ` + t0 instead of `. If we do
not start with powers of 2 the situation is more complex but in principle the same approach can be
followed (see [20]).

4.2 Hierarchical representation for �nite di�erences in the univariate case

In Section 3.2, we gave a recursive expression for the nodal representation of the second derivative.
In this section, we �nd an explicit expression for the hierarchical coe�cients of the second derivatives
found in Section 3.2.
For notational convenience, we �rst develop the hierarchical representation for second order �nite

di�erences in the univariate case. Then, our model problem reads as

�u00(x) = f for x 2 (0; 1); u(0) = u(1) = 0:

We interpolate the function u on the equidistant grid with step size hn by a linear spline un. This
spline function has the hierarchical representation

un =

nX
m=1

X
k odd

am;k'm;k:

Note that, because of the homogeneous boundary conditions, the hierarchical coe�cients vanish on
the coarsest level. We approximate the second derivative of a function u by the second di�erence

�2;hu(x) =
1

h2
(u(x+ h)� 2u(x) + u(x� h)):

In hierarchical points on the �nest grid, the hierarchical coe�cients represent the second di�erence
an;k = �2�1�n�2;hnu(xn;k) (cf. Section 3.2). In non-hierarchical points, we can use the recurrence
relation (3.4). Using bit reversing, we write this now in closed form. Let xm;k 2 
+

n
be a hierarchical

point (k odd) on the subgrid 
+
m with step size hm, then Mm(k) 2 Km and writing out the recursion

(3.4), we obtain

��2;hnu(xm;k) = 21+n
�
2mam;k �

nX
`=m+1

2`�1(a`;2`�mk�1 + a`;2`�mk+1)

�
: (4.3)

Now, we interpolate the nodal approximation on level n of the second derivative of the function u by
a linear spline4 and obtain

�~un =

2n�1X
k=1

��2;hnu(xn;k)'n;k =

nX
m=1

X
k odd

bm;k'm;k : (4.4)

4For notational convenience, we set in the end points �2;hnu(0) = �2;hnu(1) = 0.
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This de�nes the coe�cients bm;k which clearly satisfy

bm;k =
1

2
(�2;hnu(xm;k�1)� 2�2;hnu(xm;k) + �2;hnu(xm;k+1))

for hierarchical points xm;k. The non-hierarchical points xm;k�1 and xm;k+1 appear in this formula,
too. If we want to apply formula (4.3), we need to characterize these points (non-hierarchical on level
m) as hierarchical points on some coarser level. For this, we need some further notation.
Let k have the binary representation (4.2). Now we need to characterize the indices m� and m+

for which Mm(k � 1) 2 Km� and Mm(k + 1) 2 Km+
, where m� denotes the level on which xm;k�1 is

hierarchical. We see that

m� =

(
0 for k = 1;

max
s=1;::: ;m�1

fm� 1� s; ks = 1g otherwise;

and

m+ =

(
0 for k = 2m � 1;

max
s=1;::: ;m�1

fm� 1� s; ks = 0g otherwise:

Thus, if the points xm;k are not next to the boundary, i.e., for5 m� 6= 0,

��2;hnu(xm;k�1)

= 21+n
�
2m�a

m�;2
m��m(k�1) �

nX
`=m�+1

2`�1(a`;2`�m(k�1)�1 + a`;2`�m(k�1)+1)

�
:

Collecting all terms, we get the hierarchical coe�cient

bm;k = 21+n
�
2mam;k �

nX
`=m+1

2`�1(a`;2`�mk�1 + a`;2`�mk+1) (4.5)

� 2m��1a
m�;2

m��m(k�1) +

nX
`=m�+1

2`�2(a`;2`�m(k�1)�1 + a`;2`�m(k�1)+1)

� 2m+�1a
m+;2

m+�m(k+1) +

nX
`=m++1

2`�2(a`;2`�m(k+1)�1 + a`;2`�m(k+1)+1)

�

with modi�cations for m� = 0. Note that this expression depends on m; k and n, i.e., it depends not
only on the point xm;k but also on the �nest grid chosen.
We can write the coe�cients am;k and bm;k in vector notation and describe the transformation

process by a matrix. For this, we combine hierarchical coe�cients in a vector as

vn =
�
vm;k

�
1�m�n;Mm(k)2Km

(4.6)

in order to de�ne the vectors an and bn, and nodal coe�cients simply as

un =
�
u(xn;1); : : : ; u(xn;2n�1)

�T
:

In this way, we de�ne the matrices An and Hn by

An an = bn and Hn un = an:

5For points next to the boundary, i.e., for m� = 0, we use the notation from the last three footnotes and set
�2;hnu(xm;k�1) = 0.
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By construction, H�1
n
AnHn is the usual matrix of second di�erences (applied to nodal values) and

hence symmetric positive de�nite. Thus, the matrix An of �nite di�erences in terms of hierarchical
coe�cients has the same, i.e., only real positive eigenvalues. However, it is not symmetric and can
not be symmetric positive de�nite.
Solving the discretized system in its hierarchical form now comes down to solving

An an =Hn

�
f(xn;1); : : : ; f(xn;2n�1)

�T
:

4.3 Hierarchical representation for �nite di�erences on the sparse grid

To gain some more insight in the structure of the sparse grid FD operator, we want to obtain an explicit
expression for the hierarchical coe�cients of the discrete Laplacian. I.e., we look for an expression for
the elements of the FD matrix AL. To this end, we investigate the discrete second derivative in the
x1-direction �rst.

Finite di�erences on one �xed level Let L be the (highest) level of the sparse grid. Let uL be given
in H-representation

uL =
X
jmj�L

X
jjj`jjj odd

am;` 'm;`:

Because of the boundary conditions, here and in the sequel the notation jmj � L means: m > 0,
jmj � L. (The coe�cients responsible for the boundary are zero). Let ~uL be the approximation of
the resulting function �u on the sparse grid 
+

L
with

�~uL =
X
jmj�L

X
jjj`jjj odd

b�m;`'m;` :

We denote the approximation of the second derivative in x� -direction on the sparse grid 
+
L
by

�~u
(�)
L

=
X
jmj�L

X
jjj`jjj odd

b
(�)
m;`

'm;`:

Then, the hierarchical coe�cients obviously ful�ll

b�m;` = b
(1)

m;`
+ b

(2)

m;`
+ � � �+ b

(d)

m;`
: (4.7)

Let xm;k 2 
+
L
be a hierarchical point on grid 
+

m. The full grid 
+
j
� 
L, �nest in x1-direction,

such that xm;k 2 
+
j
is characterized by the multi-index j = (m1 + L� jmj;m2; : : : ; md). Then the

hierarchical coe�cient of the second di�erence in the x1-direction at point xm;k is

b
(1)
m;k

= ��m;k +
1

2

�
�m;k�e1 + �m;k+e1

�
; (4.8)

where �m;` denotes the coe�cient of the approximation of the second derivative in x1-direction (E-
representation in x1-direction, H-representation in all other directions) at the point xm;`.
By construction Mm(k) 2 Km and using the results of the previous section, we obtain from the

�nite di�erence operator in the x1-direction, see (4.3),

�m;k = �21+2m1+L�jmj

�
am;k �

m1+L�jmjX
`=m1+1

2`�m1�1
�
a(`;m2;::: ;md);(2

`�m1k1�1;k2;::: ;kd)

+ a(`;m2;::: ;md);(2
`�m1k1+1;k2;::: ;kd)

��
:
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In the same way as in the previous section, we denote bym1� andm1+ the indices for whichMm1
(k1�

1) 2 Km1� andMm1
(k1+1) 2 Km1+

(i.e.,m1� andm1� are the x1-levels on which xm;k are hierarchical
points in the x1-direction). Now we can characterize the remaining terms in (4.8) and obtain

b
(1)
m;k

= 21+2m1+L�jmj �

�
am;k (4.9)

�

m1+L�jmjX
`=m1+1

2`�m1�1
�
a(`;m2;::: ;md);(2

`�m1k1�1;k2;::: ;kd)

+ a(`;m2;::: ;md);(2
`�m1k1+1;k2;::: ;kd)

�
� 2m1+�m1�1a(m1+;m2;::: ;md);(2

m1+�m1 (k1+1);k2;::: ;kd)

+

m1+L�jmjX
`=m1++1

2`�m1�2
�
a(`;m2;::: ;md);(2`�m1 (k1+1)�1;k2;::: ;kd)

+ a(`;m2;::: ;md);(2
`�m1 (k1+1)+1;k2;::: ;kd)

�
� 2m1��m1�1a(m1�;m2;::: ;md);(2

m1��m1 (k1�1);k2;::: ;kd)

+

m1+L�jmjX
`=m1�+1

2`�m1�2
�
a(`;m2;::: ;md);(2

`�m1 (k1�1)�1;k2;::: ;kd)

+ a(`;m2;::: ;md);(2
`�m1 (k1�1)+1;k2;::: ;kd)

��
(with obvious modi�cations for points next to the boundary, where m1� = 0 or m1+ = 0). Here, the

�nest grid in x1-direction depends on the other coordinates of the evaluation point. This makes b
(1)
m;k

depending on m;k and the highest level L.

Now, we write the hierarchical coe�cients b
(�)
m;k

, b�m;k, and am;k in vector form as b
(�)
L
, b�L , and aL,

respectively, using the d-dimensional version of (4.6):

vL =
�
vm;k

�
jmj�L;Mm(k)2Km

:

We de�ne the matrices AL and A
(�)
L

by

ALaL = b�L and A
(�)
L
aL = b

(�)
L

; (4.10)

respectively. Then, obviously AL = A
(1)
L

+A
(2)
L

+ � � �+A
(d)
L
:

Finite di�erences on sparse grids of di�erent levels For the hierarchical coe�cient vectors, we in-
troduce matrices that represent the piecewise linear prolongation PL;L�1 : VL�1 ! VL, de�ned by
wL = PL;L�1vL�1 with

wm;k =

(
vm;k for jmj � L� 1;

0 for jmj = L:

and similarly a restriction matrix corresponding with RL�1;L : VL ! VL�1, de�ned by wL�1 =
RL�1;LvL with

wm;k =
1

2
vm;k for jmj � L� 1:

With these de�nitions, as can be seen from (4.9), the following Galerkin relation holds

AL�1 = RL�1;LALPL;L�1:

This relation is the motivation for further research in [11].
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4.4 Hierarchical representation for �nite di�erences on full grids

The �nite di�erence discretization of (4.1) on a full grid is well-known (the usual 7-point stencil in 3D).
Here we rewrite its matrix in the hierarchical representation in order to see the relation between the
�nite di�erence operators on full and sparse grids, with the aim to �nd proper multigrid algorithms.
Let a discrete function on 
+

n , say un, be given in its hierarchical representation

un =
X

0<m�n

X
jjjkjjj odd

am;k 'm;k :

Let ~u�n denote the approximation of �u, similar to (4.4) in the one-dimensional case in Section 4.2,

�~u�n =
X

0<m�n

X
jjjkjjj odd

~b�m;k 'm;k:

Assume the approximation of the second derivative in x� -direction ~u
(�)
n to have hierarchical coe�cients

~b
(�)
m;k

. The coe�cients corresponding to the subgrid 
+
n � 
+

L
are written in vector-form as

vn =
�
vm;k

�
m�n;Mm(k)2Km

:

Similar to (4.7) in the previous section, we have ~b
�

n = ~b
(1)

n + ~b
(2)

n + � � �+ ~b
(d)

n , and we write

A(�)
n an = ~b

(�)

n and Anan = ~b
�

n :

Obviously,

An = A(1)
n +A(2)

n + : : :+A(d)
n : (4.11)

We introduce a one-dimensional index set by In =
Sn

m=1

�
(m; k) j Mm(k) 2 Km

	
and the corre-

sponding identity matrix by

In =
�
��;�

�#(In)
�;�=1

:

Then, for the more-dimensional case
�
(m;k) j Mm(k) 2 Km

	
= In1 � In2 � � � � � Ind and we �nd

the matrix of second di�erences in the �-th direction as the Kronecker product

A(�)
n = In1 
 � � � 
 In��1 
An� 
 In�+1 
 � � � 
 Ind :

with An� the same as in Section 4.2. As a Kronecker sum of the matrices An� , the matrix An also
has only positive eigenvalues. This is not surprising because An has the same eigenvalues as the �nite
di�erence matrix for the nodal representation on the full grid which is symmetric positive de�nite.

4.5 Relations between �nite di�erences on full and sparse grids

In this section, we establish relations between the discrete Laplacian on full and on sparse grids. If
one considers the Galerkin or FEM approach for discretization on sparse grids, using the hierarchical
basis or the generating system of nodal bases functions as test and trial functions, one obtains simple
relations between the sti�ness matrices for the sparse and the full grids. The basis functions for a full
grid 
+

n � 
+
L
simply form a subset of the hierarchical basis/generating system for the sparse grid.

So, by construction it can be written as a Galerkin product using the matrix for the sparse grid. As a
result, one can immediately write down multiplicative subspace correction algorithms like in [7] and
interpret them as block iteration methods.
In the �nite di�erence case things are di�erent. In contrast with the sparse grid, on a full grid, for a

constant coe�cient di�erential equation the evaluation of the �nite di�erence at a certain point does
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not depend on the location of the point. For this reason, the �nite di�erence matrix of a full grid 
+
n

can not be written as a Galerkin product including the �nite di�erence matrix of the sparse grid 
+
L

of level L � jnj. This will become immediately clear from equation (4.13), below.
In what follows, we discuss the kind of relation between the �nite di�erence operators for the

Laplacian discretized on a full and on a sparse grid, and we propose a solution algorithm resulting
from this.

Full grids as subgrids of the sparse grid Assume jnj � L. We de�ne a prolongation PL;n : Vn ! VL
by wL = PL;nvn with

wm;k =

(
vm;k for m � n;

0 otherwise;

where vm;k and wm;k are hierarchical coe�cients, and a direction dependent restriction R
(�)
n;L

: VL !

Vn by wn = R
(�)
n;LvL with

wm;k = 2n��m��L+jmjvm;k for m � n : (4.12)

The scaling factor in the above de�nition arises from the di�erence in scaling between (4.5) and (4.9).
Comparing these two formulae and keeping (4.10) and (4.11) in mind, we see that, with these PL;n

and R
(�)
n;L, we can write the matrix of �nite di�erences for the Laplacian on the full grid as a sum of

Galerkin products using the direction (and point) dependent weighted �nite di�erences for the second
derivatives in each direction

An =
�
R
(1)
n;LA

(1)
L

+R
(2)
n;LA

(2)
L

+ � � �+R
(d)
n;LA

(d)
L

�
PL;n: (4.13)

Full grids as subgrids of the sparse grid | An alternative approach In the previous paragraph, we

scaled the di�erent parts, A
(�)
L
, of the discrete Laplacian for the sparse grid for the di�erent directions.

On the other hand, we can scale A
(�)
n , i.e., the directional parts of the matrix responsible for the full

grid. With the scaling matrices

M (�)
n = diag

�
2n��m�

�
m�n;Mm(k)2Km

= In1 
 � � � 
 In��1 

�
diag

�
2m��n�

�
(m�;k�)2In�

�

 In�+1 
 � � � 
 Ind

and (4.11), we de�ne

~An =M (1)
n A(1)

n +M (2)
n A(2)

n + � � �+M (d)
n A(d)

n : (4.14)

This matrix is again a Kronecker sum of matrices with positive eigenvalues and so it has only pos-
itive eigenvalues. Introducing another, di�erently scaled, restriction that is now independent of the
direction �, ~Rn;L : VL ! Vn, de�ned by wn = ~Rn;LvL with

wm;k = 2�L+jmjvm;k for m � n ;

the new matrix can be written as the Galerkin product

~An = ~Rn;LALPL;n:

This relation leads to the following solution algorithm which uses the matrices ~An. Denote the
vector of hierarchical coe�cients of the right-hand side by fL, and let an approximation aL of the
hierarchical coe�cients of uL be given. Then the next iteration step is
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for all jnj = k

do aL := aL +PL;n
~A
�1

n
~Rn;L(fL �ALaL) (4.15)

enddo

This defect correction algorithm of multiplicative type corresponds to a block iterative solver for the
discrete Laplacian on the sparse grid with overlapping blocks. To some extent this is similar to the
FEM case (see [7]), but in case of �nite di�erences the blocks (containing point dependent scaling)
cannot really be seen as a �nite di�erence discretization on a certain full grid. Nevertheless, in case of
the Laplacian it is still possible to give a relation (4.14) between the blocks and the �nite di�erence
discretizations.
To improve the convergence rate of the above algorithm we might think of using more than one

level and/or more than one iteration per level which leads to

for k = ` to L

do for i = 1 to �

do for all jnj = k

do aL := aL +P L;n
~A
�1

n
~Rn;L(fL �ALaL) (4.16)

enddo

enddo

enddo

with a �xed lower level ` � d and a number � of iterations per level.

Example: We apply the Algorithms (4.15) and (4.16) to the following 3D-problem. Solve (4.1) with
the right-hand side

f(x) = �3�2
� 3Y
i=1

sin�xi + 8

3Y
i=1

sin 8�xi

�

and starting from the zero function u
(0)
L

� 0. We obtain the convergence behavior shown in Figure 2.
We see that we get better convergence if we include also lower levels (right). In both cases, the speed
of convergence slows down with growing level. Approximately, the reduction factor gets worse with
L2, the square of the highest level.

The sparse grid as a subgrid of a full grid Thus far, in Sections 4.5 and 4.5, we considered full grids
which are contained in a sparse grid. But the sparse grid itself is contained in the full grid with step
size 2�L in each direction. So for completeness, we establish the relation between the �nite di�erence
matrices of these grids. De�ne the prolongation PLe;L : VL ! VLe by wLe = P Le;LvL with

wm;k =

(
vm;k for jmj � L;

0 otherwise,

for the hierarchical coe�cients vj;k and wm;k, and the restriction RL;Le : VLe ! VL by wL =
RL;LevLe, where

wm;k = 2�jmjvm;k for jmj � L:

Further, we need scaling matrices

~M
(�)

Le = diag
�
2m�

�
m�Le;Mm(k)2Km

= IL 
 � � � 
 IL 

�
diag

�
2m�

�
(m�;k�)2IL

�

 IL 
 � � � 
 IL;
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Figure 2: Left: Convergence of Algorithm (4.15) for the levels L = 6; : : : ; 9. Right: Convergence of
Algorithm (4.16) for the levels L = 6; : : : ; 9; ` = 3 with � = 1.

then, reversing the procedure followed above, we obtain

AL = RL;Le

�
~M
(1)

LeA
(1)
Le +

~M
(2)

LeA
(2)
Le + � � �+ ~M

(d)

LeA
(d)
Le

�
PLe;L:

The matrix between the parentheses is again a Kronecker sum of matrices with positive eigenvalues
and so it has positive eigenvalues. The whole matrix AL is a scaled submatrix of a matrix with
positive eigenvalues.
In numerical experiments by Schiekofer [17] in 2D, it turned out that AL itself has only positive

eigenvalues. (For s.p.d. matrices this is obvious for a submatrix, for non-symmetric ones this need not
to be the case.) Of course, because of the size of the full grid matrices involved, the above Galerkin
relation generally has no practical computational value.

Conclusion

Because the evaluation of �nite element sti�ness matrices for variable coe�cient equations on sparse
grids (in more dimensions, d > 2) still yields di�culties, one might be tempted to use �nite di�erences
(FD) instead. In this paper, the relation between FD operators on sparse and full grids are studied,
and Galerkin relations are established.
In an obvious way, such relations lead to iterative (defect correction) solution algorithms that can

also be applied in a multilevel setting. However, no spectral equivalence could be established, and the
convergence of the iterative schemes appears to depend on the maximum discretization level used, so
that the convergence rate is lower on �ner grids.
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