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ABSTRACT

In many applications it is important to have reliable approximations for the extreme eigenvalues of a symmetric

or Hermitian matrix. A method which is often used to compute these eigenvalues is the Lanczos method.

Unfortunately it is not guaranteed that the extreme Ritz values are close to the extreme eigenvalues – even

when the norms of the corresponding residual vectors are small. Assuming that the starting vector has been

chosen randomly, we derive probabilistic bounds for the extreme eigenvalues. Four different types of bounds

are obtained using Lanczos, Ritz and Chebyshev polynomials. These bounds are compared theoretically and

numerically. Furthermore we show how one can determine, after each Lanczos step, an upper bound for the

number of steps still needed (without performing these steps) to obtain an approximation to the largest or

smallest eigenvalue within a prescribed tolerance.

1991 Mathematics Subject Classification: 65F15.

Keywords and Phrases: symmetric and Hermitian matrices, eigenvalues, Lanczos method, Ritz values, com-

putation of probabilistic eigenvalue bounds.

Note: The research of the first author was sponsored by the NWO Priority Program “Massaal Parallel Reke-

nen”, project 95MPR04. Work carried out under project MAS2.1 “Computational Fluid Dynamics”.

1. Introduction

Knowledge about the extreme eigenvalues of symmetric or Hermitian matrices is important
in many applications. For example, the stability of processes involving such matrices is often
governed by the location of their eigenvalues. The extreme eigenvalues can also be used to
determine condition numbers, the field of values and ε-pseudospectra of arbitrary matrices
(see, e.g., [1]). For small-sized matrices the eigenvalues can be computed by the QR-method
(see [2]), but this is not feasible for large matrices. A method which is often used in practice
to compute a few extreme eigenvalues of large sparse symmetric or Hermitian matrices is the
Lanczos method (see, e.g., [2, 8, 14]). The approximations of the eigenvalues obtained with
the Lanczos method (the Ritz values) lie between the smallest and largest eigenvalue of the
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original matrix and one would like to know whether the largest (or smallest) Ritz value is
sufficiently close to the largest (or smallest) eigenvalue of that matrix.

The classical a priori error estimates for the Lanczos method, established by Kaniel, Paige,
and Saad (see, e.g., [2, 3, 6, 8, 11]) cannot be used to obtain bounds on the spectrum
of Hermitian matrices, because they involve knowledge about the eigenvalues and angles
between the eigenvectors and the starting vector. Furthermore one should note that small
residuals for the Ritz values only imply that these Ritz values are close to an eigenvalue,
but it is not guaranteed that this eigenvalue is indeed the one we are looking for (cf., e.g.,
[9]). In fact, it is not possible to derive rigorous bounds on the spectrum from any possible
starting vector: if the starting vector is perpendicular to the eigenvector (or eigenspace in
case of double eigenvalues) corresponding to the largest or smallest eigenvalue it is impossible
to obtain any information regarding this eigenvalue from the Lanczos process.

In this paper we derive various bounds for the spectrum of real symmetric matrices using
a probabilistic approach. Assuming that the starting vector of the Lanczos process is ran-
domly chosen from a uniform distribution over the unit sphere, we derive for every ε ∈ (0, 1)
bounds for the spectrum with probability 1− ε. These bounds only use information obtained
while executing the Lanczos process; no intrinsic properties of the matrix (apart from being
symmetric) are required. Polynomials related to the Lanczos process, viz. the Lanczos poly-
nomials and Ritz polynomials, are used to derive different types of bounds. Other bounds
have been derived from a result by Kuczyński and Woźniakowski [5, Theorem 3]; Chebyshev
polynomials of the second kind are used to get these bounds. We also consider bounds ob-
tained with Chebyshev polynomials of the first kind. The sharpness of the different bounds
is analyzed theoretically and compared numerically. It turns out that the bounds based
on Lanczos polynomials are the sharpest ones in most cases; however the Ritz polynomials
sometimes provide better bounds when the Lanczos method suffers from a misconvergence.

Apart from the bounds on the spectrum we also study probabilistic a priori bounds for
the number of Lanczos steps needed to get an error or relative error in the largest or smallest
eigenvalue that is smaller than a given tolerance. For symmetric positive definite matrices
another a priori bound has been derived in [4, Theorem 4.2] for the relative error in the
largest eigenvalue; for this special case numerical experiments demonstrate that the difference
between our bound and the one from [4, Theorem 4.2] is negligible. Furthermore, we provide
upper bounds for the number of Lanczos steps needed to guarantee with probability 1 − ε
that either the spectrum lies between certain prescribed bounds or that a misconvergence has
occured.

The results in this paper deal with the Lanczos process applied to real symmetric matrices
and real starting vectors. This includes the case of Hermitian matrices, because the Lanczos
method applied to a complex Hermitian matrix (with a complex starting vector) can be
written as the application of the Lanczos method to a related real symmetric matrix of
double size with a real starting vector (see Remark 2.1 for details).

All bounds discussed in this paper are easily implemented and can be computed with little
effort while executing the Lanczos process.

The paper has been organized as follows. In Section 2 some notations and definitions are
introduced. The bounds based on Lanczos polynomials are presented in Section 3, and the
bounds obtained with Ritz polynomials can be found in Section 4. In Section 5 bounds derived
from Chebyshev polynomials are given. The a priori estimates for the number of Lanczos
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steps still to be done for sufficiently accurate approximations can be found in Section 6.1, and
the estimates for the number of Lanczos steps needed to obtain prescribed bounds for the
spectrum or to detect misconvergence can be found in Section 6.2. Numerical experiments
are presented in Section 7, and the conclusions are presented in Section 8.

2. Preliminaries and notation

In this section we introduce some notations and we present relevant properties of the Lanczos
method. For an introduction to the Lanczos method and more details, as well as implemen-
tation issues, the reader may consult, e.g., [2, 8].

The standard inner product on Rn will be denoted by (·, ·), and ‖·‖ stands for the Euclidean
norm. Further I is the n× n identity matrix.

Let A be a real symmetric n× n matrix with eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λn . (2.1)

The corresponding normalized eigenvectors xj form an orthonormal basis of Rn. We use the
Lanczos method to approximate one or a few extreme eigenvalues of A. The unit starting
vector is denoted by v1, and can be written as

v1 =
n∑

j=1

γjxj . (2.2)

Throughout this paper we do not consider the effect of rounding errors and we assume that
during the execution of the Lanczos process the dimensions of the Krylov subspaces

Kk(A, v1) = span{v1, Av1, . . . , Ak−1v1}

are equal to k.
In the Lanczos process vectors vk are generated by the three-term recurrence

δkvk+1 = Avk − αkvk − βk−1vk−1 for k = 1, 2, 3, . . . , (2.3)

where v0 = 0, β0 = 1, αk = (Avk, vk), βk−1 = (Avk, vk−1) and δk > 0 is chosen such that
‖vk+1‖ = 1. With this choice one has δk = βk for k ≥ 1. The vectors v1, v2, . . . , vk form an
orthonormal basis of the Krylov subspace Kk(A, v1). Let vj be the j-th column of the n× k
matrix Vk. The Ritz values occurring in step k of the Lanczos process are the eigenvalues of
the tridiagonal k × k matrix Tk = V T

k AVk and are denoted by

θ
(k)
1 < θ

(k)
2 < · · · < θ

(k)
k ;

the Ritz values satisfy θ
(k)
j > λj and θ

(k)
k+1−j < λn+1−j (1 ≤ j ≤ k). We denote the eigenvectors

of Tk by s
(k)
j : Tks

(k)
j = θ

(k)
j s

(k)
j , and the Ritz vectors by y

(k)
j = Vks

(k)
j , where we assume that

these Ritz vectors are normalized as well. Further we introduce the residuals

r
(k)
j = Ay

(k)
j − θ

(k)
j y

(k)
j .
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Related to the three-term recursion (2.3) are the polynomials pk of degree k with p−1(t) = 0,
p0(t) = 1, and

βkpk(t) = (t− αk)pk−1(t)− βk−1pk−2(t) for k = 1, 2, 3, . . . . (2.4)

From (2.3) with δk = βk and (2.4) it follows that

vk+1 = pk(A)v1 for k = 1, 2, 3, . . . .

The polynomials pk are called the Lanczos polynomials with respect to A and v1. Another
class of polynomials related to the Lanczos method are the Ritz polynomials q

(k)
j of degree

k − 1 which are characterized by the fact that

y
(k)
j = q

(k)
j (A)v1 for j = 1, 2, . . . , k . (2.5)

In the following sections estimates for the eigenvalues of A, based on Lanczos- and Ritz
polynomials, will be studied and compared. Therefore it is important to understand the
relation between these polynomials. The polynomial pk is a scalar multiple of the charac-
teristic polynomial of the matrix Tk (cf., e.g., [7]), which implies that θ

(k)
1 , θ

(k)
2 , . . . , θ

(k)
k are

the zeroes of pk. From [8, Section 12.3] it follows that these Ritz values without θ
(k)
j are

the zeroes of q
(k)
j . Hence pk(t) = c

(k)
j (t − θ

(k)
j )q(k)

j (t) for a certain constant c
(k)
j

1. Because

vk+1 = pk(A)v1 = c
(k)
j (A − θ

(k)
j I)q(k)

j (A)v1 = c
(k)
j r

(k)
j , we have c

(k)
j = 1/‖r(k)

j ‖, which yields
the following relation between the Lanczos- and Ritz polynomials:

pk(t) = (t− θ
(k)
j )q(k)

j (t) / ‖r(k)
j ‖ for j = 1, 2, . . . , k . (2.6)

Remark 2.1 The Lanczos method described above can also be used to determine a few
extreme eigenvalues of a complex Hermitian matrix A. The results in this paper however
are only valid for real symmetric matrices, but the Lanczos method for Hermitian matrices
can be formulated in terms of real matrices and vectors. Let ReA and ImA be the real and
imaginary part of A respectively. The Lanczos method applied to the 2n×2n real symmetric
matrix

B =
(

Re A −ImA
ImA ReA

)

with starting vector
(

Re v1

Im v1

)
yields the same tridiagonal matrices Tk as the Lanczos method

applied to A with starting vector v1; this can be seen from taking the real and imaginary
part of the three-term recurrence (2.3). The numbers λ1, λ2, . . . , λn are the eigenvalues of B
(but with multiplicity twice as large as for the matrix A). Therefore (probabilistic) bounds
for the spectrum of B are (probabilistic) bounds for the spectrum of A as well.

1From this relation it follows that q
(k)
j is a scalar multiple of

∏
i6=j(t− θ

(k)
i ) and that polynomial is called

a reduced Ritz polynomial in [12]. The relation with (2.5) also follows from [12, Formula (5.14)].
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3. Spectral bounds using the Lanczos polynomial

In this section we will give probabilistic upper and lower bounds for the spectrum of A, based
on Lanczos polynomials. For each step of the Lanczos process we obtain these bounds based
on the information computed so far. No assumptions on the location or separation of the
eigenvalues are required.

The Lanczos polynomials pk are a byproduct of the process. They are usually small between
θ
(k)
1 and θ

(k)
k and increase rapidly outside this interval. We can exploit this fact: assuming

that the starting vector has significant components in the direction of x1 and xn, we can
provide upper and lower bounds for the spectrum of A.

From

1 = ‖vk+1‖2 = ‖pk(A)v1‖2 =
n∑

j=1

γ2
j pk(λj)2

and pk(λn) > 0 it follows that

1 ≥ |γn| pk(λn) .

If γn is known, this estimate provides an upper bound λup for λn: let λup be the zero of

fL(t) = pk(t)− 1/|γn| (3.1)

for which λup > θ
(k)
k . This number λup exists and is unique because pk is strictly increasing

on (θ(k)
k ,∞) and it can be determined by Newton’s method or bisection. As a starting point

for the Newton process one can take ‖A‖∞ (the maximal row sum of the absolute values of
the entries of A) or a previously computed upper bound for λn.

In practice we do not know γn, but we can determine the probability that |γn| is smaller
than a given (small) constant. Let Sn−1 denote the (n− 1)-dimensional unit sphere in Rn.
We assume that v1 is chosen randomly with respect to the uniform distribution over Sn−1.
Then, as a result, (γ1, γ2, . . . , γn) is also random with respect to the uniform distribution
over Sn−1 (cf., e.g., [4, p. 1116]). In the following lemma we compute the probability that
|γn| is smaller than δ.

Lemma 3.1 Assume that the starting vector v1 has been chosen randomly with respect to
the uniform distribution over the unit sphere Sn−1 and let δ ∈ [0, 1]. Then

P (|γn| ≤ δ) = 2B(n−1
2 , 1

2)−1 ·
∫ arcsin δ
0 cosn−2 tdt

where B denotes Euler’s Beta function: B(x, y) = Γ(x)Γ(y)/Γ(x + y) =
∫ 1
0 tx−1(1− t)y−1dt.

Proof. Define Sδ = {γ ∈ Sn−1 : |γn| < δ}; we want to determine the ratio of the areas of
the sets Sδ and Sn−1. The image of the map

ϕ : (−π, π) × (−π
2 , π

2 ) n−2 → Sn−1



6

defined by

ϕ :


α
ψ1

ψ2
...

ψn−2

 7→


cos α cos ψ1 cosψ2 · · · cosψn−3 cos ψn−2

sinα cos ψ1 cos ψ2 · · · cos ψn−3 cos ψn−2

sin ψ1 cos ψ2 · · · cos ψn−3 cos ψn−2
...

sin ψn−3 cos ψn−2

sin ψn−2


equals the sphere up to a negligible set. The associated Euclidean density is given by

ω(α,ψ1, ψ2, . . . , ψn−2) = cosψ1 · cos2 ψ2 · · · cosn−2 ψn−2 .

Therefore we can compute the areas of Sδ and Sn−1 by integrating this density over the
respective domains. Taking the ratio of the two results we get

P (|γn| ≤ δ) = P (|ψn−2| ≤ arcsin δ)

= 2
∫ arcsin δ
0 cosn−2 tdt

/ ∫ π/2
−π/2 cosn−2 tdt

= 2
∫ arcsin δ
0 cosn−2 tdt

/
B(n−1

2 , 1
2) ,

which proves the lemma.
�

Now suppose we would like to have an upper bound for the spectrum of A that is correct
with probability 1− ε. Then we determine the value of δ for which∫ arcsin δ

0
cosn−2 tdt = ε

2B(n−1
2 , 1

2)
(
= ε

∫ π/2
0 cosn−2 tdt

)
(3.2)

holds, e.g., by using Newton’s method (the integrals in (3.2) can be computed using an
appropriate quadrature formula). We replace |γn| in (3.1) by the value δ computed from
(3.2) and determine the zero λup > θ

(k)
k . This λup is an upper bound for the spectrum of A

with probability 1− ε.
A lower bound λlow for the spectrum of A with probability 1−ε can be obtained in a similar

way (note that Lemma 3.1 remains valid if |γn| is replaced by |γ1|). The only difference is that
we have to separate the cases where k, the degree of pk, is even (pk(t) → +∞ for t → −∞)
or odd (pk(t)→ −∞ for t→ −∞). Hence we have proved the following theorem.

Theorem 3.2 Assume that the starting vector v1 has been chosen randomly with respect
to the uniform distribution over Sn−1 and let ε ∈ (0, 1). Then λup, the largest zero of the
polynomial

fL(t) = pk(t)− 1/δ (3.3)

with δ given by (3.2), is an upper bound for the spectrum of A with probability 1 − ε, and
λlow, the smallest zero of

fL(t) = (−1)kpk(t)− 1/δ (3.4)

is a lower bound for the spectrum of A with probability 1− ε.
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Note that if we are unlucky in choosing v1, so that |γn| < δ, then the computed bounds may
or may not be correct; see Section 7 for an illustration.

The determination of the lower- and upper bounds from Theorem 3.2 is rather cheap in
general (compared with a matrix-vector multiplication with A); the computation of fL(t)
(using (2.4)) costs approximately 6k floating point operations. Note that the Ritz values and
vectors are not needed to obtain these bounds of the spectrum. For very small k one cannot
expect to obtain tight bounds, so it only makes sense to compute the zeroes of (3.3) and (3.4)
for k of moderate size. In practice one could, e.g., compute these zeroes only every second or
third Lanczos step until the bounds become sufficiently sharp.

4. Spectral bounds using Ritz polynomials

We can also try to obtain probabilistic upper and lower bounds for the spectrum of A by
using some Ritz polynomials q

(k)
j . The degree of these polynomials is one less than the degree

of pk, but while pk(θ
(k)
k ) = 0, the polynomial q

(k)
k has its last zero in θ

(k)
k−1 and could be a

competitor of pk to give a possibly tighter upper bound. Similarly, q
(k)
1 may be used to obtain

another lower bound.
We write θ

(k)
j as a Rayleigh quotient:

θ
(k)
j = (Ay

(k)
j , y

(k)
j ) =

n∑
i=1

λi γ
2
i q

(k)
j (λi)2 . (4.1)

First suppose that A is positive semidefinite. Then set j = k to derive the inequality θ
(k)
k ≥

λn γ2
n q

(k)
k (λn)2. The zero λup > θ

(k)
k of

fR(t) = tq
(k)
k (t)2 − θ

(k)
k /γ2

n (4.2)

is an upper bound for λn. If γn is not known one can obtain an probabilistic upper bound
λup of λn with probability 1− ε, as in the previous section (replace γn in (4.2) by δ where δ
satisfies (3.2)).

As in the previous section, if we happen to choose a v1 so that |γn| < δ, then we are not
certain that the computed upper bound is correct. It can even happen that the largest zero
λup of fR with γn replaced by δ satisfies λup < θ

(k)
k ! See Section 7 for an illustration.

When it is not known whether A is positive definite, we can obtain a probabilistic upper
bound in the following way. Let −σ < 0 be a known lower bound for the spectrum of A:
then the matrix A + σI is positive semidefinite. We get

θ
(k)
k + σ =

n∑
i=1

(λi + σ) γ2
i q

(k)
k (λi)2

with λi + σ ≥ 0 for all i. The rightmost zero of

fR(t) = (t + σ)q(k)
k (t)2 − (θ(k)

k + σ)/γ2
n (4.3)

is an upper bound for the spectrum of A. Again, we can replace γn by the δ that satisfies
(3.2) to compute a probabilistic upper bound.
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For a lower bound, we use the polynomial q
(k)
1 . If A is negative semidefinite it follows from

θ
(k)
1 ≤ λ1 γ2

1 q
(k)
1 (λ1)2 (cf. (4.1)) that the unique zero λlow < θ

(k)
1 of

fR(t) = tq
(k)
1 (t)2 − θ

(k)
1 /γ2

1 (4.4)

is a lower bound for λ1. Otherwise one has to use a shift τ > 0 such that A − τI becomes
negative semidefinite and modify fR in (4.4) accordingly. Of course the shifts σ and τ should
be chosen as small as possible to get the best results.

The bounds discussed in this section can be determined e.g. by Newton’s method or bisec-
tion. In order to compute fR(t) one has to know the (largest or smallest) Ritz value θ

(k)
j and

the corresponding eigenvector of the tridiagonal matrix Tk. Apart from that the computation
of fR(t) is cheap. The determination of the bounds based on Ritz polynomials will be more
expensive in general than the determination of the bounds based on the Lanczos polynomials
(the Ritz values and vectors are not needed in the latter case).

It is interesting to compare the sharpness of the bounds based on Ritz polynomials and
those based on Lanczos polynomials. For simplicity we assume that A is positive semidefinite
and compare the largest zero of (4.2) with the largest zero of (3.1) (the other cases, including
those where shifts are used, can be analyzed in a similar way). Consider the function

g(t) =
√

t/θ
(k)
k q

(k)
k (t) − 1/|γn| ;

the largest zero of g is the largest zero of fR from (4.2). After some straightforward calcula-
tions, using (2.6) with j = k, one obtains that (with fL as in (3.1) and fR as in (4.2))

fL(t) < fR(t) for θ
(k)
k ≤ t ≤ (1 + c) θ

(k)
k

and

fL(t) > fR(t) for t ≥ (1 + c + c2) θ
(k)
k ,

where c = ‖r(k)
k ‖/θ

(k)
k . The quantity c can be interpreted as an approximation of the relative

error for the largest eigenvalue, and c will be small after sufficiently many Lanczos steps.
For small c the Ritz polynomial provides a smaller upper bound for λn only when this upper
bound is very close to θ

(k)
k – but in that case the Lanczos polynomial yields a very tight

upper bound as well. Hence it is not likely that the bounds based on Ritz polynomials are
sharper than the bounds obtained with the Lanczos polynomials – unless c is large. Numerical
experiments illustrating these observations can be found in Section 7.

5. Spectral bounds using Chebyshev polynomials

Chebyshev polynomials are often used to obtain error bounds for the Lanczos method, cf., e.g.,
[2, 5, 8]. In this section we explain how these polynomials can be used to obtain probabilistic
upper and lower bounds for the spectrum of A, based on computations with the Lanczos
method. One type of bounds follow easily from a result by Kuczyński and Woźniakowski [5,
Theorem 3].

Let cj(t) = cos(j arccos t) be the Chebyshev polynomial (of the first kind) of degree j (with
the usual extension outside the interval [−1, 1]). The polynomial

uj−1(t) = 1
j c′j(t)



9

of degree j − 1 is a Chebyshev polynomial of the second kind (cf. [10, p. 7]).
In [5, Theorem 3] the following result has been derived for symmetric positive definite

matrices. Let t > 1 and v1 be randomly chosen from a uniform distribution over Sn−1. Then

P (λn ≤ t θ
(k)
k ) ≥ 1 − 2/

(
B(n−1

2 , 1
2)
√

t− 1u2(k−1)(
√

t )
)

(5.1)

(B is the Euler Beta function). The estimate (5.1) can be generalized for symmetric indefinite
matrices by using a shift σ such that A + σI is positive definite. Probability estimates for
lower bounds of λ1 can be obtained similarly. Along these lines we have derived bounds for
the spectrum of A with probability at least 1 − ε, and these results are presented in the
following theorem.

Theorem 5.1 Let ε ∈ (0, 1) and σ, τ ∈ R be such that A+σI is positive (semi-)definite and
A− τI is negative (semi-)definite. Consider for t ≥ 1 the function

f(t) = ε
2 B(n−1

2 , 1
2)
√

t− 1u2(k−1)(
√

t ) − 1 (5.2)

(B is the Euler Beta function) and let tk > 1 be the (unique) zero of f . Furthermore, let v1

be randomly chosen from a uniform distribution over Sn−1. Then

λup = tk θ
(k)
k + (tk − 1)σ (5.3)

is an upper bound for the spectrum of A with probability at least 1− ε and

λlow = tk θ
(k)
1 − (tk − 1)τ (5.4)

is a lower bound for the spectrum of A with probability at least 1− ε.

The quantity tk can be determined numerically. The numbers uj(t) can be computed from
the three-term recurrence uj(t) = 2tuj−1(t) − uj−2(t) for j ≥ 2, u0(t) = 1, u1(t) = 2t (see,
e.g., [10, p. 40]). From (5.3) and (5.4) it is clear that the shifts σ and τ should be chosen as
small as possible (cf. also Section 4).

Other bounds for the spectrum of A can be obtained, with Chebyshev polynomials (of the
first kind), as follows. Let a < b and cj(t; a, b) = cj(1 + 2(t − b)/(b − a)) be the Chebyshev
polynomial of degree j with respect to the interval [a, b]. With σ such that A+σI is positive
definite, we define the polynomial h(t) = ck−1(t;−σ, θ

(k)
k ) and the vector x = h(A)v1 ∈

Kk(A, v1). From θ
(k)
k (x, x) ≥ (Ax, x) it follows that2 the largest zero of

fC(t) = (t− θ
(k)
k )ck−1(t;−σ, θ

(k)
k )

2
− (θ(k)

k + σ)/γ2
n (5.5)

is an upper bound for λn. With γn replaced by the δ computed from (3.2), as in the previous
sections, one obtains an upper bound λup for the spectrum of A with probability 1 − ε. A
lower bound for the spectrum of A can be obtained in a similar way, using θ

(k)
1 (x, x) ≤ (Ax, x)

with x = ck−1(A; θ(k)
1 , τ)v1 and τ such that A− τI is negative definite.

2Invoke (2.2): use
∑
γ2
j ≤ 1 where the summation is with respect to those j satisfying λj ≤ θ

(k)
k and

h(λj)
2 ≤ 1 for λj ≤ θ(k)

k .
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In order to compare the bounds derived along these lines with those obtained from Theorem
5.1, we first replace γn in (5.5) by δ and scale the interval [−σ, θ

(k)
k ] to [0, 1]. The largest zero

λup of (5.5) satisfies the equality λup = t̂ θ
(k)
k + (t̂− 1)σ where t̂ > 1 is the unique zero of

g(t) = δ
√

t− 1 ck−1(t; 0, 1) − 1 .

Note that ck−1(t; 0, 1) = c2(k−1)(
√

t ;−1, 1) ≡ c2(k−1)(
√

t ) for all t > 0, c2(k−1)(
√

t ) is a
polynomial of degree k − 1 in t which has the same zeroes as ck−1(t; 0, 1). This means that
we have to compare the zeroes of (5.2) and those of

g(t) = δ
√

t− 1 c2(k−1)(
√

t ) − 1 . (5.6)

The relation between δ and ε
2B(n−1

2 , 1
2) is given by (3.2). One has δ > ε

2B(n−1
2 , 1

2) for all
ε ∈ (0, 1) and n ≥ 4, but δ ≈ ε

2B(n−1
2 , 1

2) for ε and n of practical interest. For instance,
(δ − ε

2B(n−1
2 , 1

2))/δ ≈ 2.6 · 10−5, for ε = 1.0 · 10−2 and n = 103, 104, 105, 106. On the other
hand one has the relation

u2(k−1)(
√

t ) = 2 c2(k−1)(
√

t ) + u2(k−2)(
√

t ) for t > 0 ,

(see [10, p. 9]) so that u2(k−1)(
√

t ) > 2c2(k−1)(
√

t ) and this implies, together with δ ≈
ε
2B(n−1

2 , 1
2), that the zero of (5.6) is smaller than the zero of (5.2) in most applications.

Hence, the upper bound λup from (5.3) is in general smaller than the upper bound obtained
from (5.5), so Theorem 5.1 will produce sharper bounds than the construction described
above. These observations are supported by numerical experiments (see Section 7).

6. Upper bounds for the number of Lanczos steps

6.1 Bounds based on Theorem 5.1
Theorem 5.1 can also be used to estimate the number of Lanczos steps needed to obtain an
upper bound λup for λn that is close enough to the largest Ritz value. This is a sufficient
condition for the largest eigenvalue to be found within the desired accuracy. Suppose k steps
of the Lanczos method have been performed and θ

(k)
k > 0. If θ

(k)
k < 0 the eigenvalue λn can

be arbitrary close to zero and the relative error cannot be estimated in that case.
Let λup be an upper bound for λn and suppose that (λup − θ

(k)
k )/θ(k)

k > tol, where tol is
the prescribed tolerance for the relative error. An upper bound for the number of Lanczos
steps that are still necessary to get a relative approximative error that is smaller than tol,
with probability 1 − ε, can be obtained as follows: let m ≥ k and let tm be the zero of the
function f in (5.2) with k replaced by m. It follows from (5.3) that

λn − θ
(m)
m

λn
≤ (tm − 1)(θ(m)

m + σ)
λn

≤ (tm − 1)(λn + σ)
λn

≤ (tm − 1)(κ + σ)
κ

, (6.1)

where κ = θ
(k)
k if σ ≥ 0, and κ = λup (an upper bound for λn) whenever σ < 0; here σ is as in

Theorem 5.1. The requirement (tm−1)(κ+σ)/κ ≤ tol is equivalent to tm ≤ 1+tol·κ/(κ+σ)
and the smallest integer m for which the quantity tm from (5.2) satisfies

tm ≤ 1 + tol · κ/(κ + σ) , (6.2)
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is an upper bound for the number of Lanczos steps in order to provide an approximation θ
(m)
m

to λn that satisfies (λn − θ
(m)
m )/λn ≤ tol with probability 1− ε.

For symmetric positive definite matrices an upper bound m for the number of Lanczos
steps which yield an approximation to the largest eigenvalue, such that the relative error is
bounded by tol with probability 1 − ε, has been given in [4, Theorem 4.2]: the number m
should satisfy

1.648
√

n e−(2m−1)
√
tol ≤ ε . (6.3)

Numerical experiments show that (6.3) yields almost the same upper bound as (6.2) with
σ = 0 (in most cases the bounds were exactly the same, while the difference was at most two
steps); this is not surprising in view of the discussion in [5, p. 679]. However, (6.2) can be
used for indefinite matrices as well, as long as θ

(k)
k > 0. Furthermore, for symmetric positive

definite matrices smaller numbers m may be obtained when (6.2) is applied with σ < 0.
To estimate the number of steps, still necessary to have λn − θ

(m)
m ≤ tol with probability

1− ε, we proceed as follows. If m satisfies the requirement (cf. (6.1))

(tm − 1)(λup + σ) ≤ tol , (6.4)

with λup > λn, the equality λn − θ
(m)
m ≤ tol holds. The smallest integer satisfying (6.4) can

be obtained from (5.3). Note that (6.4) is also valid when θ
(k)
k < 0 and we do not have to

distinguish between the cases σ ≥ 0 and σ < 0.
Estimates for the number of Lanczos steps, to be done so that the (relative) error in the

smallest eigenvalue is less than tol with probability 1− ε, can be derived in a similar way.

6.2 Upper bounds for the number of Lanczos steps in case of misconvergence
Suppose that after sufficiently many Lanczos steps the largest Ritz value seems to have
converged to an eigenvalue: θ

(k)
k ≈ θ

(k−1)
k−1 for several consecutive k and ‖r(k)

k ‖ is small. In
most cases the largest Ritz value has converged to the largest eigenvalue λn, but it may also
happen that θ

(k)
k is not close to λn (misconvergence); this can happen, e.g., if |γn| is very

small. Below we show how one can determine a probabilistic upper bound for the number of
Lanczos steps needed so that one can safely conclude that either λn < λ holds with a given
constant λ or a misconvergence has been detected, i.e. λn > θ

(k)
k + ‖r(k)

k ‖.
Let m > k and g be a polynomial of degree m − 1 and x = g(A)v1 ∈ Km(A, v1). When

λn > θ
(k)
k + ‖r(k)

k ‖, the inequality

(Ag(A)v1, g(A)v1) > (θ(k)
k + ‖r(k)

k ‖) (g(A)v1, g(A)v1) (6.5)

is satisfied for a certain m and a suitable polynomial g. The Ritz polynomial q
(m)
m maximizes

the Rayleigh quotient (Ag(A)v1, g(A)v1)/(g(A)v1, g(A)v1) but q
(m)
m cannot be determined

after k steps of the Lanczos process so that we have to use another polynomial. Rewriting
(6.5) using (2.2) gives

(λn − (θ(k)
k + ‖r(k)

k ‖)) γ2
n g(λn)2 > (θ(k)

k + ‖r(k)
k ‖ − λn−1) γ2

n−1 g(λn−1)2

+
n−2∑
j=1

(θ(k)
k + ‖r(k)

k ‖ − λj) γ2
j g(λj)2

(6.6)



12

In order to satisfy (6.6) with m as small as possible we search for a polynomial g that
is large in λn and small in λ1, λ2, . . . λn−2. On the other hand (Aq

(k)
k (A)v1, q

(k)
k (A)v1) =

θ
(k)
k (q(k)

k (A)v1, q
(k)
k (A)v1), so g(t) should imitate q

(k)
k (t) as well. The polynomial g(t) =

q
(k)
k (t)cm−k(t;λ1, λn−2) serves both ideas, but unfortunately λ1 and λn−2 are not known.

Let again −σ ≤ λ1, and assume that |θ(k)
k − λn−1| ≤ ‖r(k)

k ‖ and λn−2 ≤ θ
(k)
k−1 + ‖r(k)

k−1‖.
These assumptions are likely to be realistic in case of a misconvergence. Define g(t) =
q
(k)
k (t)cm−k(t;−σ, θ

(k)
k−1 +‖r(k)

k−1‖). Furthermore, we replace in the right-hand side of (6.6) the

quantities θ
(k)
k + ‖r(k)

k ‖ − λn−1 by 2‖r(k)
k ‖, γ2

n−1 by 1, g(λn−1) by g(θ(k)
k + ‖r(k)

k ‖) and g(λj)
by M where

M = max{|q(k)
k (t)| : −σ ≤ t ≤ θ

(k)
k−1 + ‖r(k)

k−1‖ } .

Then the inequality

(λn − (θ(k)
k + ‖r(k)

k ‖)) g(λn)2 > 2‖r(k)
k ‖ g(θ(k)

k + ‖r(k)
k ‖)2 / γ2

n

+ M2(θ(k)
k + ‖r(k)

k ‖+ σ) / γ2
n

(6.7)

implies (6.6) (cf. the derivation of (5.5), which is based on the same ideas). We now replace
λn in (6.7) by λ and γn by δ, where we assume |γn| ≥ δ; the ‘probabilistic approach’. Then
the following inequality implies (6.7) and hence (6.5):

(λ− (θ(k)
k + ‖r(k)

k ‖)) g(λ)2 > 2‖r(k)
k ‖ g(θ(k)

k + ‖r(k)
k ‖)2 / δ2

+ M2(θ(k)
k + ‖r(k)

k ‖+ σ) / δ2 .
(6.8)

We now determine the smallest integer m > k such that (6.8) is satisfied, and perform
m − k Lanczos steps to obtain θ

(m)
m . If θ

(m)
m < θ

(k)
k + ‖r(k)

k ‖ (cf. (6.5)) then we know that
the inequality λn < λ holds with probability 1 − ε, again with ε related to δ as in (3.2).
If θ

(m)
m > θ

(k)
k + ‖r(k)

k ‖, we know that a misconvergence has occured and we do not know
whether λn < λ holds or not. In the latter case one may repeat the above construction with
k replaced by m.

These ideas can also be used to investigate whether the smallest Ritz value has converged
to λ1 or not.

7. Numerical experiments

In this section we compare the different bounds derived in the previous sections. All experi-
ments have been carried out with Matlab on a SUN workstation. Without loss of generality
we can restrict ourselves to diagonal matrices A (cf. [4, Section 6]): this will reduce the
influence of rounding errors on our computations. For analysis it is also convenient to know
the eigenvalues and eigenvectors of A. The vector v1 is randomly chosen from the uniform
distribution over the unit sphere Sn−1 and in [4, p. 1116] it is explained how this can be done.

In our first example we take

n = 1000 , A = diag(1, 2, . . . , 1000) . (7.1)
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Let ε = 0.01, i.e. we are looking for bounds of the spectrum that are 99% reliable. From
(3.2) one obtains δ = 3.97 · 10−4. We checked that our randomly chosen starting vector v1

satisfied |γ1| > δ and |γn| > δ, so the computed probabilistic bounds are true bounds for the
spectrum of A. We have performed 100 Lanczos steps. The shifts (see Sections 4 and 5) used
in our computations are σ = 0 and τ = λn = 1000. The results are displayed in Figure 7.1.

20 40 60 80 100
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1070

20 40 60 80 100
−70

−60

−50

−40

−30

−20

−10

0

10

Figure 7.1. Bounds for the spectrum of A. Solid curves correspond to the bounds

based on Lanczos polynomials, the dashed curves correspond to bounds based on Ritz

polynomials, the dotted curves correspond to bounds obtained from Theorem 5.1 and the

dash-dotted curves correspond to (5.5). The left figure shows the upper bounds and the

right figure the lower bounds. The largest Ritz values (left picture) and smallest Ritz

values (right picture) are indicated by dots.

From Figure 7.1 we see that the Lanczos polynomials provide the sharpest bounds and
(5.5) yields the worst bounds. In Section 4 it has already been explained why the Lanczos
polynomials may provide better bounds than the Ritz polynomials. Furthermore, it may
not be a surprise that the Lanczos polynomials produce better bounds than the Chebyshev
polynomials, because more information regarding the actual Lanczos process is used in the
construction of the Lanczos polynomials. The relation between the different bounds based
on Chebyshev polynomials is in agreement with the discussion on this topic in Section 5.
We repeated the same experiment with other random starting vectors v1, and the bounds
behaved similarly as those displayed in Figure 7.1.

We also investigated how many Lanczos steps are needed to obtain an approximation to
λn with a relative error less than a prescribed tolerance tol. Again we set σ = 0, so that
(6.2) reduces to tm ≤ 1 + tol; the upper bound m for the number of Lanczos steps does
not depend on the matrix A or the starting vector v1 and can be computed in advance. The
results are displayed in Table 7.1.

We see from Table 7.1 that the upper bound m from (6.2) is much larger than k1, the
actual number of steps needed to obtain a relative error which is smaller than tol; this has
already been observed in other examples for the upper bound obtained with (6.3) [4, 5]. Also
we observe that m > k2, the number of steps needed to obtain (λup − θ

(k)
k )/λup ≤ tol. This

is not surprising in view of the results from Figure 7.1, because m is related to the upper
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bound determined with Theorem 5.1 and these bounds are not as sharp as those based on
Lanczos polynomials. Instead of performing m Lanczos steps it may be useful in practice
to compute (λup − θ

(k)
k )/λup while executing the Lanczos method and check whether this

quantity is smaller than tol or not.

tol m k1 k2

5.0 · 10−2 20 5 18
1.0 · 10−2 44 11 40
5.0 · 10−3 61 17 55
1.0 · 10−3 136 48 97

Table 7.1. In the second column the smallest integer m satisfying (6.2) with σ = 0 has

been displayed. The smallest integer k1 for which (λn − θ
(k)
k )/λn ≤ tol is displayed in

the third column, and the smallest integer k2 with (λup − θ
(k)
k )/λup ≤ tol, where λup is

the upper bound for λn obtained with the Lanczos polynomial of degree k, is listed in

the fourth column of the table.

We have repeated the experiments described above with ε = 0.001 (instead of ε = 0.01).
The behaviour of the bounds is the same as for ε = 0.01, but the bounds are of course further
away from the spectrum of A. In order to compare the different bounds, let λup be an upper
bound corresponding to ε = 0.01 (determined with one of the four techniques discussed here),
and let λ̃up be the upper bound determined with the same technique but with ε = 0.001. For
all four techniques we observed that 1 < (λ̃up − λn)/(λup − λn) < 2.3 for 20 ≤ k ≤ 100 (k
denotes the number of Lanczos steps) and the same holds for (λ1 − λ̃low)/(λ1 − λlow), where
the lower bounds λlow and λ̃low are defined analogously. Hence the behaviour of the bounds
for the spectrum of A does not change much when ε is decreased from 0.01 to 0.001 which is
reasonable because the polynomials used to derive the bounds grow fast outside the spectrum
of A.

The second example comes from the discretization of the Laplace operator on the unit
square with homogeneous Dirichlet boundary conditions. When the standard second order
finite difference scheme with uniform meshwidth equal to 1/33 (in both directions) is used,
one obtains a symmetric matrix of order n = 322 = 1024 with eigenvalues

332(−4 + 2 cos( iπ
33) + 2 cos( jπ

33 )) , i, j = 1, 2, . . . , 32 (7.2)

(see, e.g., [13, Section 6.5]). Let A be the diagonal matrix of order 1024 with these eigenvalues
on its diagonal in increasing order. Note that A is negative definite.

We have computed bounds for the spectrum of A with ε = 0.01 (which yields δ = 3.92·10−4

by (3.2)), σ = −λ1 and τ = 0, using different randomly chosen starting vectors. For most
starting vectors the bounds behave similarly as in the first example and we will not consider
this further. Instead we deal with two different starting vectors that provide a different
behaviour for the upper bounds (similar results can be obtained for lower bounds as well).
In the left picture we see what can happen if |γn| is small (|γn| = 5.46 ·10−4 for this example),
but still greater than δ. The Ritz polynomials provide the sharpest bounds at a certain stage
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Figure 7.2. “Upper bounds” for the spectrum of A, obtained with two different starting

vectors; the starting vector for the left picture satisfies |γn| > δ, while |γn| < δ for the

starting vector used to produce the right picture. Solid curves correspond to the bounds

based on Lanczos polynomials, the dashed curves correspond to bounds based on Ritz

polynomials, the dotted curves correspond to bounds obtained from Theorem 5.1 and the

dash-dotted curves correspond to (5.5). The largest Ritz values are indicated by dots.

of the Lanczos process. At that stage the misconvergence behaviour of the Lanczos process
(cf., e.g., [9]) is discovered: for 37 ≤ k ≤ 49 one has |λn−1− θ

(k)
k | ≤ 0.15 (λn−1 = −49.22 · · · ),

and the largest Ritz values seem to converge to a number close to the (double) eigenvalue
λn−1. For larger values k the Lanczos process notices the existence of a larger eigenvalue
(λn = −19.72 · · · ) and starts to converge to this eigenvalue. At the stage of the Lanczos
process where the misconvergence behaviour is discovered, the norm of the residual usually
increases strongly (for example, ‖r(42)

42 ‖ = 5.65 and ‖r(55)
55 ‖ = 102) and a large residual norm

may explain why the Ritz polynomials provide sharper bounds than the Lanczos polynomials
(see the discussion at the end of Section 4). However, for larger k the bounds based on Lanczos
polynomials are again the sharpest ones. The misconvergence of the Lanczos process also
causes a hump in the upper bounds obtained with the Chebyshev polynomials. Finally we
note that the upper bounds obtained with the Lanczos polynomials are much sharper than
those obtained with the Chebyshev polynomials.

In the right figure the behaviour is shown for a starting vector for which, in contrary to our
assumption, |γn| < δ (|γn| = 3.13 · 10−5). This means that the probabilistic upper bounds
for λn need not to be true bounds, and the right picture in Figure 7.2 shows that at certain
stages of the Lanczos process the Lanczos and Ritz polynomials provide bounds that are
actually smaller than λn. The Chebyshev bounds follow the jump of the Ritz values at the
discovering of the misconvergence, as in the left picture. At that stage the Lanczos bound
corrects its value to give a tight bound, but the Ritz bound fails completely: the upper bound
stays far below the largest Ritz value.

In the third example we illustrate the theory of Section 6.2. We take

n = 1000 , A = diag(1, 2, . . . , 999, 1020) . (7.3)
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We set σ = −λ1 and the starting vector v1 is chosen as follows: γ1 = γ2 = γn−2 = γn−1 = c,
γj = 10−3c (3 ≤ j ≤ n − 3), γn = 10−6c and the constant c is such that

∑
γ2

j = 1. For

k = 34 we have θ
(k)
k = λn−1 − 3.20 · 10−5, ‖r(k)

k ‖ = 7.3 · 10−2 so that λn > θ
(k)
k + ‖r(k)

k ‖.
We now determine the smallest integer m for which (6.8) holds. We set k = 34, λ = λn,
δ = γn = 5.0 · 10−7 and M = 2.11 (this quantity has been determined by plotting the
graph of the Ritz polynomial q

(k)
k and zooming in onto the region where |q(k)

k (t)| attains its
maximum). The smallest m satisfying (6.8) is m = 69. The Lanczos process finds the largest
eigenvalue λn earlier: one has, e.g., θ

(50)
50 = λn − 2.4 · 10−2, θ

(60)
60 = λn − 5.5 · 10−5 and

θ
(69)
69 = λn− 2.4 ·10−7 . This behaviour is not surprising: the Ritz polynomial q

(m)
m maximizes

the Rayleigh quotient (Ag(A)v1, g(A)v1)/(g(A)v1, g(A)v1) and several other estimates used
in the derivation of (6.8) may not be sharp as well.

8. Conclusion

Using the fact that the Lanczos, Ritz and Chebyshev polynomials are rapidly increasing
outside the smallest interval containing the Ritz values, we have given probabilistic bounds for
the spectrum of a symmetric matrix. From theoretical arguments supported by experiments
we conclude that the bounds obtained with the Lanczos polynomials are generally sharper
than those derived from Chebyshev polynomials. In most cases the bounds based on Lanczos
polynomials are also sharper than the bounds found with Ritz polynomials – unless the norm
of the corresponding residual is relatively large (which occurs if the Lanczos method suffers
from a misconvergence).

The bounds corresponding to the Lanczos polynomials are cheap to compute, because the
Ritz values are not required. When the Ritz values are available, it is useful to compute the
bounds based on these polynomials as well, because they might be sharper; in that case it can
indicate a misconvergence of the Lanczos method. The bounds based on Theorem 5.1, using
Chebyshev polynomials of the second kind, may be determined as well because they can be
computed cheaply (when the Ritz values are known). The bounds obtained from Theorem
5.1 are sharper than those derived from (5.5), which are based on Chebyshev polynomials of
the first kind, in all cases of practical interest; hence it seems not useful to determine the
latter ones.

Chebyshev polynomials may also be used to determine probabilistic bounds for the number
of Lanczos steps still to be done in order to get bounds for the (relative) error which are
smaller than the desired tolerance. However our experiments suggest that these bounds are
much larger than the actual number of Lanczos steps still to be done to get an approximation
which is sufficiently accurate. From their derivation (6.1) it is clear that one cannot expect
a proper estimation of the number of steps required if the bounds from Theorem 5.1 are far
from sharp.

A combination of Ritz and Chebyshev polynomials can be used to obtain probabilistic
bounds for the number of Lanczos steps needed such that one can decide that either the
spectrum lies between certain prescribed bounds or a misconvergence has occured.

Acknowledgements. The authors wish to thank J.A.C. Kolk for discussions regarding
Lemma 3.1 and G.L.G. Sleijpen for pointing out reference [5].
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