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ABSTRACT

The Jacobi-Davidson method is suitable for computing solutions of large n-dimensional eigenvalue problems.

It needs (approximate) solutions of speci�c n-dimensional linear systems. Here we propose a strategy based

on a nonoverlapping domain decomposition technique in order to reduce the wall clock time and local memory

requirements. For a model eigenvalue problem we derive optimal coupling parameters. Numerical experiments

show the e�ect of this approach on the overall Jacobi-Davidson process. The implementation of the eventual

process on a parallel computer is beyond the scope of this paper.
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1. INTRODUCTION

The Jacobi-Davidson method [17] is a valuable approach for the solution of large (generalized) linear
eigenvalue problems. The method reduces the large problem to a small one by projecting it on an
appropriate low dimensional subspace. Approximate solutions for eigenpairs of the large problem
are obtained from the small problem by means of a Rayleigh-Ritz principle. The heart of the Jacobi-
Davidson method is how the subspace is expanded. To keep the dimension of the subspace, and
consequently the size of the small problem, low it is essential that all necessary information of the
wanted eigenpair(s) is collected in the subspace after a small number of iterations. Therefore, the
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subspace should be expanded with a vector that contains important information not already present in
the subspace. The correction equation of the Jacobi-Davidson method aims to prescribe such a vector.

But in itself, the correction equation poses a large linear problem, with size equal to the size of the
originating large eigenvalue problem. Because of this, most of the computational work of the Jacobi-
Davidson method arises from solving the correction equation. In practice the eigenvalue problem is
often so large that an accurate solution of the correction equation is too expensive. However, often
approximate solutions of the correction equation suffice to obtain sufficiently fast convergence of the
Jacobi-Davidson method. The speed of this convergence depends on the accuracy of the approximate
solution. Jacobi-Davidson lends itself to be used in combination with a preconditioned iterative solver
for the correction equation. In such a case the quality of the preconditioner is critical.

Nonoverlapping domain decomposition methods forlinear systemshave been studied well in liter-
ature. Because of the absence of overlapping regions they have computational advantages compared
to domain decomposition methods with overlap. But much depends on the coupling that should be
chosen carefully.

In this paper we will show how a nonoverlapping domain decomposition technique can be in-
corporated in the correction equation of Jacobi-Davidson, when applied to PDE type of eigenvalue
problems. The technique is based on work by Tang and by Tan and Borsboom for linear systems.

For a linear system Tang [20] proposed to enhance the system with duplicates in order to enable
an additive Schwarz method with minimal overlap (for more recent publications, see for example [7],
[12] and [10]). Tan and Borsboom [19, 18] refined this idea by introducing more flexibility for the
unknowns near the interfaces between the subdomains. In this way additional degrees of freedom
are created, reflected by coupling equations for the unknowns near the interfaces and their virtual
counterparts. Now, the key point is to tune these interface conditions for the given problem in order
to improve the speed of convergence of the iterative solution method. This approach is very effective
for classes of linear systems stemming from advection-diffusion problems [19, 18].

The operator in the correction equation involves the matrix of the large eigenvalue problem shifted
by an approximate eigenvalue. In the computational process, this shift will become arbitrarily close
to the desired eigenvalue. This is a situation that requires special attention when applying the domain
decomposition technique.

An eigenvalue problem imposes a mildly nonlinear problem. Therefore, for the computation of
solutions to the eigenvalue problem one needs a nonlinear solver, for instance, a Newton method. In
fact, Jacobi-Davidson can be seen as an accelerated inexact Newton method [16]. Here, we shall, as
explained above, combine the Jacobi-Davidson method with a Krylov solver for the correction equa-
tion. A preconditioner for the Krylov solver is constructed with domain decomposition. A similar
type of nesting, but for general nonlinear systems, can be found in the Newton-Krylov-Schwarz algo-
rithms by Cai, Gropp, Keyes et al. in [4] and [5]. In these two papers the subdomains have overlap,
therefore there is no analysis for the tuning of the coupling between subdomains. Furthermore, the
eigenvalue problem is nonlinear but with a specific structure; we will exploit this structure.

Our paper is organized as follows. First, we recall the enhancement technique for domain decom-
position inx2. Then, inx3 we discuss the Jacobi-Davidson method. We outline how the technique
can be applied to the correction equation and how the projections in the correction equation should be
handled. For a model eigenvalue problem we investigate, inx4, in detail how the coupling equations
should be chosen for optimal performance. It will turn out that the shift plays a critical role. Section
x5 gives a number of illustrative numerical examples.
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2. DOMAIN DECOMPOSITION

2.1 Canonical enhancement of a linear system
Tang [20] has proposed the concept of matrix enhancement, which gives elegant possibilities for the
formulation of effective domain decomposition of the underlying PDE problem. The idea is to de-
compose the grid into nonoverlapping subgrids and to expand the subgrids by introducing additional
gridpoints and additional unknows along the interfaces of the decomposition. This approach artifi-
cially creates some overlap on gridpoint level and the overlap is minimal. For hyperbolic systems of
PDEs, this approach was further refined by Tan in [18] and by Tan and Borsboom in [19]. Discretiza-
tion of the PDE leads to a linear system of equations. Tang duplicates and adjusts those equations in
the system that couple across the interfaces. Tan and Borsboom introduce a double set of additional
gridpoints along the interfaces in order to keep each equation confined to one expanded subgrid. As
a consequence, none of the equations has to be adjusted. Then they enhanced the linear system by
‘new’ equations that can be viewed as discretized boundary conditions for the internal boundaries
(along the interfaces). Since the last approach offers more flexibility, this is the one we follow.

We start with the linear nonsingular system

By = d; (2.1)

that results from discretization of a given PDE over some domain. Now, we partition the matrixB,
and the vectorsy andd correspondingly,26664

B11 B1` B1r B12

B`1 B`` B`r B`2

Br1 Br` Brr Br2

B21 B2` B2r B22

37775 ;
26664
y1
y`
yr
y2

37775 and

26664
d1

d`
dr
d2

37775 :
The labels are not chosen arbitrarily: we associate with label1 (and2, respectively) elements/oper-
ations of the linear system corresponding to subdomain1 (2, respectively) and with label` (resp.r) el-
ements/operations corresponding to the left (resp. right) of the interface between the two subdomains.
The central blocksB``, B`r, Br` andBrr are square matrices of equal size, say,ni by ni. They
correspond to the unknowns along the interface. Since the number of unknowns along the interface
will typically be much smaller than the total number of unknows,ni will be much smaller thann, the
size ofB.

For a typical discretization, the matrixB is banded and the unknowns are only locally coupled.
Therefore it is not unreasonable to assume thatBr1;B21;B12 andB`2 are zero. For this situation,
we define the ‘canonical enhancement’BI of B, y

�
of y, andd of d, by

BI �

266666664

B11 B1` B1r 0 0 0

B`1 B`` B`r 0 0 0

0 I 0 �I 0 0

0 0 �I 0 I 0

0 0 0 Br` Brr Br2

0 0 0 B2` B2r B22

377777775
; y

�
�

266666664

y1
y`eyrey`
yr
y2

377777775
, and d �

266666664

d1

d`
0

0

dr
d2

377777775
: (2.2)

One easily verifies thatBI is also nonsingular and thaty is the unique solution of

BI y
�
= d; (2.3)
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with y � (y T
1 ; y

T

` ; y
T
r ; y

T

` ; y
T
r ;y

T
2 )

T .
With this linear system we can associate a simple iterative scheme for the two coupled subblocks:264 B11 B1` B1r

B`1 B`` B`r

0 I 0

375
264 y

(i+1)
1

y
(i+1)
`eyr(i+1)

375 =

264 d1

d`ey`(i)
375 ;

264 0 I 0

Br` Brr Br2

B2` B2r B22

375
264 ey`(i+1)

y
(i+1)
r

y2
(i+1)

375 =

264 eyr(i)
dr
d2

375 : (2.4)

These systems can be solved in parallel and we can view this as a simple additive Schwarz iteration
(with no overlap and Dirichlet-Dirichlet coupling). The extra unknownsey` andeyr, in the enhanced
vectory

�
, will serve for communication between the subdomains during the iterative solution process

of the linear system. After termination of the iterative process, we have to undo the enhancement. We
could simply skip the values of the additional elements, but since these carry also information one of
the alternatives could be the following one.
With an approximate solution

y
�

(i) = (y
(i)
1

T

; y
(i)
`

T

; ey(i)r

T

; ey(i)`

T

; y(i)r

T

;y
(i)
2

T

) T

of (2.3), we may associate the approximate solutionRy
�

of (2.1) given by

Ry
�
� (y

(i)
1

T

; 1
2
(y

(i)
` + ey(i)` ) T ; 1

2
(y(i)r + ey(i)r ) T ;y

(i)
2

T

) T ;

that is, we simply average the two sets of unknowns that should have been equal to each other at full
convergence.

2.2 Interface coupling matrix
From (2.2) we see that the interface unknowns and the additional interface unknowns are coupled in
a straightforward way by"

I 0

0 �I

#"
y`eyr
#
=

"
I 0

0 �I

#" ey`
yr

#
; (2.5)

but, of course, we may replace the coupling matrix by any other nonsingular interface coupling matrix
C:

C �
"

C`` C`r

�Cr` �Crr

#
: (2.6)

This leads to the following block system

BCy
�
=

266666664

B11 B1` B1r 0 0 0

B`1 B`` B`r 0 0 0

0 C`` C`r �C`` �C`r 0

0 �Cr` �Crr Cr` Crr 0

0 0 0 Br` Brr Br2

0 0 0 B2` B2r B22

377777775

266666664

y1
y`eyrey`
yr
y2

377777775
= d: (2.7)
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In a domain decomposition context, we will have for the approximate solutiony
�

that eyr � yr andey` � y`. If we know some analytic properties about the local behavior of the true solutiony across
the interface, for instance, smoothness up to some degree, then we may try to identify a convenient
coupling matrixC that takes advantage of this knowledge. We want preferably aC so that

�C`` ey` � C`ryr � �C``y` �C`ryr � 0

and � Cr`y` � Crr eyr � �Cr`y` � Crryr � 0:

In that case (2.7) is almost decoupled into two independent smaller linear systems (identified by the
two boxes). We may expect fast convergence for the corresponding additive Schwarz iteration.

2.3 Solution of the coupled subproblems
The goal of the enhancement of the matrix of a given linear system, together with a convenient
coupling matrixC, is to get two smaller mildly coupled subsystems that can be solved in parallel.

Additive Schwarz for the linear system (2.7) leads to the following iterative scheme264B11 B1` B1r

B`1 B`` B`r

0 C`` C`r

375
264y

(i+1)
1

y
(i+1)
`ey(i+1)
r

375 =

264d1dr
g
(i)
r

375 ;
264Cr` Crr 0

Br` Brr Br2

B2` B2r B22

375
264ey

(i+1)
`

y
(i+1)
r

y
(i+1)
2

375 =

264g
(i)
`

d`
d2

375 ; (2.8)

and

g(i)r = C`` ey(i)` + C`r y
(i)
r ; g

(i)
` = Cr` y

(i)
` + Crrey(i)r : (2.9)

The additive Schwarz method can be represented as a block Jacobi iteration method. To see this,
consider the matrix splittingBC =MC �N, where

MC �
"
M1 0

0 M2

#
;

with M1 the matrix at the top in (2.8) andM2 the matrix at the bottom. We assume thatC is such
thatMC is nonsingular. The approximate solutiony

�

(i+1) of (2.7) at stepi + 1 of the block Jacobi
method,

y
�

(i+1) = y
�

(i) +M�1
C r
�

(i) with r
�

(i) � d�BCy
�

(i); (2.10)

corresponds to the approximate solutions at stepi+1 of the additive Schwarz method. In view of the
fact that one wants to haveg(i)r andg(i)` as small as possible in norm, the starting valuey

�

(0) � 0 is
convenient, but it is conceivable to construct other starting values for which the two vectors are small
in norm (for instance, after a restart of some acceleration scheme).

Jacobi is a one step method and the updates from previous steps are discarded. The updates can
also be stored in a spaceVm and be used to obtain more accurate approximations. This leads to a
subspace method that, at stepm, searches for the approximate solution in the spaceVm, which is
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precisely equal to the Krylov subspaceKm(M�1
C BC ;M

�1
C d). For instance, GMRES [14] finds the

approximation inVm with the smallest residual, and may be useful if only a few iterations are to be
expected.

Krylov subspace methods can be interpreted as accelerators of the domain decomposition method
(2.10). The resulting method can also be seen as a preconditioned Krylov subspace method where, in
this case, the preconditioner is based on domain decomposition: the matrixMC . This preconditioning
approach where a system of the formM�1

C BCx
�
= r
�

(0) is solved, is referred to as left preconditioning.

Herer
�

(0) �M�1
C (d�BCy

�

(0)) andy = y
�

(0) + x
�

,

SinceM�1
C BC = I�M�1

C N, the search subspaceVm coincides with the Krylov subspace
Km(M�1

C N;M�1
C d). The rank of bothN andM�1

C N is equal to the dimension ofC which, in this
case whereC is nonsingular, is2ni. This shows that the dimension ofVm is at most2ni. Therefore,
the exact solutiony of (2.7) belongs toVm for m � 2ni and GMRES findsy in at most2ni steps.
(For further discussion see, for instance, [3,x3.2], [22,x2], and [2].)

2.4 Right preconditioning
We can also useMC as a right preconditioner. In that case solutiony of (2.7) is obtained asy =

y
�

(0) +M�1
C x
�

wherex
�

is solved from

BCM
�1
C x
�
= r
�

(0) with r
�

(0) � d�BCy
�

(0): (2.11)

Right preconditioning has some advantages for domain decomposition. To see this, first note that
any vector of the formNv

�
‘vanishes outside the artificial boundary’, that is, only thee�r ande�` com-

ponent of this vector are nonzero. SinceBCM
�1
C = I � NM�1

C , multiplication by this operator
preserves the property of vanishing outside the artificial boundary. Moreover, ify

�

(0) �M�1
C d, then

r
�

(0) = d�BCy
�

(0) = NM�1
C d vanishes outside the artificial boundary.

Therefore, if, fory
�

(0) �M�1
C d, equation (2.11) is solved with a Krylov subspace method with an

initial guess that vanishes outside the artificial boundary, for instancex
�

(0) = 0, then all the interme-
diate vectors also vanish outside the artificial boundary. Consequently, only vectors of size2ni have
to be stored and the vector updates and dot products are2ni dimensional operations.

For appropriatey
�

(0), the left preconditioned equation can also be formulated in a2ni dimensional
subspace. However, with respect to the standard basis, it is not so easy to identify the corresponding
subspace. We will use the2ni dimensional subspace, characterized by right preconditioning as corre-
sponding to the artificial boundary, for the derivation of properties of the eigensystem of the iteration
matrix.

2.5 Convergence analysis
As a consequence of (2.10), the errorse(i) � y � y

�

(i) in the block Jacobi method satisfy:

e
�

(i+1) = (I�M�1
C BC)e

�

(i) =M�1
C Ne

�

(i): (2.12)

Therefore, the convergence rate of Jacobi depends on the spectral properties of the ‘error propagation
matrix’ M�1

C N. These properties also determine the convergence behavior of other Krylov subspace
methods. With right preconditioning, we have to work withx

�
� x
�

(i), which would lead to the error

propagation matrixNM�1
C , but this matrix has the same eigenvalues as the previous one, so we can

analyse either of them with the same result.
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For the Jacobi iteration, the spectral radius ofM�1
C N (or of NM�1

C in the right preconditioned
situation) should be strictly less than 1. For other methods, as GMRES, clustering of the eigenvalues
of the error propagation matrix around0 is a desirable property for fast convergence.

The kernel ofN forms the space of eigenvectors ofM�1
C N that are associated with eigenvalue0.

Consider an eigenvalue� 6= 0 of M�1
C N with eigenvectorz

�
� (z T

1 ; z
T

` ; ez T
r ; ez T

` ; z
T
r ; z

T
2 )

T :

M�1
C Nz

�
= �z

�
: (2.13)

SinceN maps all components, except for thee�` ande�r ones, to zero, we have that all components of
MCz

�
, except for thee�` ande�r components, are zero. The eigenvalue problem�MCz

�
= Nz

�
can be

decomposed into two coupled problems:

�

264B11 B1` B1r

B`1 B`` B`r

0 C`` C`r

375
264z1z`ezr

375 =

26400
gr

375 ; �

264Cr` Crr 0

Br` Brr Br2

B2` B2r B22

375
264ez`zr
z2

375 =

264g`0
0

375 ; (2.14)

with

gr � C`` ez` + C`r zr; g` � Cr` z` + Crrezr: (2.15)

In the context of PDEs, the systems in (2.14) can be interpreted as representing homogeneous
partial differential equations with inhomogeneous boundary conditions along the artificial boundary:
the left system for domain 1, the right system for domain 2. The valuesgr andg` at the artificial
boundaries are defined by (2.15): the valuegr for domain 1 is determined by the solution of the PDE
at domain 2, while the solution of the PDE at domain 1 determines the value at the internal boundary
of domain 2.

We have the following properties, that help to identify the relevant part of the eigensystem:

(i) N is ann+ 2ni by n+ 2ni matrix. SinceC is nonsingular, we have that rank(N) = 2ni, and
it follows that dim(ker(N)) = n. Hence,� = 0 is an eigenvalue with geometric multiplicityn.

(ii) Since rank(N) = 2ni, there are at most2ni nonzero eigenvalues�, counted according to
algebraic multiplicity.

(iii) If � is a nonzero eigenvalue then the corresponding componentsgr andg` are non-zero. To see
this, takegr = 0. Then from (2.14) we have that(z T

1 ; z
T

` ; ez T
r )

T = 0. Hence,g` = 0, so thatz
�

would be zero.

(iv) If � is an eigenvalue with corresponding nonzero componentsgr andg` then�� is an eigen-
value with eigenvector with componentsgr and�g` (use (2.14) and (2.15)).

(v) The vectoreez` � (z T

` ; ez T
r )

T is linearly independent ofeezr � (ez T

` ; z
T
r )

T . To prove this, suppose

that�eez` = � eezr for some�; � 6= 0. Then, from (2.14) it follows thatBez = 0 where

ez � (� z T

1 ; � z
T

` ; � ez T

r ; � z
T

2 )
T = (� z T

1 ; � ez T

` ; � z
T

r ; � z
T

2 )
T :

AsB is nonsingular, we haveez = 0. Hence,z
�
= 0 andz

�
is not an eigenvector.
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Consequently the value of� cannot be equal to�1. To prove this, suppose that� = 1. Then
by combining the last row of the left part and the first row of the right part of (2.14) with (2.15),
we find thatC(eez` � eezr) = 0. SinceC is nonsingular, this implies thateez` = eezr, i.e. the vectors
are linearly dependent. The value�1 for � is then excluded on account of property (iv).

The magnitude of� dictates the error reduction. From (2.14) and (2.15) it follows that

�(C``z` +C`rezr) = gr = C``ez` + C`rzr
�(Cr`ez` +Crrzr) = g` = Cr`z` + Crrezr; (2.16)

which leads to

j�j2 =
(C``ez` + C`rzr)

�(Cr`z` + Crrezr)
(C``z` + C`rezr)�(Cr`ez` + Crrzr)

: (2.17)

From (2.16) we conclude that multiplying bothC`` andC`r by a nonsingular matrix does not affect
the value of�. Likewise, bothCr` andCrr may be multiplied by (another) singular matrix with no
effect to�. This can be exploited to bring theC matrices to some convenient form.

The one-dimensional case. We first study the one-dimensional case, because this will not only give
some insight in how to reduce�, but it will also be useful to control local situations in the two-
dimensional case.
In this situation the problem simplifies: the matricesC``,C`r,Cr`, andCrr are scalars, and so are the
vector partsz`, zr, ez`, andezr. Because of the freedom to scale the matrices (scalars), we may takeC
as

C =

"
C`` C`r

�Cr` �Crr

#
=

"
1 �`

��r �1

#
: (2.18)

With �` � ezr=z`, �r � ez`=zr, we have from (2.17) that

j�j2 =

���� �r + �`
1 + �`�`

� �r + �`
�r�r + 1

���� : (2.19)

The�-values will be interpreted as local growth factors at the artificial boundary:�` shows howz
�

changes at the artificial boundary of the left domain;�r shows the same for the right domain.
Note thateez` depends linearly oneezr if �r�` = 1. Since this situation is excluded on account of
property (v), we have that�r�` 6= 1. The best choice for the minimization of� in (2.19) is obviously
�` = ��r and�r = ��`, leading to� = 0, which gives optimal damping.

The optimal choice for�` and�r results in a coupling that annihilates the ‘outflow’gr andg` of
the two domains. This leads effectively to two uncoupled subdomains: an ideal situation.

More dimensions. In the realistic case of a more dimensional overlap (ni > 1), there is no choice
for �` and�r (i.e.,C`` = I, C`r = �`I, etc.) that leads to an error reduction matrix with only trivial
eigenvalues. But, the conclusion that the outflow should be minimized in some average sense for the
best error reduction is here also correct. In our application inx4, we will identify coupling matrices
C that lead to satisfactory clustering of most of the eigenvalues�, of the error propagation matrix,
around0. We will do so by selecting the�r and�` as suitable averages of the local growth factors�r
and�`.
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3. THE EIGENVALUE PROBLEM

3.1 The Jacobi-Davidson method
For the computation of a solution to an eigenvalue problem the Jacobi-Davidson method [17], is an
iterative method that in each iteration:

1. computes an approximation for an eigenpair from a given subspace, using a Rayleigh-Ritz
principle,

2. computes a correction for the eigenvector from a so-called correction equation,

3. expands the subspace with the computed correction.

The correction equation mentioned in step 2 is characteristic for the Jacobi-Davidson method, for
example, the Arnoldi method [1, 13] simply expands the subspace with the residual for the approxi-
mated eigenpair, and the Davidson method [6] expands the subspace with a preconditioned residual.
The success of the Jacobi-Davidson method depends on how fast good approximations for the cor-
rection equation can be obtained and it is for that purpose that we will try to exploit the enhancement
techniques discussed in the previous section.

Therefore, we will consider this correction equation in some more detail. We will do this for the
standard eigenvalue problem

Ax = �x: (3.1)

Given an approximate eigenpair(�;u ) (with residualr � �u � Au) that is close to some wanted
eigenpair(�;x ), a correctiont for the normalizedu is computed from the correction equation:

t ? u; (I� uu�) (A� � I ) (I� uu�) t = r; (3.2)

or in augmented formulation ([15,x3.4])"
A� � I u

u� 0

#"
t

"

#
=

"
r

0

#
: (3.3)

In many situations it is quite expensive to solve this correction equation accurately and fortunately
it is also not always necessary to do so. A common technique is to compute an approximation fort

by a few steps of a preconditioned iterative method, such as GMRES or Bi-CGSTAB.
When a preconditionerM for A� � I is available, then(I�uu�)M(I�uu�) can be used as left

preconditioner for (3.2). This leads to the linear system (see, [17,x4])

PM�1 (A� � I)Pt = PM�1 r where P � I� M�1 uu�

u�M�1 u
: (3.4)

The operator at the left hand side in (3.4) involves two (skew) projectorsP. However, when we start
the iterative solution process for (3.4) with initial guess0, thenPt may be replaced witht at each
iteration of a Krylov iteration method: projection at the right can be skipped in each step of the Krylov
subspace solver.

Right preconditioning, which has advantages in the domain decomposition approach, can be carried
out in a similar way, with similar reductions in the application ofP, as we will see inx3.3 below.
However, because the formulas with right preconditioning look slightly more complicated, we will
present our arguments mainly for left preconditioning.
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3.2 Enhancement of the correction equation
We use the domain decomposition approach as presented inx2 to solve the correction equation (3.2).
Again, we will assume that we have two subdomains and we will use the same notations for the
enhanced vectors. WithB � A� � I this leads to the enhanced Jacobi-Davidson correction equation

t ? u; (I� uu�)BC (I� uu�) t = r (3.5)

with u � (u T
1 ; u

T

` ; 0
T ; 0 T ; u T

r ;u
T
2 )

T , and likewiser � (r T
1 ; r

T

` ; 0
T ; 0 T ; r T

r ; r
T
2 )

T . The dimension
of the zero parts, indicated by0, is assumed to be the same as the dimension ofu` (andur).
To see why this is correct, apply the enhancements ofx2 to the augmented formulation (3.3) of the
correction equation, and use the fact that the augmented and the projected form are equivalent. We
assumeu to be normalized. Thenu is normalized as well.

With

(I� uu�)MC(I� uu�) (3.6)

as the left preconditioner, we obtain

PM�1
C BC Pt = PM�1

C r with P � I� M�1
C uu�

u�M�1
C u

: (3.7)

In comparison with the error propagation (2.12) of the block Jacobi method for ordinary linear sys-
tems, the error propagation matrixM�1

C N is now embedded by the projectionsP. These projections
prevent the operator in the correction equation from getting (nearly) singular: as� approximates the
wanted eigenvalue�, in the asymptotic case� is even equal to�,B gets close to singular in the direc-
tion of the wanted eigenvectorx. For ordinary linear systems this possibility is excluded by imposing
B to be nonsingular (see remark (v) inx2.5). Here we have to allow a singularB. In our analysis
of the propagation matrix of the correction equation, for the model problem inx4.3, in first instance
we will ignore the projections. Afterwards, we will justify this (both analytically (x4.3) as well as
numerically (x5.2)).

Note. We have enhanced the correction equation. Another option is to start with an enhancement
of the eigenvalue problem itself. However, this does not result in essential differences ([9]). If the
correction equations for these two different approaches are solved exactly, then the approaches are
even equivalent.

3.3 Right preconditioning
In x2.4 we have showed that, without projections, right preconditioning for domain decomposition
leads to an equation that is defined by its behavior on the artificial boundary only. Although the
projections slightly complicate matters, the computations for the projected equation can also be re-
stricted to vectors corresponding to the artificial boundary, as we will see below. Moreover, similar to
the situation for left preconditioning, right preconditioning requires only one projection per iteration
of a Krylov subspace method. In this section, we will use the underscore notation for vectors in order
to emphasize that they are defined in the enhanced space.

First we analyze the action of the right preconditioned matrix.
The inverse onu? of the projected preconditioner in (3.6) is equal to (cf. [15,x7.1.1] and [8])

PM�1
C =

 
I� M�1

C uu�

u�M�1
C u

!
M�1

C =M�1
C

 
I� uu�M�1

C

u�M�1
C u

!
; (3.8)
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with P as in (3.7). This expression represents the Moore–Penrose inverse of the operator in (3.6), on
the entire space. Note thatu�P = 0 (by definition ofP) andu�N = 0 (by definition ofu andN).
Therefore, for the operator that is involved in right preconditioning (cf. (2.11)), we have that

(I� uu�)BC(I� uu�)PM�1
C

= (I� uu�)BCPM
�1
C

= (I� uu�)BCM
�1
C

�
I� uu�M

�1
C

u�M
�1
C u

�
;

= I� uu� � (I� uu�)NPM�1
C

= I� uu� �NPM�1
C :

(3.9)

Hence, this operator maps a vectorv
�

that is orthogonal tou to the vector

(I� uu�)BC(I� uu�)PM�1
C v
�
= v
�
�NPM�1

C v
�

that is also orthogonal tou.
Therefore, right preconditioning for (3.5) can be carried out in the following steps (cf.x2.4):

1. Compute t
�

(0) � PM�1
C r and r

�

(0) � Nt
�

(0).

2. Compute an (approximate) solutions
�

(m) of

(I�NPM�1
C )s

�
= r
�

(0);

with (m steps of) a Krylov subspace method with initial guess0.

3. Updatet
�

(0) to the (approximate) solutiont of (3.5):

t = t
�

(0) +PM�1
C s
�

(m):

As in x2.4, the intermediate vectors in the solution process for the equation in step 2 vanish outside
the artificial boundary. Therefore, for the solution of the right preconditioned enhanced correction
equation, only2ni-dimensional vectors have to be stored, and the vector updates and dot products are
also for vectors of length2ni.

4. TUNING OF THE COUPLING MATRIX FOR A MODEL PROBLEM

Now we will address the problem whether it is possible to reduce the computing time for the Jacobi-
Davidson process, by an appropriate choice of the coupling matrixC. We have, inx2, introduced the
decomposition of a linear system, into two coupled subsystems, in an algebraic way. In this section
we will demonstrate how knowledge of the physical equations from which the linear system originates
can be used for tuning of the coupling parameters.

4.1 The model problem
As a model problem we will consider the two-dimensional advection-diffusion operator:

L(b') � a
@2

@x2
b'+ b

@2

@y2
b'+ u

@

@x
b'+ v

@

@y
b'+ cb'; (4.1)
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that is defined on the open domain
 = (0; !x) � (0; !y) in R
2 , with constantsa > 0, b � 0, c; u

andv. We will further assume Dirichlet boundary conditions:b' = 0 on @
 of 
. We are interested
in some eigenvalueb� 2 C and corresponding eigenfunctionb' of L:(

L(b') = b� b' on 
;b' = 0 on @
:
(4.2)

We will use the insights, obtained with this simple model problem, for the construction of couplings
for more complicated partial differential operators.

Discretization.We discretizeLwith central differences with stepsizeh = (hx; hy) = ( !x
nx+1 ;

!y
ny+1)

for the second order part and stepsize2h = (2hx; 2hy) for the first order part, wherenx andny are
positive integers:

bL(b') � a
�2x
h2x
b'+ b

�2y
h2y
b'+ u

�x
2hx

b'+ v
�y
2hy

b'+ cb': (4.3)

The operator
�x
hx

denotes the central difference operator, defined as

�x
hx
b (x; y) � b (x+ 1

2hx; y)� b (x� 1
2hx; y)

hx
;

and
�y
hy

is defined similar. This leads to the discretized eigenvalue problem

(
L(') = �' on 
h;

' = 0 on @
h;
(4.4)

where
h and@
h is the uniform rectangular grid of points(jxhx; jyhy) in 
 and in@
, respectively.
We have skipped the hatb� in order to indicate that the functions are restricted to the appropriate grid,
and that the operatorL is restricted to grid functions. The vector' is defined on
h [ @
h.

We use the boundary conditions' = 0 at @
h for the elimination of these values of' from
L(') = �'.

Identification of grid functions with vectors and of operators on grid functions with matrices leads
to an eigenvalue problem as in (3.1) of dimensionn � nx � ny: the eigenvectorx corresponds to
the eigenfunction' restricted to
h. The matrixA corresponds to the operatorL from which the
boundary conditions have been eliminated. In our application, we obtain the corresponding vectors
by enumeration of the grid points from bottom to top first (i.e., they-coordinates first) and then from
left to right ([21, x6.3]). In our further analysis, we will switch from one representation to another
(grid function or vector), selecting the representation that is the most convenient at that moment.

4.2 Decomposition of the physical domain
For some0 < !x1 < !x we decompose the domain
 in two subdomains
1 � (0; !x1] � (0; !y)
and
2 � (!x1; !x)� (0; !y).

Let nx1 be the number of grid points in thex direction in
1. Then
1 \ 
h and
2 \ 
h is
annx1 � ny andnx2 � ny grid respectively withnx1 + nx2 = nx. To number the grid points in
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FIGURE 1. Decomposition of the domain
 into two subdomains
1 and
2.
The bullets(�) represent the grid points of the original grid. The circles(o) represent the extra grid points at the internal
boundary. The indicesjx and jy refer to numbering in thex direction andy direction respectively of the grid points
in the grids: the pair(jx; jy) corresponds to point(jxhx; jyhy) in 
. For the numbering of the grid points in thex
direction in the two subdomains a local index is used:jx1 = jx in 
1 (0 � jx1 � nx1 + 1) andjx2 = jx � nx1 in 
2

(0 � jx2 � nx2 + 2).
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thex direction, we use local indicesjx1, 1 � jx1 � nx1, andjx2, 1 � jx2 � nx2, in 
1 and
2

respectively.
Because of the 5 point star discretization, the unknowns at the last row of grid points (jx1 = nx1) in

they direction in
1 are coupled with those at the first row of grid points (jx2 = 1) in they direction
in 
2, and vice versa. The unknowns forjx1 = nx1 are denoted by the vectory`, and the unknowns
for jx2 = 1 are denoted byyr, just as inx2. Now we enhance the system with the unknownseyr andey`, which, in grid terminology, correspond to a virtual new row of gridpoints to the right of
1, and
the left of
2, respectively. These new virtual gridpoints serve as boundary points for the domains
1

and
2. See Fig. 1 for an illustration.
The vectorsy`, yr, ey`, andeyr areny dimensional (theni in x2.1 is now equal tony). The2ny by

2ny matrixC, that couplesy`, eyr, ey`, andyr can be interpreted as discretized boundary conditions of
the differential operator at the internal newly created boundary between
1 and
2 [19, 18].
Note that the internal boundary conditions are explicitly expressed in the total system matrixBC ,
throughC, whereas the external boundary conditions have been used to eliminate the values at the
external boundary (seex4.1).

4.3 Eigenvectors of the error propagation matrix
We will now analyze the eigensystem of the error reduction matrixM�1

C N (seex2.5) and discuss ap-
propriate coupling conditions (that is, the internal boundary conditions) as represented by the matrix
C. Here, the matricesMC andN are defined forB � A � �I, as explained inxx2.2-2.3, for some
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approximate eigenvalue� (cf., xx3.1-3.2). The matrixA corresponds toL, as explained inx4.1.
First, we will discuss in sectionx4.3.1 the case of one spatial dimension (i.e., noy variable).

The results for the one-dimensional case are easy to interpret. Moreover, since the two-dimensional
eigenvalue problem in (4.2) is a tensor product of two one-dimensional problems, the results for
the one-dimensional case can conveniently be used for the analysis inx4.3.2 of the two-dimensional
problem.

4.3.1 The one-dimensional caseIn this section, we will discuss the case of one spatial dimension:
there is noy variable. To simplify notations, we will skip the indexx for this case.

Suppose that we have an approximate eigenvalue� for some eigenvalue� of B.
To simplify formulas, we shift the approximate eigenvalue byc. The matrixB in x2.5 corresponds to
the three point stencil of the finite difference operator

a
�2

h2
+ u

�

2h
� �:

For the eigensystem ofM�1
C N, we have to solve the systems in (2.14) for anexr 6= 0 andex` 6= 0,

that is, we have to compute solutions 1 and 2 for the discretized PDE on domain 1 and domain 2,
respectively (cf.x2.5). The functions 1 and 2 should satisfy�

a
�2

h2
+ u

�

2h
� �

�
 p(jph) = 0 for 1 � jp � np and p = 1; 2: (4.5)

The conditions on the external boundaries imply that

 1(0) = 0 and  2(n2h+ h) = 0:

For the solutions of (4.5), we try functions of the form (jh) = �j. Then� satisfies

�
1 + uh

2a

�
� � 2D +

�
1� uh

2a

�
��1 = 0 with D � 1 +

h2

2a
�: (4.6)

Let �+ and�� denote the roots of this equation, such thatj�+j � j��j. In the regular case where
�+ 6= ��, the solutions 1 and 2 are, apart from scaling, given by

 1(j1h) = �j1+ � �j1� and  2(j2h) = �j2�n2�1� � �j2�n2�1+ :

We distinguish three different situations:

(i) Harmonic behavior:�� = ��+ 62 R.
If �0 2 R and� 2 [0; 2�) are such that�+ = �0 exp(i�). Then, up from scaling factors,

 1(j1h) = �j10 sin(�j1) and  2(j2h) = �j20 sin(�(j2 � n2 � 1)):

(ii) Degenerated harmonic behavior:�+ = ��.
In this case we have, apart from scaling factors,

 1(j1h) = j1�
j1
0 and  2(j2h) = (n2 + 1� j2)�

j2
0 :
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(iii) Dominating behavior:j�+j > j��j.
Near the artificial boundary, that is forj1 � n1 andj2 � 1, we have apart from scaling factors
that

 1(j1h) = �j1+

 
1�

�
��
�+

�j1
!
� �j1+

and

 2(j2h) = �j2�n2�1�

 
1�

�
��
�+

�n2+1�j2
!
� c�j2� ;

so that, apart from a scaling factor again, 2(j2h) � �j2� .
How accurate the approximation is depends on the ratioj��j=j�+j and on the size ofn1 andn2.

The coupling matrixC is 2 by 2 (ni = 1). We consider aC as in (2.18). Then, according to (2.19),
the absolute value of the eigenvalue� is given by

j�j2 =

���� �` + �r
1 + �r�r

���� ���� �r + �`
1 + �`�`

���� ; (4.7)

where�` =  1(n1h+ h)= 1(n1h) and�r =  2(0)= 2(h): z` in (2.14) corresponds to 1(n1h), ezr
to 1(n1h+ h), etcetera.

In the case of dominating behavior (cf. (iii)), we have that�` � �+ and�r � 1=��. As observed
in (iii), the accuracy of the approximation depends on the ratioj��j=j�+j and on the values ofn1 and
n2. But already for modest (and realistic) values of these quantities, we obtain useful estimates, and
we may expect a good error reduction for the choice�` = �1=�� and�r = ��+. The parameters
�+ and�� would also appear in a local mode analysis: they do not depend on the external boundary
condition nor on the position of the artificial boundary.

The value forj�j in (4.7) is equal to one when�r = 1=��`, regardless�` and�r (assuming these are
real). If we would follow the local mode approach for the situations (i) and (ii), that is, if we would
estimate�` by �+ and�r by 1=��, then we would encounter such values for�` and�r. In specific
situations, we may do better by using the expressions for 1 and 2 in (i) and (ii), that is, we may
find coupling parameters�` and�r that lead to an eigenvalue� with j�j < 1. However, then we need
information on the external boundary conditions and the position of the artificial boundary. Certainly
in the case of a higher spatial dimension, this is undesirable. Moreover, if� is an exact eigenvalue
of A then we are in the situation in (i): the functions 1 and 2 are multiples of the components on
domain 1 and domain 2, respectively, of the eigenfunction and� = 1 (see (v) inx2.5 and the remark
in x3.2). In this case there is no value of�` and�r for which j�j < 1.

We define� � (2a+uh)=(2a�uh). In order to simplify the forthcoming discussion for two spatial
dimensions, observe that, in the case of dominating growth (iii), that is,�` � �+ and�r � 1=��,
(4.7) implies that

j�j2 �
����� e�` + e�1 + e�` e�

�����
����� e�r + e�1 + e�r e�

����� ; where e�` � �`p
�
; e�r � p

��r; e� � p
��+: (4.8)
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Here we have used that�+ � �� = 1=�, which follows from (4.6).

If, for the Laplace operator (whereu = 0 and c = 0), we use Ritz values for the approximate
eigenvalues�, then� takes values between�(n) and�(0). Hence,� 2 (�4a=h2; 0), and the roots
�+ and�� are always complex conjugates. We will see in the next subsections that, for two spatial
dimensions, the Ritz values that are of interest lead to a dominant root, also for the Laplace operator,
and we will see that local mode analysis is then a convenient tool for the identification of effective
coupling parameters.

4.3.2 Two dimensions Similar to the one-dimensional case we are interested in functions�1 and
�2 such that,

L(�p) = 0 on 
h \ 
p; p = 1; 2; (4.9)

and that satisfy the external boundary conditions. But now�1 and�2 are functions that depend on
both thex- andy direction whereas the operatorL (hereL is introduced inx4.1) acts in these two
directions. Since the finite difference operator�x

hx
acts only in thex direction and�y

hy
acts only in they

direction, their actions are independent of each other. Therefore, in this case of constant coefficients1,
we can write the operatorL in equation (4.9) as a sum of tensor product of one-dimensional operators:

L = Lx 
 I+ I
 Ly; (4.10)

where

Lx � a
�2x
h2x

+ u
�x
2hx

and Ly � b
�2y
h2y

+ v
�y
2hy

+ c� �: (4.11)

Lx andLy incorporate the action ofL in thex direction andy direction respectively.
Since the domain
 is rectangular and since on each of the four boundary sides of
 we have the

same boundary conditions, the tensor product decomposition ofL corresponds to a tensor product
decomposition of the matrixA.

We try to construct solutions of (4.9) by tensor product functions, that is by functions�p of the
form

�p(jxphx; jyhy) =  p(jxphx)
 '(jyhy) =  p(jxphx) � '(jyhy):
For' we select eigenfunctions'(l) of the operatorLy that satisfy the boundary conditions for they
direction. Then

L(�p) = (Lx p)
 '(l) +  p 
 �(l)'(l) = (Lx + �(l))( p)
 '(l);

where�(l) is the eigenvalue ofLy that corresponds to'(l). Apparently, for each eigensolution of the
‘y-operator’Ly, the problem of finding solutions of (4.9) reduces to a one-dimensional problem as
discussed in the previous subsection: find p such that

(Lx + �(l))( p) =

�
a
�2x
h2x

+ u
�x
2hx

+ �(l)
�
 p = 0; (4.12)

1It is sufficient ifa andu are constants as functions ofy, b andv are constants as function ofx, andc is a product of a
function inx and a function iny.
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and that satisfy the external boundary conditions in thex direction. To express the dependency of the
solutions p on the selected eigenfunction ofLy, we denote the solution as (l)

p .
Now, consider matrixpairs(C`r; C``) and(Cr`; Crr) for which the eigenfunctions'(l) of Ly are

also eigenfunctions:

C`r'
(l) = �

(l)
` C``'

(l) and Cr`'
(l) = �(l)r Crr'

(l): (4.13)

Examples of such matrices are scalar multiples of the identity matrix (for instance,C`r = �
(l)
` I

andC`` = I), but there are others as well, as we will see inx4.4. For such aC there is a 1–
1 correspondence for each function'(l) on the two subdomains: a component in the direction of
 
(l)
1 
'(l) on subdomain1 is transferred byM�1

C N to a component in the direction of (l)
2 
'(l) on

subdomain2 and vice versa. More precisely, ifC is such that (4.13) holds and if (l) � (cl 
(l)
1 ;  

(l)
2 ) T

for some scalarcl then, by construction of (l),MC maps (l)
'(l) onto a vector that is zero except
for thee�` ande�r components (cf. (2.14)) which are equal to

cl

�
 
(l)
1 (n1xhx) + �

(l)
`  

(l)
1 (n1xhx + hx)

�
C``'

(l) (4.14)

and �
�(l)r  

(l)
2 (0) +  

(l)
2 (hx)

�
Crr'

(l); (4.15)

respectively. In its turn,N maps (l) 
 '(l) onto a vector that is zero except for thee�` ande�r compo-
nents (cf. (2.14) and (2.15)) which are equal to�

 
(l)
2 (0) + �

(l)
`  

(l)
2 (hx)

�
C``'

(l) (4.16)

and

cl

�
�(l)r  

(l)
1 (n1xhx) +  

(l)
1 (n1xhx + hx)

�
Crr'

(l); (4.17)

respectively. By a combination of (4.14) and (4.16), and (4.15) and (4.17), respectively, one can
check that, for an appropriate scalarcl,  (l) 
 '(l) is an eigenvector ofM�1

C N with corresponding
eigenvalue�(l) such that

j�(l)j2 =
����� �

(l)
` + �

(l)
r

1 + �
(l)
r �

(l)
r

�����
����� �

(l)
r + �

(l)
`

1 + �
(l)
` �

(l)
`

����� ; (4.18)

where (here we assumed that 
(l)
1 (n1xhx) 6= 0 and (l)

2 (hx) 6= 0)

�
(l)
` �  

(l)
1 (n1xhx + hx)= 

(l)
1 (n1xhx) and �(l)r �  

(l)
2 (0)= 

(l)
2 (hx):

Note that the expression for�(l) does not involve the value ofcl. From property (iv) in x2.5 we know
that (l)

� 
 '(l) where (l)
� � (cl 

(l)
1 ;� (l)

2 ) T is also an eigenvector with eigenvalue��(l).
As spanf (l);  

(l)
� g = spanf( (l)

1 ; 0) T ; (0;  
(l)
2 ) Tg the functions (l) 
 '(l) and (l)

� 
 '(l) are lin-
early independent and

spanf (1) 
 '(1);  
(1)
� 
 '(1); : : : ;  (ny) 
 '(ny);  

(ny)
� 
 '(ny)g =
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spanf
 
 
(1)
1 
 '(1)

0

!
;

 
0

 
(1)
2 
 '(1)

!
; : : : ;

 
 
(ny)
1 
 '(ny)

0

!
;

 
0

 
(ny)
2 
 '(ny)

!
g:

From this it follows that the total number of linear independently eigenfunctions of the form (l)
'(l)
is equal to2ny. Note that our approach with tensorproduct functions leads to the required result: once
we know theny functions'(1); : : : ; '(ny), we can, up to scalars, construct all eigenvectors ofM�1

C N

that correspond to the case (ii) in x2.5, i.e. the eigenvectors with, in general, nonzero eigenvalues.2

Apparently, the problem of finding the two timesny nontrivial eigensolutions ofM�1
C N breaks

up intony ‘one’-dimensional problems. For eachl, the matrixM�1
C N has two eigenvectors�(l) and

��(l) with components that, on domainp, correspond to a scalar multiple of (l)
p 
 '(l) (p = 1; 2).

Errors will be transferred in the iterative solution process of (2.7) from one subdomain to the
other. These errors can be decomposed in eigenvectors ofM�1

C N, that is, they can be expressed on

subdomainp (p = 1; 2) as linear combination of the functions (l)
p 
'(l). The component of the error

on domainp in the direction of (l)
p 
'(l) is transferred in each step of the iteration process precisely

to the component in the direction of (l)
3�p
'(l) on domain3�p. In case of the block Jacobi method,

transference damps this component by a factorj�(l)j.
Here, as in the case of one spatial dimension (x4.3.1), the size of the eigenvalues�(l) is determined

by the growth factor�(l)` of  (l)
1 and�(l)r of  (l)

2 in (4.18).
In case of dominated behavior, these factors can adequately be estimated by the dominating root of
the appropriate characteristic equation (cf. (4.6)). The scalars, that is, the matricesC`r andCr` can
be tuned to minimize thej�(l)j. This will be the subject of our next section.
As we explained inx4.3.1, we see no practical way to tune our coefficients in case of harmonic
behavior. However, in our applications the number of eigenvalues that can not be controlled is limited
as we will see in our next subsection. Except for a few eigenvalues, the eigenvalues of the error
reduction matrixM�1

C N will be small in absolute value: the eigenvalues cluster around0. If � is
equal to an eigenvalue� of A, then1 is an eigenvalue ofM�1

C N (see (v) inx2.5 andx3.2) and
M�1

C BC is singular. However, the projections that have been discussed inx3.2, will remove this
singularity. An accurate approximation� of � (a desirable situation) corresponds to a near singular
matrixM�1

C BC , and here, the projection will also improve the conditioning of the matrix.

4.4 Optimizing the coupling
In this section, we will discuss the construction of a coupling matrixC that leads to a clustering of
eigenvalues�(l) of M�1

C N round 0. We give details for the Laplace operator. We will concentrate on

the error modes (l)
p 
 '(l) on domainp with dominated growth in thex direction, that is, modes for

which (l)
p exhibits the dominated behavior as described in (iii) ofx4.3.1. For these modes and forC

as in (2.18) and (4.13), we have that (cf., (4.8) and (4.18))

j�(l)j2 �
����� e�

(l)
` + e�(l)

1 + e�(l)` e�(l)
�����
����� e�

(l)
r + e�(l)

1 + e�(l)r e�(l)
����� : (4.19)

Here, for� � (2a + uhx)=(2a � uhx), the quantitiese�(l)` , e�(l)r and e�(l) are defined as in (4.8):e�(l)` � �
(l)
` =

p
�, e�(l)r � p

� �
(l)
r , e�(l) � p

� �
(l)
+ , where here�(l)+ is the dominant root of (4.6) for

2For�(l)
` ! ��

(l)
r or �(l)

r ! ��
(l)
` one of the nonzero eigenvalues degenerates to a defective zero eigenvalue. But

then still this construction yields all nonzero eigenvalues. To avoid a technical discussion we give no details here.
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�0 = �(l). Note that, in view of the symmetry in the expression forj�(l)j2, it suffices to study aC for

which e�(l)` = e�(l)r .

LetE be the set ofl’s in f1; : : : ; nyg for which the (l)
p exhibit dominated growth, or, equivalently,

for which the characteristic equation associated with the operatorLx + �(l) in (4.12) (cf., (4.6)) has a
dominant root�(l)+ : E � fl = 1; : : : ; ny j j�(l)+ j > j�(l)� jg. We are interested in�(l) � e�(l)` = e�(l)r for
which

�opt � max

(����� �(l) + �

1 + �(l)�

����� � 2 bE) with bE � fp� �(l)+ j l 2 Eg (4.20)

is ‘as small as possible’.

Simple coupling.For the choiceC`r =
p
� �I andCr` = (�=

p
�)I, we can easily analyze the

situation.
Then�(l) = � for all l and we should find the� = �opt that minimizesmax j(� + �)=(1 + ��)j. We
assume thatjuhxj < 2a. Note that then

p
� times the dominant characteristic roots are real and> 1.

Therefore, the two extremal values

� � min bE and M � max bE (4.21)

determine the size of the maximum. This leads to

��opt = 1 +

p
(�2 � 1)(M2 � 1)

�+M
+

(�� 1)(M � 1)

�+M
> 1 (4.22)

and

�opt =

p
M2 � 1�

p
�2 � 1

M
p
�2 � 1 + �

p
M2 � 1

> 0: (4.23)

Laplace operator.To get a feeling for what we can expect, we interpret and discuss the results for
the Laplace operator, that is, we now takeu = v = c = 0. Further, we concentrate on the computation
of (one of) the largest eigenvalue ofL and we assume that� is close to the target eigenvalue. Then

�(l) = � 2b

h2y
(1� cos(�

l

ny + 1
))� �: (4.24)

First we derive a lower bound for� and an upper bound forM .

ForD(l) � 1� h2x
2a�

(l) (cf., (4.6)), we have thatjD(l)j > 1, or, equivalently,j�(l)+ j > j�(l)� j, if and only
if �(l) < 0. Hencele � minE is the smallest integerl for which�(l) < 0 and

le � belec+ 1 where ele � 2

�
(ny + 1) arcsin

 
hy
2

r
��
b

!
:

(The noninteger valuel = ele is the ‘solution’ of�(l) = 0.) Forhy � 1, ele � !y
�

r
��
b

.
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For an impression on the error reduction that can be achieved with a suitable coupling, we are
interested in lower bounds for� � 1 that are as large as possible. With� � D(le) � 1 we have that
�� 1 = � +

p
2� + �2 �

p
2�. Therefore, we are interested in positive lower bounds for�:

� = �2(cos(�
ele

ny + 1
)� cos(�

le
ny + 1

)) � ��2
le � ele
ny + 1

sin(�
ele

ny + 1
)

� 2�
b

a
ele(le � ele)�hx

!y

�2

where � � hx
hy

r
b

a
:

The bound for� depends on the distance ofele to the integers, which can be arbitrarily small. This
means that, even for the optimal coupling parameters, the (absolute value of the) eigenvalue�(le) can
be arbitrarily close to one. Since, for optimal coupling, the damping that we achieve for the smallest
l in E is the same as for the largest, it seems to be undesirable to concentrate on damping the error
modes associated withle as much as possible. Therefore, we removele from the setE and concentrate
on damping the error modes associated withl in E0 � Enfleg. For the� and� associated with this
slightly reduced setE0 we have that

�� 1 �
p
2� � 2�hx where � � 1

!y

r
�le

b

a
: (4.25)

The lower bound for�� 1 is sharp forh! 0 with � fixed, i.e., for given�, h = (hx; hy) is such that
hx = hy�

p
a=b.

An upper bound forM follows from the observations that� < 0 and that the cosine takes values
between�1 and1: we have thatD(l) � 1 + 2�2 and

M � 1 � 2�2 +
p

4�2 + 4�4:

Put

M 0 �
r
M � 1

M + 1
� 4

s
�2

1 + �2
:

Then, forh! (0; 0) such that� is fixed, we have that

��opt = 1 + 2M 0
p
�hx +O(hx) and 1� �opt = 2

p
�hx
M 0

+O(hx):

Here we used that

��opt = 1 +
p

2(�� 1)M 0 +O(�� 1) and 1� �opt =
p

2(�� 1)=M 0 +O(�� 1)

for �! 1 (see (4.22) and (4.23)).
So, for small stepsizesh, the ‘best’ ‘asymptotic error reduction factor’�opt is less than one with a

difference from one that is proportional to the square root ofhy.

We tried to cluster the eigenvalues ofM�1
C B around one as much as possible. With� = �opt, at

mostle eigenvalues may be located outside the disk with radius�opt and center one. After an initialle
steps we may expect the convergence of GMRES to be determinated by�opt (provided that the basis
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of eigenvectors is not too skew). Therefore, as long asle is a modest integer, we expect GMRES to
converge well in this situation. We will now argue that, in realistic situations,le will be modest as
compared to the index of the eigenvalue ofA where we are interested in. For clearness of arguments,
we assume the stepsizes to be small:h! (0; 0) with � fixed: �(le) � �b�2(le=!y)2 � �.

Suppose that, for some� > 0, we are interested in the smallest eigenvalue� of A that is larger
than�� . Since, in the Jacobi-Davidson process,� converges to�, � will eventually be larger than
�� . We concentrate on this ‘asymptotic’ situation.3

Then,le � C1(�
0) + 1, where

C1(�
0) � #fl 2 N j l2 � � 0g and � 0 � �

!2
y

b�2
:

The number of eigenvalues�(mx;my) � �a�2(mx=!x)
2 � b�2(my=!y)

2 of A that are larger than
�� is approximately equal to

C2(�
0) � #f(mx;my) 2 N

2 j m2
y +

a

b

!2
y

!2
x

m2
x � � 0g:

SinceC1(�
0)2 . 2

!y
!x

p
a
b
C2(�

0), the numberle + 1 of error modes that we do not try to control with
appropriate coupling coefficients is proportional to thesquare rootof the index number of the wanted
eigenvalue (if the eigenvalues have been increasingly ordered). For instance, ifa = b, !x = !y, and
� 0 = 15, then eight eigenvalues ofA are larger than�� , and we do not ‘control’ four modes. One
of these modes corresponds with the wanted eigenvalue and is ‘controlled’ by the projections in the
correction equation of the Jacobi-Davidson process.

In practice, deflation will be used for the computation of the, say, eight eigenvalue ofA. The first
seven eigenvalues will be computed first and will be deflated fromA. In such an approach, the three
modes that we did not try to control in our coupling, will be controlled by the projection on the space
orthogonal to the detected eigenvectors. Seex5.2.2 for a numerical example.

We analyzed the situation where the domain has been decomposed into two subdomains. Of course,
in practice, we will interested in a decomposition of more subdomains. In these situations, the num-
ber of modes that we did not try to control by the coupling, will be proportional to the number of
artificial boundaries. For numerical results, seex5.4. Deflation will be more important if the number
subdomains is larger. Note that the observations in thexx4.3.1 and 4.3.2 on the error modes that
exhibit dominated behavior also apply to the situation of more than two subdomains: the essential
observation in case of dominated growth is that, on one subdomain, the influence of the ‘dominated’
component (as represented by�(l)� ) is negligible at the artificial boundary regardless the boundary
condition at the other end of the subdomain.

Stronger couplings.In x4.3.2, we considered coupling matricesC with eigenvectors related to ones
of Ly, they-component of the finite difference operatorL. Instances of such matrices can easily be
formed by usingLy itself.

3The Jacobi-Davidson process can often be started in practice with an approximate eigenvector that is already close to
the wanted eigenvector. Then� will be close to�. For instance, if one is interested in a number of eigenvalues close to
some target value, then the search for the second and following eigenvectors will be started with a search subspace that
has been constructed for the first eigenvector. This search subspace will be ‘rich’ with components in the direction of the
eigenvectors that are wanted next (see [8,x3.4]).
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TABLE 1. The table shows the values that can be achieved for the damping�0opt in (4.28)for the Laplace equation on
the the unit square by optimizing the coupling in(4.26)with respect to some of the parameters�, � and
. For explanation
see the example inx4.4.

1 2 3 4

optimized w.r.t. � �, � �, 
 �, �, 

�0opt 0.696 0.157 0.376 0.093

For ease of notation we consider the Laplace operator. Inclusion of first order terms only results in
extra factors� (cf. (4.8) inx4.3.1). Consider the matrices

C`` = Crr = 1 + 
Ly and C`r = Cr` = �+ �Ly; (4.26)

where�, �, and
 are appropriate scalars. With� and
, we introduce interaction parallel to the
interface in the coupling. Then�(l)` in (4.13) is equal to

�
(l)
` = q`(�

(l)) where q`(�) � �+ ��

1 + 
�
: (4.27)

Note that the dominant root�(l)+ (cf. (4.6) with�0 = �(l)) depends on�(l): �(l)+ = w`(�
(l)) for some

functionw`. Hence, we are interested in finding scalars�, �, and
 for which

�0opt � max
�

���� q`(�) + w`(�)

1 + q`(�)w`(�)

���� (4.28)

is as small as possible. Here� ranges over the set of eigenvalues�(l) ofLy that lead to a dominant root

�
(l)
+ = w`(�

(l)). For� = 
 = 0 we have the ‘simple coupling’ as discussed above. For the coupling
at the right side of the artificial boundary, we have similar expressions. Finding the minimum of
(4.28) is a non-linear problem (in�, � and
; q` is rational andq` is in the denominator) and can not
analytically be solved. But a numerical solution can be obtained with, for instance, a modified R´emès
algorithm. We discuss our results for a simple example in order to illustrate how much can be gained
by including interactions parallel to the artificial boundary in the coupling.

Example. Table 1 shows values for�0opt for the Laplace operator on the unit square (a = b = 1,
u = v = c = 0, 
 = (0; 1)� (0; 1)), with � = �34�2 (thenle = 6 and24 eigenvalues are larger than
�), nx = 180, ny = 120 and!x1 = 1

3 . In case 1 in the table, we took� = 
 = 0 and we optimized
with respect to�. This case corresponds to the ‘simple coupling’ as discussed above. We learn from
column 2 of Table 1 that an additional parameter� allows a considerable reduction of the damping
factor.
With � = 
 = 0 the explicit coupling is in thex direction only, this corresponds to a two point stencil
for the boundary conditions on the artificial boundary. The parameter� introduces a coupling in the
y directions which corresponds to a four point stencil for the artificial boundary conditions. If in
addition
 6= 0, the coupling corresponds to a six point stencil. Extension from a two to a four point
stencil appears to be more effective than the extension from a four to a six point stencil (a reduction of
�0opt from 0:696 to 0:157 as compared to a reduction from0:157 to 0:093 in Table 1). The parameter
� 6= 0 gives a coupling of the internal boundary conditions on the artificial interface (the�’s in Fig. 1),
while 
 gives a coupling of the internal boundary conditions on points of the original domain (the�’s
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in Fig. 1 closest to the cut). Note that an optimal� (with 
 = 0) gives better values than an optimal

 (with � = 0).

Experimentally we verified that the values for�0opt obtained with a ‘local mode analysis’ (where
we neglected�� terms) correspond rather well with the actual radius of the cluster of eigenvalues of
M�1

C N: except for the firstle + 1 eigenvalues, in all cases all eigenvalues ofM�1
C N are in the disc

with center 0 and radius�0opt. Since we did not optimize for the firstle eigenvalues, it is no surprise
that these eigenvalues are not in the disc. Thele + 1th eigenvalue corresponds to the situation where
j�(l)+ j is closest toj�(l)� j and then the predictions of the local mode analysis may expected to be the
least reliable. For an experiment with larger stepsize seex5.2.3.

5. NUMERICAL EXPERIMENTS

The experiments presented in this section illustrate the numerical behavior of the Jacobi-Davidson
method in combination with the domain decomposition method, as described inx3 andx4. We will
focus on some characteristic properties. All experiments are performed with MATLAB 5.3.0 on a Sun
Sparc Ultra 5 workstation.

In x5.1 we will discuss the circumstances under which experiments have been performed. Because
Jacobi-Davidson is a nested iterative method, an inexact solution of the correction equation affects
the outerloop. Therefore, we will also check how the exact process behaves and which stage of the
process is most sensitive to inexact solution.

Then, inx5.2, we consider the spectrum of the error propagator for the asymptotic situation� = �.
This spectrum contains all information for understanding the convergence behavior of the Jacobi
iteration method. The predictions ofx4.4 on the optimized coupling are verified and we investigate
the effect of deflation.

The next question is how the Jacobi-Davidson method behaves when inexact solutions for the cor-
rection equation are obtained with Jacobi iterations. Inx5.3 we compare different types of coupling,
and left and right preconditioning. Furthermore, we consider GMRES as an accelerator of the Jacobi
iterative method.

We conclude, inx5.4, with an experiment that shows what happens when we have more than two
subdomains.

5.1 Reference process
We first consider the standard Jacobi-Davidson method, when applied to the discretized eigenvalue
problem for the Laplace operator. No domain is decomposed and correction vectors are obtained by
accurate solution of the correction equation.

The first experiment gives a global impression of the speed of convergence. For that purpose we
confine ourselves to the one-dimensional case, described inx4.3.1. We taken = 99; h = 0:01. For
the starting vector of the Jacobi-Davidson process, we take a random vector generated in MATLAB

(with seed equal to 226). We want to compute the eigenvalue of smallest absolute value (�1 =

� �200 sin �
200

�2
= �9:86879268536 : : : ). The corresponding eigenvector describes the largest

eigenmode of the discretized PDE.
Table 2 and Fig. 2 show what happens in the iteration process. The second column of Table 2 gives

the selected Ritz value� for the correction equation, the third column gives the2-norm of the residual
r � Au� �u of the corresponding Ritz pair(�;u), and the fourth column lists the number of correct
digits of the Ritz value:� log10 j�� �j.

From Table 2 we observe that Jacobi-Davidson needs about 8 steps before the (theoretically cubic)
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FIGURE 2. Convergence behavior of Jacobi-Davidson with accurate solution of the correction equation, when applied
to the discretized (n = 99; h = 0:01) eigenvalue problem for the one-dimensional Laplace operator. The process is started
with one random vector. In each step a correction vector is computed (second column) by which the search subspace is
expanded. In the third column all Ritz values of the search subspaces before/after expansion are printed. Right below this
number the corresponding Ritz vector is graphically displayed.
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TABLE 2. Convergence of Jacobi-Davidson, with accurate solution of the correction equation, towards the eigenvalue
of smallest absolute value (=largest eigenmode) of the discretized (n = 99; h = 0:01) eigenvalue problem for the one-
dimensional Laplace operator.

step selected Ritz value residual selected number of correct digits
Ritz pair selected Ritz value

1 -3992.4322622 9.74e+03 -3.6
2 -1487.8343933 3.99e+03 -3.2
3 -581.73159839 1.62e+03 -2.8
4 -283.84104294 7.22e+02 -2.4
5 -123.01979659 3.23e+02 -2.1
6 -42.762088608 1.15e+02 -1.5
7 -17.253205686 4.49e+01 -0.87
8 -9.8982441731 7.41e+00 1.5
9 -9.8687926855 5.15e-04 9.8
10 -9.8687926854 6.26e-12 12

convergence to the desired eigenvalue sets in. This might have been expected: as the startvector
is random it is likely that the components of all eigenmodes are about equally represented in the
startvector. Therefore, in the beginning the eigenvalues with larger absolute value will dominate for
a while. In Fig. 2 we display the Ritz vectors after each iteration of the Jacobi-Davidson process.
The corresponding eigenmodes are of high frequency, which explains the order of appearance of Ritz
vectors (high frequencies dominate initially).

A proper target value in the correction equation (3.2), instead of the Ritz value, may help to over-
come the initial phase of slow convergence, but this is beyond the scope of this paper. Our concern is
the question how much the process is affected when the correction equation is solved approximately
by performing accurate solves on the subdomains only and by tuning the interface conditions. A less
accurate solution of the correction equation will, in general, result in more steps of Jacobi-Davidson
(outer iterations) for the same precision for the approximate eigenpair. In particular, we do not want
to extend the ‘slow phase’ by destroying the ‘fast phase’ with too inaccurate solution steps. We take
the ‘exact’ Jacobi-Davidson process in Table 2 as our reference. In order to see what happens in the
final, potentially fast phase, we select a parabola shaped startvector.

In the next subsections we will mainly consider the more interesting two-dimensional case, with
physical sizes!x = 2 and!y = 1. The number of grid points inx- andy direction arenx = 63
andny = 31, so hx : hy = 1 : 1. The eigenvalue corresponding to the largest eigenmode of
the discretized Laplace operator is equal to�12:328585 : : : . In Table 3 the convergence history for
Jacobi-Davidson to this eigenpair is presented when starting with the parabolic vector

f( jx
nx + 1

(1� jx
nx + 1

);
jy

ny + 1
(1� jy

ny + 1
)) j 1 � jx � nx; 1 � jy � nyg; (5.1)

and with accurate solutions of the correction equation. The second column of this table shows the
selected Ritz value for the correction equation, the third column the error� � � for this Ritz value,
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TABLE 3. Convergence history of Jacobi-Davidson applied to the discretized eigenvalue problem of the two-
dimensional Laplace operator (nx = 63; ny = 31; !x = 2 and !y = 1) with accurate solutions of the correction
equation.

step � � � � krk2 kr0k2
1 -12.4896 -1.61e-01 4.19e+00 4.19e+00
2 -12.3286 -9.65e-07 8.55e-03 6.10e-03
3 -12.3286 -1.55e-13 1.76e-10 1.19e-10
4 -12.3286 -1.33e-13 7.71e-14 3.90e-14

and the fourth column gives the2-norm of the residualr for the corresponding normalized Ritz pair.
Jia and Stewart [11] have pointed out that for�, and given the information in the subspaceV, a better,
in residual sense, approximate eigenvector can be computed; the norm of the residual of this so-called
refined Ritz vector is given by the quantity

kr0k2 = min
u2V

kAu� �uk;

represented in the fifth column in Table 3.

These experiments set the stage for the domain decomposition experiments.

5.2 Spectrum of the error propagator
From x2.5 we know that the convergence properties of the Jacobi iterative method depend on the
spectrum of the error propagatorM�1

C N. Therefore, we will investigate these spectra for some typical
situations. We consider the asymptotic case� = �. Although� approximates� in practice, during
the iteration process� becomes very close to�, and that is the reason we think that the asymptotic
case gives a good indication.

5.2.1 Predicted and computed spectraFirst we consider the determination of the parameter�opt

(4.22) for the simple optimized coupling. The value of�opt depends on the extremal values� and
M of the collection of dominant rootsbE (4.20) for which�opt is optimized. The value� depends
amongst others on�, andM only depends onhx; hy, and on the coefficientsa andb.

We illustrate the sensitivity of�opt w.r.t. the lower bound�, for � equal to the largest eigenvalue
�(1;1) of the Laplace operator, with!x = 2; !y = 1; nx = 63; ny = 31 andnx1 = 26. For a dominant

root�(l)+ , �(l) in (4.24) should be smaller than0. Then
4b

h2y
sin2

�
�

2

le
ny + 1

�
> �. Since� � 5

4
�2 and

4b

h2y
sin2

�
�

2

le
ny + 1

�
� l2e�

2, we have approximately thatl2e >
5

4
. The smallest such integerle is

le = 2. In order to show that this is a sharp value forle and thus a sharp lower bound for the� (4.25),
we shall compare the casele = 2 with the case for the smaller valuele = 1:2. We also included the
casele = 4, where apart from the modely = 1, the modesly = 2 andly = 3 are excluded from the
optimization process (i.e. for the computation of an optimal�).

For these three cases (le = 2; le = 4, and le = 1:2) we have computed the corresponding�
(� = �1:6287 : : : ; � = �2:1279 : : : , and� = �1:2800 : : : , respectively). In Fig. 3 the predicted
amplification of the error propagatorM�1

C N for these values of� are shown. Here we calculated for
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FIGURE 3. Predicted amplification of the error propagatorM�1
C N with simple optimized coupling for the largest

eigenvalue�(1;1) of the Laplace operator forle = 2, le = 4, andle = 1:2. For explanation, seex5.2.1.
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each mode (with wavenumberly) the expected amplificationj�(ly)j with expression (4.18). Indeed,
we see that (forle = 2) the second leftmost circle (ly = 2) in Fig. 3 represents the same value as for
the rightmost circle (ly = 31), which was our goal. Ifle is close to1, then because the modely = 1
can not be damped at all, the overall damping forle = 1:2 is predicted to be less, whereasle = 4
should lead to a better damping of the remaining modesly = 4; : : : ; 31 that are taken into account,
which is confirmed in Fig. 3 for different values of�.

Fig. 4 shows theexactnonzero eigenvalues� of M�1
C N sorted by magnitude for different values

of �. We also plotted in this figure thepredictednonzero eigenvalues sorted by magnitude. We see
that the predictions are very accurate.

In Fig. 4 we see also the effect of the valuele on the eigenvalues. Again, we see that it is better
to overestimatele than underestimate. The point symmetry in Fig. 4 is due to the fact that if� is an
eigenvalue ofM�1

C N then�� is also an eigenvalue (remark (iv) ofx2.5). Furthermore, note that for
each process one eigenvalue is equal to1, independent of�. By a combination of remark (v) ofx2.5
and the discussion at the end ofx3.2, we see that the corresponding eigenvector is of the formy that
corresponds to the eigenvectory that we are looking for with our Jacobi-Davidson process. Hence
the occurrence of1 in the spectrum is not a problem: the projections in the correction equation take
care of this, as we will show now.

5.2.2 Deflation Now we show, by means of an example, how deflation improves the condition of
the preconditioned correction equation (3.7). For the discretized Laplace operator we take!x =
!y = 1; nx = ny = 31; nx1 = 15 and� = �(4;4). There are19 eigenvalues larger than�(4;4). If we
determine the�opt for the simple optimized coupling, thenele � 5:6944. So the modesly = 1; : : : ; 6
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FIGURE 4. Predicted and computed nonzero eigenvalues of the error propagatorM
�1
C N with simple optimized

coupling for the largest eigenvalue�(1;1) of the Laplace operator forle = 2, le = 4, andle = 1:2. For explanation, see
x5.2.1.
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are not taken into account for the optimization of�, since they do not show dominant behavior. Hence
we do not necessarily damp these modes with the resulting�opt.
One of them, more precisely the modely = 4, is connected to they-component of the eigenvector
'(4;4) corresponding to�(4;4): this mode can not be controlled at all with� because the operatorA is
shifted by�(4;4) and therefore singular in the direction of'(4;4). In the correction equation (3.7) the
operator stays well-conditioned due to the projectionP that deflates exactly the directionu = '(4;4).
Since the error propagator originates from the enhanced operator in the correction equation, this
projection is actually incorporated in the error propagator (x3.2):PM�1

C NP.
The other non-dominant modesly = 1; 2; 3; 5; 6, can not be controlled by�opt. But, as remarked in
x4.4, in practice one starts the computation with the largest eigenvalues and when arrived at�(4;4),
the19 largest eigenvalues with corresponding eigenvectors are already computed and will be deflated
from the operatorB. Deflation in the enhanced correction equation is performed by the projection

P0 � I�M�1
C X

�
X�M�1

C X
��1

X�:

HereX � (X T
1 ;X

T

` ; 0
T ; 0 T ;X T

r ;X
T
2 )

T , whereX � (X T
1 ;X

T

` ;X
T
r ;X

T
2 )

T is a matrix of which the
columns form an orthonormal basis for the space spanned by the19 already computed eigenvectors
and the approximate20th eigenvector. This implies that we are dealing with the error propagator
P0M�1

C NP0.
For�opt we computed the nonzero eigenvalues ofM�1

C N, PM�1
C NP andP0M�1

C NP0. In Fig. 5
their absolute values are plotted. The ‘+’-s (no deflation) indicate that the most right12 eigenvalues
have not been controlled by�opt. This is in agreement with the fact that the modesly = 1; : : : ; 6 have
not been taken into account for the determination of�opt: to each modely there correspond exactly
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FIGURE 5. The effect of deflation on the nonzero eigenvalues of the error propagator with simple optimized coupling.
For explanation, seex5.2.2. The dotted lines indicate the area of Fig. 6.
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two eigenvalues��(ly) and+�(ly). Two eigenvalues have absolute value1 (position57 and58 on
the horizontal axis). They correspond to the eigenvector'(4;4) of A.
The ‘�’-s show that deflation withu makes these absolute values become less than1. But, with de-
flation byu, the other uncontrolled eigenvalues stay where they were without deflation; four absolute
values are even larger than2:5. Fortunately, deflation with the19 already computed eigenvectors
drastically reduces these absolute values, as the ‘�’-s show.

From this example we learned that deflation may help to cluster the part of the spectrum that
we can not control with the coupling parameters, and therefore improves the conditioning of the
preconditioned correction equation. The remaining part of the spectrum, that is the eigenvalues that
are in control (indicated by the dotted lines in Fig. 5), may be damped even more. This will be subject
of the next section.

5.2.3 Stronger coupling At the end ofx4.4, it was illustrated that the inclusion of interactions
parallel to the artificial boundary provides more coupling parameters by which a better coupling can
be realized. We will apply this now to the example inx5.2.2 in order to investigate how much we can
improve the spectrum of the error propagator and how accurate the value of the predicted amplification
�0opt is for the different types of coupling.

Table 4 contains the values of the coupling parameters and the predicted amplification�0opt for the
different types of coupling whenle = 7, as inx5.2.2. These values are obtained by application of
a Rémès algorithm to expression (4.28). As in the final example ofx4.4, we see that be the best
coupling is predicted to be of type4, followed by type2, and then type3. But, the question remains
what the exact spectrum may be for these types op coupling.

We computed the exact nonzero eigenvalues of the error propagatorM�1
C N for the four types of
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TABLE 4. Values of coupling parameters and predicted amplification�0opt for four types of optimized coupling. For
explanation, seex5.2.3.

type no. 1 2 3 4

optimized w.r.t. � �; � �; 
 �; �; 


� �2:138 �0:4988 �1:373 �0:2080
� 0:001375 0:001959


 0:0002230 �0:0001352
predicted�0opt 0:3128 0:01875 0:1196 0:007686

FIGURE 6. The effect of different types of optimized coupling on the nonzero eigenvalues of the error propagator. The
values of the coupling parameters are given in Table 4. The corresponding predicted values of�0opt are indicated by dotted
lines. For explanation, seex5.2.3.
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coupling from Table 4. Fromx5.2.2, we know that with the coupling parameters we only control the
2ny � 12 = 50 nonzero eigenvalues of the error propagator with lowest absolute value. Therefore,
we exclude the12 other nonzero eigenvalues from our further discussion. In Fig. 6 the50 eigenvalues
with lowest absolute value are plotted. The corresponding predicted values of�0opt are indicated by
dotted lines in Fig. 6. From inspection of the eigenvectors, we have verified that for the four different
types of coupling, the12 eigenvalues with highest absolute value that are excluded correspond to the
modesly = 1; : : : ; 6. (Computation of the eigenvectors is rather time consuming. Therefore, we
restricted ourselves here to a grid that is coarser than the one in the example at the end ofx4.4.)

Indeed, as predicted, it pays off to include more coupling parameters. For type1 the predicted
value of�0opt is almost exact. The value for type3 seems to be accurate for the eigenvalues at positions
1; : : : ; 38. For types2 and4, the value becomes less accurate after position34. We believe that this is
because of neglecting the�� terms in the expression for�0opt: for types2 and4 the eigenvectors, that
correspond to the eigenvalues with position larger than34, have a low value ofly. In our quest for
optimizing the spectral radius of the error propagator, we have now arrived at a level where we can no
longer ignore the contributions of the terms��. This is confirmed by inspecting the eigenvectors: the
eigenvalues that deviate from the predicted�0opt have eigenvectors that correspond to low values ofly.
But still, the predicted�0opt gives a good indication for the quality of the coupling and will be better
for finer grids.

5.3 Effect on the overall process
In x5.2 spectra of the error propagator have been studied. These spectra provide information on the
convergence behavior of the Jacobi iterative method. Now we turn our attention to the overall Jacobi-
Davidson method itself. We are interested in how approximate solutions of the correction equation,
obtained with a linear solver (‘the innerloop’), affects the Jacobi-Davidson process (‘the outerloop’).

Here we consider two types of coupling:

1. the simple optimized coupling with one coupling parameter�,

2. the Neumann-Dirichlet coupling.

Although we have seen inx4.4 andx5.2.3, that there exist better choices for the coupling, we be-
lieve that the overall process with the simple optimized coupling gives a good indication of what we
may expect for the stronger optimized couplings. The choice for the Neumann-Dirichlet coupling is
motivated by the fact that it is commonly used in domain decomposition methods.

The testproblem will be the same as the one inx5.2.1. First we discuss the Jacobi iterative method
as a solver for the correction equation. We do this for both the left and right preconditioned variant.
Then we compare the results with those obtained by the GMRES method.

5.3.1 The Jacobi iterative processIn x5.2.1 we have computed the spectra of the error propagator
M�1

C N, for �opt and two other near optimal values of�. We further investigate these three cases for
the Jacobi iterative process.

Table 5 shows the convergence behavior of Jacobi-Davidson, when the correction equation is solved
with the Jacobi iterative method and with coupling parameter�opt, obtained forle = 2. The left (on
the left) and right (on the right) preconditioned variant are presented. Moreover, we have varied the
number of Jacobi inner iterations.

When we compare the top part of Table 5 with the bottom part, then we see that more Jacobi inner
iterations lead to less outer iterations for the same precision. More Jacobi iterations yields a better
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TABLE 5. Convergence history of Jacobi-Davidson applied to the discretized eigenvalue problem of the two-
dimensional Laplace operator for approximate solutions to the correction equation obtained with left (left) and right (right)
preconditioned Jacobi iterations on two subdomains and simple optimized coupling. For explanation seex5.3.1.

optimized coupling,le = 2

left DD-preconditioned right DD-preconditioned
step � � � krk2 kr0k2 � � � � krk2 kr0k2 �

3 Jacobi inner iterations 2 Jacobi inner iterations
1 -1.61e-01 4.19e+00 4.19e+00 -1.6275-1.61e-01 4.19e+00 4.19e+00 -1.6275
2 -4.98e-03 3.14e+00 2.55e+00 -1.6287-4.98e-03 3.14e+00 2.55e+00 -1.6287
3 -2.20e-04 1.90e-01 1.81e-01 -1.6287-2.20e-04 1.90e-01 1.81e-01 -1.6287
4 -1.62e-07 7.12e-03 6.74e-03 -1.6287-1.62e-07 7.12e-03 6.74e-03 -1.6287
5 -2.13e-12 4.16e-05 3.91e-05 -1.6287-2.09e-12 4.16e-05 3.91e-05 -1.6287
6 -1.53e-13 1.36e-06 9.37e-07 -1.6287-1.47e-13 1.36e-06 9.37e-07 -1.6287
7 -1.62e-13 8.43e-09 5.78e-09 -1.6287-1.81e-13 8.43e-09 5.78e-09 -1.6287
8 -1.39e-13 1.19e-10 8.84e-11 -1.44e-13 1.19e-10 8.84e-11

4 Jacobi inner iterations 3 Jacobi inner iterations
1 -1.61e-01 4.19e+00 4.19e+00 -1.6275-1.61e-01 4.19e+00 4.19e+00 -1.6275
2 -4.23e-03 2.89e+00 2.43e+00 -1.6287-4.23e-03 2.89e+00 2.43e+00 -1.6287
3 -2.70e-05 6.42e-02 6.20e-02 -1.6287-2.70e-05 6.42e-02 6.20e-02 -1.6287
4 -5.95e-09 1.02e-03 7.36e-04 -1.6287-5.95e-09 1.02e-03 7.36e-04 -1.6287
5 -1.53e-13 2.84e-06 2.61e-06 -1.6287-1.58e-13 2.84e-06 2.61e-06 -1.6287
6 -1.76e-13 2.81e-08 1.54e-08 -1.6287-9.95e-14 2.81e-08 1.54e-08 -1.6287
7 -1.44e-13 8.33e-12 8.30e-12 -1.42e-13 8.34e-12 8.28e-12



5. Numerical experiments 33

TABLE 6. Convergence history of Jacobi-Davidson applied to the discretized eigenvalue problem for the two-
dimensional Laplace operator for approximate solutions to the correction equation obtained with 3 left preconditioned
Jacobi iterations on two subdomains and two almost optimal simple couplings. For explanation seex5.3.1.

step � � � krk2 kr0k2 � � � � krk2 kr0k2 �

le = 4 le = 1:2

1 -1.61e-01 4.19e+00 4.19e+00 -2.1274-1.61e-01 4.19e+00 4.19e+00 -1.2729
2 -2.93e-03 2.27e+00 2.00e+00 -2.1279-1.33e-02 5.03e+00 3.31e+00 -1.2794
3 -1.12e-03 5.92e-01 4.62e-01 -2.1279-1.92e-06 2.96e-02 2.94e-02 -1.2800
4 -1.46e-05 6.50e-02 5.83e-02 -2.1279-4.11e-10 6.69e-04 5.57e-04 -1.2800
5 -4.02e-10 5.91e-04 5.71e-04 -2.1279-1.18e-12 5.35e-05 3.97e-05 -1.2800
6 -2.47e-12 6.71e-05 4.05e-05 -2.1279-1.24e-13 1.45e-06 1.21e-06 -1.2800
7 -1.47e-13 1.82e-07 1.14e-07 -2.1279-3.13e-13 9.31e-08 5.82e-08 -1.2800
8 -1.67e-13 2.84e-10 2.82e-10 -1.46e-13 2.83e-09 2.09e-09 -1.2800
9 -1.72e-13 1.24e-10 1.09e-10

approximation of the correction vector and a better approximation of the correction vector results
in fewer Jacobi-Davidson steps. When we compare the left part with the right part in Table 5, then
we see thatm steps with right preconditioned Jacobi iterations produces exactly the same results
as withm + 1 left preconditioned Jacobi iterations. This is explained by stage1 in x3.3 of right
preconditioning: one extra preconditioning step is performed.

From x5.2.1 we know that the spectra of the error propagator are less optimal forle = 4 and
le = 1:2, and therefore Jacobi will perform not as good as forle = 2. How does this affect the
Jacobi-Davidson process? In Table 6 data are presented for three left preconditioned Jacobi iterations
in each outer iteration, forle = 4 (left) andle = 1:2 (right). We should compare this with the top
left part of Table 5. From this we see, that also Jacobi-Davidson performs less well for less optimal
couplings.

Now we consider the Neumann-Dirichlet coupling. In our enhancement terminology (cf.x2.2)
this can be interpreted as a Neumann boundary condition on the left:C`` = I andC`r = �I, and a
Dirichlet boundary condition on the right:Cr` = I andCrr = I. For dominated behavior (cf.x4.3.1
(iii), and x4.4 (4.20)) and for two subdomains it follows from (2.16) that

�2 � (� � 1) (1 + �)

(1� �) (� + 1)
= �1:

From this we see that for� = �(1;1), the error propagator has, besides�1 and+1, only eigenvalues
near�p�1 and

p�1. Hence, the eigenvectors ofM�1
C N will hardly be damped. Therefore, the

Jacobi iteration will not perform well with Neumann-Dirichlet coupling. From Table 7 we see that
Jacobi-Davidson clearly suffers from this effect.

5.3.2 GMRES At the end ofx2.3 we noted that Krylov subspace methods can be viewed as acceler-
ators of the Jacobi iterative method. If we apply GMRES for the solution of the correction equation,
instead of Jacobi iterations as inx5.3.1, then we should expect at least the same speed of convergence
in the inner iteration. As a consequence, the speed of convergence of the Jacobi-Davidson (outer)
iteration should be not worse but presumably better.
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TABLE 7. Convergence history of Jacobi-Davidson applied to the discretized eigenvalue problem for the two-
dimensional Laplace operator for approximate solutions to the correction equation obtained with left (left) and right (right)
preconditioned Jacobi iterations on two subdomains and Neumann-Dirichlet coupling. For explanation seex5.3.1.

Neumann-Dirichlet coupling
left DD-preconditioned right DD-preconditioned

step � � � krk2 kr0k2 � � � krk2 kr0k2
4 Jacobi inner iterations 3 Jacobi inner iterations

1 -1.61e-01 4.19e+00 4.19e+00-1.61e-01 4.19e+00 4.19e+00
2 -5.07e-02 8.72e+00 3.98e+00-5.07e-02 8.72e+00 3.98e+00
3 -1.79e-02 4.85e+00 3.29e+00-1.79e-02 4.85e+00 3.29e+00
4 -1.20e-02 2.40e+00 2.03e+00-1.20e-02 2.40e+00 2.03e+00
5 -4.55e-03 2.69e+00 1.68e+00-4.55e-03 2.69e+00 1.68e+00
6 -2.93e-04 6.90e-01 6.13e-01-2.93e-04 6.90e-01 6.13e-01
7 -1.40e-04 3.74e-01 3.29e-01-1.40e-04 3.74e-01 3.29e-01
8 -2.00e-05 2.10e-01 1.74e-01-2.00e-05 2.10e-01 1.74e-01
9 -4.11e-06 7.32e-02 6.63e-02-4.11e-06 7.32e-02 6.63e-02
10 -8.12e-07 3.88e-02 3.49e-02-8.12e-07 3.88e-02 3.49e-02
11 -1.54e-07 1.41e-02 1.12e-02-1.54e-07 1.41e-02 1.12e-02
12 -1.50e-08 5.84e-03 5.28e-03-1.50e-08 5.84e-03 5.28e-03
13 -3.20e-09 2.62e-03 1.59e-03-3.19e-09 2.62e-03 1.58e-03
14 -7.27e-10 1.22e-03 1.01e-03-3.68e-10 9.02e-04 8.00e-04
15 -1.31e-10 5.86e-04 5.38e-04-1.30e-10 5.82e-04 5.35e-04
16 -2.34e-11 2.63e-04 1.72e-04-2.35e-11 2.63e-04 1.72e-04
17 -2.26e-12 5.03e-05 4.78e-05-4.16e-13 5.03e-05 4.78e-05
18 -7.46e-13 2.08e-05 1.65e-05-5.68e-14 2.08e-05 1.65e-05
19 -1.63e-13 3.90e-06 3.21e-06-7.53e-13 3.88e-06 3.19e-06
20 4.12e-13 1.49e-06 1.25e-06 1.14e-13 1.27e-06 1.04e-06
21 9.95e-13 8.53e-07 7.63e-07 6.25e-13 3.60e-07 2.54e-07
22 -6.79e-13 2.55e-07 1.30e-07-3.91e-13 2.30e-07 1.25e-07
23 4.01e-13 3.81e-08 3.56e-08-7.11e-14 3.81e-08 3.56e-08
24 7.11e-14 1.18e-08 8.40e-09-5.47e-13 1.18e-08 8.39e-09
25 4.90e-13 1.45e-09 1.41e-09 2.98e-13 1.19e-09 1.16e-09
26 6.98e-13 6.58e-10 6.30e-10-5.90e-13 5.02e-10 4.80e-10
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TABLE 8. Convergence history of Jacobi-Davidson applied to the discretized eigenvalue problem for the two-
dimensional Laplace operator for approximate solutions to the correction equation obtained with left (left) and right (right)
preconditioned GMRES on two subdomains and simple optimized coupling. For explanation seex5.3.2.

optimized coupling,le = 2

left DD-preconditioned right DD-preconditioned
step � � � krk2 kr0k2 � � � � krk2 kr0k2 �

GMRES(3) GMRES(2)
1 -1.61e-01 4.19e+00 4.19e+00 -1.6275-1.61e-01 4.19e+00 4.19e+00 -1.6275
2 -2.72e-05 1.67e-01 1.67e-01 -1.6287-3.74e-05 1.16e-01 1.16e-01 -1.6287
3 -3.05e-08 6.68e-03 6.23e-03 -1.6287-5.89e-08 6.63e-03 5.43e-03 -1.6287
4 -3.06e-11 2.72e-04 2.71e-04 -1.6287-1.46e-11 1.19e-04 1.13e-04 -1.6287
5 1.78e-15 1.72e-06 1.66e-06 -1.6287-1.56e-13 1.46e-06 1.26e-06 -1.6287
6 -2.59e-13 1.34e-08 1.03e-08 -1.6287-1.69e-13 6.81e-09 5.71e-09 -1.6287
7 -1.26e-13 7.94e-10 6.71e-10 -7.28e-14 4.38e-11 4.03e-11

GMRES(4) GMRES(3)
1 -1.61e-01 4.19e+00 4.19e+00 -1.6275-1.61e-01 4.19e+00 4.19e+00 -1.6275
2 -1.52e-06 3.07e-02 3.02e-02 -1.6287-1.34e-06 2.76e-02 2.71e-02 -1.6287
3 -1.39e-12 3.35e-05 3.32e-05 -1.6287-4.85e-12 4.30e-05 4.13e-05 -1.6287
4 -1.42e-13 1.87e-07 1.76e-07 -1.6287-1.42e-13 7.62e-07 7.31e-07 -1.6287
5 -1.79e-13 1.21e-09 1.17e-09 -1.6287-1.19e-13 3.20e-09 3.19e-09 -1.6287
6 -1.85e-13 4.64e-12 4.09e-12 -1.28e-13 1.10e-11 1.05e-11

Our expectations are confirmed by the results in Table 8, for the simple optimized coupling and in
Table 9 for the Neumann-Dirichlet coupling. For the same type of coupling one should compare the
data for GMRES(m) with m Jacobi iterations: GMRES optimizes over the Krylov subspace spanned
by powers of the (preconditioned) operator, whereas Jacobi uses only the last iteration vector for the
computation of a solution to the linear system.

Note that with left preconditioned GMRES(4) and with Neumann-Dirichlet coupling, we have
almost recovered the exact Jacobi-Davidson process fromx5.1. This can be explained as follows. The
eigenvalue distribution of the error propagator has besides�1 and+1, all other eigenvalues clustered
around�p�1 for two subdomains. However, for four distinct eigenvalues, GMRES needs four steps
at most for convergence. So the spectral properties of the error propagator for two subdomains with
Neumann-Dirichlet coupling are worse for the Jacobi iterative method but ideal for the acceleration
part of GMRES. This is not a typical situation. Inx5.4 we will see how the picture changes for more
subdomains and with less accurate preconditioners.

5.4 More subdomains
We describe an experiment that illustrates what happens when the number of subdomains is increased.
For each number of subdomains we keep the preconditioner fixed.

Our modelproblem is a channel that is made larger by extending new subdomains. We compute
the largest eigenvalue and corresponding eigenvector of the Laplace operator on this channel. After
adding a subdomain, this results in a different eigenvalue problem. Forp subdomains the physical
size and number of gridpoints in they direction are taken to be fixed:!y = 1 andny = 63, whereas
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TABLE 9. Convergence history of Jacobi-Davidson applied to the discretized eigenvalue problem for the two-
dimensional Laplace operator for approximate solutions to the correction equation obtained with left (left) and right (right)
preconditioned GMRES on two subdomains and Neumann-Dirichlet coupling. For explanation seex5.3.2.

Neumann-Dirichlet coupling
left DD-preconditioned right DD-preconditioned

step � � � krk2 kr0k2 � � � krk2 kr0k2
GMRES(3) GMRES(2)

1 -1.61e-01 4.19e+00 4.19e+00-1.61e-01 4.19e+00 4.19e+00
2 -1.20e-04 3.80e-01 3.80e-01-5.87e-05 8.67e-02 8.48e-02
3 -5.48e-05 2.00e-01 1.96e-01-7.21e-09 2.19e-03 2.18e-03
4 -1.13e-06 2.78e-02 1.73e-02-1.71e-13 1.57e-06 1.22e-06
5 -1.99e-08 5.95e-03 4.43e-03-1.49e-13 3.25e-08 3.09e-08
6 -8.17e-12 7.64e-05 7.48e-05-1.74e-13 3.10e-12 2.98e-12
7 -1.79e-13 3.88e-06 3.83e-06
8 -1.99e-13 1.41e-07 1.32e-07
9 -1.14e-13 1.90e-09 1.61e-09
10 -1.71e-13 4.80e-11 2.58e-11

GMRES(4) GMRES(3)
1 -1.61e-01 4.19e+00 4.19e+00-1.61e-01 4.19e+00 4.19e+00
2 -9.65e-07 8.55e-03 6.10e-03-9.65e-07 8.55e-03 6.10e-03
3 -1.44e-13 5.84e-10 5.79e-10-1.55e-13 5.35e-10 5.30e-10
4 -1.21e-13 8.56e-14 1.01e-14-1.49e-13 3.92e-14 4.12e-14
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in thex direction they increase:!x = p andnx = 63 + (p� 1) � 64 for 1 � p � 6.
Now, the idea is that the DD-preconditioner consists of block matrices defined on the enhanced

subdomain grids. For the channel this results in one block matrix of size(63 + 1) � (63 + 1)
(corresponding to the first subdomain on the left),p� 2 block matrices of size(64 + 2) � (64 + 2)
(corresponding to thep� 2 intermediate subdomains) and one block matrix of size(64 + 1)� (64 +
1) (corresponding to the last subdomain on the right). If we select the same coupling between all
subdomains, then we need to know the inverse action of3 blocks (corresponding to the left, right, and
a single intermediate subdomain). Furthermore, we construct the preconditioner only for the value of
�1 of the first Jacobi-Davidson step. This fixed preconditioner is used for all iteration steps.

In order to be able to interpret the results properly, we have checked how Jacobi-Davidson with
accurate solutions to the correction equation on the undecomposed domain (the ‘exact’ process) be-
haves. In Fig. 7 and Fig. 8 this is represented by the solid line.

We consider simple optimized (type 1), strong optimized (type 4), and Neumann-Dirichlet cou-
plings. In each Jacobi-Davidson step we solve the correction equation approximately by right pre-
conditioned GMRES(3). The number of nonzero eigenvalues of the error propagator is proportional
to the number of subdomains. Because of this, it is reasonable that with a fixed number of inner
iterations the accuracy will deteriorate for more subdomains.

Fig. 7 represents the convergence history of Jacobi-Davidson for the ‘exact process’ and for the
inexact processes with different types of coupling, when starting with the vector (5.1). The ‘exact
process’ does not change significantly for increasing values ofp. For the inexact processes, the
number of outer iterations increases when the number of subdomains increases (as expected). For the
simple optimized coupling one can roughly say that convergence onp subdomains requires5+p outer
iterations. The strong optimized coupling needs about1 � 2 iterations less. But for the Neumann-
Dirichlet coupling the results do not show such a linear relationship: when increasing from2 to 3 or
from 3 to 4 subdomains, the number of outer iterations almost doubles.

When we compare the right bottom part of Table 9 with the two subdomain case in Fig. 7, then we
see what happens when the preconditioner is less accurate for Neumann-Dirichlet coupling: the exact
Jacobi-Davidson process can not longer be reproduced. Because the shift�1 in MC is not equal to
the shift� in BC , the eigenvalues of the error propagator that were close to�p�1 (cf. x5.3) start to
deviate. This results in worse circumstances for GMRES.

From these results we conclude that the optimized couplings outperform the Neumann-Dirichlet
coupling for more than2 subdomains and a less accurate preconditioner

So far we have only considered the eigenvalue problem for the Laplace operator. The analysis ofx4
also accommodates problems with first order operators. To illustrate that this does not give essential
differences, we consider

@2

@x2
+

2

p

@

@x
+

@2

@y2
+ 5

@

@y
(5.2)

on a domain with physical sizes!x = 5
4p and!y = 3

4 . Herep 2 f2; 3; 4g is the number of subdo-
mains. With Jacobi-Davidson we compute the largest eigenvalue. In order to be in the convergence
region of interest, Jacobi-Davidson is started with a vector equal to(A�25I)�1 times the vector (5.1)
(25 is close to the largest eigenvalue). All other settings are the same as in the previous experiment of
this section.

Fig. 8 shows the convergence history of Jacobi-Davidson for accurate solutions and for approxi-
mate solutions of the correction equation. The approximate solutions are obtained from right pre-
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FIGURE 7. Convergence history of Jacobi-Davidson applied to the discretized eigenvalue problem for the two-
dimensional Laplace operator for accurate solutions to the correction equation and increasing values of!x andnx (solid
lines) versus approximate solutions to the correction equation obtained from right preconditioned GMRES(3) with strong
optimized (type 4) coupling (dashed lines with ‘�’), simple optimized (type 1) coupling (dash-dotted lines with ‘�’) and
Neumann-Dirichlet coupling (dotted lines with ‘�’) on an increasing number of subdomains. For explanation seex5.4.
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FIGURE 8. Convergence history of Jacobi-Davidson applied to the discretized eigenvalue problem for the two-
dimensional advection-diffusion operator (5.2) for accurate solutions to the correction equation and increasing values
of!x andnx (solid lines) versus approximate solutions to the correction equation obtained from right preconditioned GM-
RES(3) with simple optimized (type 1) coupling (dash-dotted lines with ‘�’) on an increasing number of subdomains. For
explanation seex5.4.
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conditioned GMRES(3) with simple optimized (type 1) coupling. As in the previous experiment, the
preconditioner is constructed only once at the first Jacobi-Davidson step. We see that the pictures in
Fig. 8 are similar to those in Fig. 7.

6. CONCLUSIONS

In this paper we have outlined and analyzed how a nonoverlapping domain decomposition technique
can be incorporated in the Jacobi-Davidson method. For large eigenvalue problems the solution of
correction equations may become too expensive in terms of CPU time or/and memory. Domain
decomposition may be attractive in a parallel computing environment.

For a model eigenvalue problem with constant coefficients we have analyzed how the coupling
equations should be tuned. By numerical experiments we have verified our analysis. Indeed, further
experiments showed that tuning of the coupling results in faster convergence of the Jacobi-Davidson
process.

In realistical problems, the coefficient functions will not be constant and the domain will have a
complicated geometry. For the determination of suitable coupling matrices, we intend to locally apply
the approach that we discussed here. This ‘local’ approach is the subject of our next study.
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