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ABSTRACT

The Jacobi-Davidson method is suitable for computing solutions of large 1 -dimensional eigenvalue problems.
It needs (approximate) solutions of specific 7.-dimensional linear systems. Here we propose a strategy based
on a nonoverlapping domain decomposition technique in order to reduce the wall clock time and local memory
requirements. For a model eigenvalue problem we derive optimal coupling parameters. Numerical experiments
show the effect of this approach on the overall Jacobi-Davidson process. The implementation of the eventual
process on a parallel computer is beyond the scope of this paper.
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1. INTRODUCTION

The Jacobi-Davidson method [17] is a valuable approach for the solution of large (generalized) linear
eigenvalue problems. The method reduces the large problem to a small one by projecting it on an
appropriate low dimensional subspace. Approximate solutions for eigenpairs of the large problem
are obtained from the small problem by means of a Rayleigh-Ritz principle. The heart of the Jacobi-
Davidson method is how the subspace is expanded. To keep the dimension of the subspace, and
consequently the size of the small problem, low it is essential that all necessary information of the
wanted eigenpair(s) is collected in the subspace after a small number of iterations. Therefore, the
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subspace should be expanded with a vector that contains important information not already present in
the subspace. The correction equation of the Jacobi-Davidson method aims to prescribe such a vector.

But in itself, the correction equation poses a large linear problem, with size equal to the size of the
originating large eigenvalue problem. Because of this, most of the computational work of the Jacobi-
Davidson method arises from solving the correction equation. In practice the eigenvalue problem is
often so large that an accurate solution of the correction equation is too expensive. However, often
approximate solutions of the correction equation suffice to obtain sufficiently fast convergence of the
Jacobi-Davidson method. The speed of this convergence depends on the accuracy of the approximate
solution. Jacobi-Davidson lends itself to be used in combination with a preconditioned iterative solver
for the correction equation. In such a case the quality of the preconditioner is critical.

Nonoverlapping domain decomposition methoddliftear systeméave been studied well in liter-
ature. Because of the absence of overlapping regions they have computational advantages compared
to domain decomposition methods with overlap. But much depends on the coupling that should be
chosen carefully.

In this paper we will show how a nonoverlapping domain decomposition technigque can be in-
corporated in the correction equation of Jacobi-Davidson, when applied to PDE type of eigenvalue
problems. The technique is based on work by Tang and by Tan and Borsboom for linear systems.

For a linear system Tang [20] proposed to enhance the system with duplicates in order to enable
an additive Schwarz method with minimal overlap (for more recent publications, see for example [7],
[12] and [10]). Tan and Borsboom [19, 18] refined this idea by introducing more flexibility for the
unknowns near the interfaces between the subdomains. In this way additional degrees of freedom
are created, reflected by coupling equations for the unknowns near the interfaces and their virtual
counterparts. Now, the key point is to tune these interface conditions for the given problem in order
to improve the speed of convergence of the iterative solution method. This approach is very effective
for classes of linear systems stemming from advection-diffusion problems [19, 18].

The operator in the correction equation involves the matrix of the large eigenvalue problem shifted
by an approximate eigenvalue. In the computational process, this shift will become arbitrarily close
to the desired eigenvalue. This is a situation that requires special attention when applying the domain
decomposition technique.

An eigenvalue problem imposes a mildly nonlinear problem. Therefore, for the computation of
solutions to the eigenvalue problem one needs a nonlinear solver, for instance, a Newton method. In
fact, Jacobi-Davidson can be seen as an accelerated inexact Newton method [16]. Here, we shall, as
explained above, combine the Jacobi-Davidson method with a Krylov solver for the correction equa-
tion. A preconditioner for the Krylov solver is constructed with domain decomposition. A similar
type of nesting, but for general nonlinear systems, can be found in the Newton-Krylov-Schwarz algo-
rithms by Cai, Gropp, Keyes et al. in [4] and [5]. In these two papers the subdomains have overlap,
therefore there is no analysis for the tuning of the coupling between subdomains. Furthermore, the
eigenvalue problem is nonlinear but with a specific structure; we will exploit this structure.

Our paper is organized as follows. First, we recall the enhancement technique for domain decom-
position in§2. Then, in§3 we discuss the Jacobi-Davidson method. We outline how the technique
can be applied to the correction equation and how the projections in the correction equation should be
handled. For a model eigenvalue problem we investigatg4,iim detail how the coupling equations
should be chosen for optimal performance. It will turn out that the shift plays a critical role. Section
85 gives a number of illustrative numerical examples.
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2. DOMAIN DECOMPOSITION

2.1 Canonical enhancement of a linear system

Tang [20] has proposed the concept of matrix enhancement, which gives elegant possibilities for the
formulation of effective domain decomposition of the underlying PDE problem. The idea is to de-
compose the grid into nonoverlapping subgrids and to expand the subgrids by introducing additional
gridpoints and additional unknows along the interfaces of the decomposition. This approach artifi-
cially creates some overlap on gridpoint level and the overlap is minimal. For hyperbolic systems of
PDEs, this approach was further refined by Tan in [18] and by Tan and Borsboom in [19]. Discretiza-
tion of the PDE leads to a linear system of equations. Tang duplicates and adjusts those equations in
the system that couple across the interfaces. Tan and Borsboom introduce a double set of additional
gridpoints along the interfaces in order to keep each equation confined to one expanded subgrid. As
a consequence, none of the equations has to be adjusted. Then they enhanced the linear system by
‘new’ equations that can be viewed as discretized boundary conditions for the internal boundaries
(along the interfaces). Since the last approach offers more flexibility, this is the one we follow.

We start with the linear nonsingular system
By =d, (2.1)

that results from discretization of a given PDE over some domain. Now, we partition the fatrix
and the vectorg andd correspondingly,

By By By B Y1 d;
Biu By By Bp Yl and dy
Brl Br( Brr Br2 ’ Yr dr
Ba1 By By Bo Y2 ds

The labels are not chosen arbitrarily: we associate with lalfahd 2, respectively) elements/oper-
ations of the linear system corresponding to subdorm@nrespectively) and with labél(resp.r) el-
ements/operations corresponding to the left (resp. right) of the interface between the two subdomains.
The central blocksB,,, By, By, and B,,. are square matrices of equal size, sayby n;. They
correspond to the unknowns along the interface. Since the number of unknowns along the interface
will typically be much smaller than the total number of unknowswill be much smaller tham, the
size of B.

For a typical discretization, the matrB is banded and the unknowns are only locally coupled.
Therefore it is not unreasonable to assume Biat, Bo;, B1o andB, are zero. For this situation,
we define the ‘canonical enhancemeBy; of B, y of y, andd of d, by

1By By By, | 0 O 0 ] (1] [d; ]
Bn Bw By | 0 0 0 Ye dy
B= (L2 L 0 1L 0 04 ¥ and a=|° 2.2)
o 0 -71|0 I o T 0
0 0 0 Br( By B Yr dr
Y 0 0 By By By [ Yol [da |

One easily verifies thd; is also nonsingular and thgtis the unique solution of

Bry=d, (2:3)
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Wlth Z = (Yira yeTa er7 yéTa y1:ra YQT) T'
With this linear system we can associate a simple iterative scheme for the two coupled subblocks:
(i+1)

[ B, By By, Y1 d;
Bn Bu B it = de |,
0 I 0 y~r(i+1) g’/“e(l)
[ 0 T 0 1T y~£(i+1) y“;@
By By By || oY | =1 4, (2.4)
| By By By | | y,0HD dy

These systems can be solved in parallel and we can view this as a simple additive Schwarz iteration
(with no overlap and Dirichlet-Dirichlet coupling). The extra unknowpnsndy,., in the enhanced
vectory, will serve for communication between the subdomains during the iterative solution process
of the linear system. After termination of the iterative process, we have to undo the enhancement. We
could simply skip the values of the additional elements, but since these carry also information one of
the alternatives could be the following one.

With an approximate solution

. iT iT . Z-T . iT
AL s ) Y ORI RV ORI O k)

of (2.3), we may associate the approximate solulignof (2.1) given by

7 . . o .
Ry=(i"", 50l + 577, 30 + 5 7y ),

that is, we simply average the two sets of unknowns that should have been equal to each other at full
convergence.

2.2 Interface coupling matrix
From (2.2) we see that the interface unknowns and the additional interface unknowns are coupled in
a straightforward way by

Ye

yr |

oSl

but, of course, we may replace the coupling matrix by any other nonsingular interface coupling matrix
C:

(2.5)

Cre

C =
_Crl

Clr
—Cpp

This leads to the following block system

1Bi1 By By, 0 0

By Bw  Be 0 0

By = 0 Cu Cp|—-Cy —Cp
0 — rf _Crr Crl Crr 0
0 0 0 BM By Bpa

Y1
Ye
Yr
Ye
Yr

| Y2

(2.6)

Il
a

2.7)
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In a domain decomposition context, we will have for the approximate solgtibaty, ~ y, and
ye =~ yp. If we know some analytic properties about the local behavior of the true solutamross
the interface, for instance, smoothness up to some degree, then we may try to identify a convenient
coupling matrixC' that takes advantage of this knowledge. We want preferablysa that

—Cuye — Coyr = —Cupyr— Coryr =0
and — réYye — Crryvr ~ —Cpeyr — Crryr ~ 0.

In that case (2.7) is almost decoupled into two independent smaller linear systems (identified by the
two boxes). We may expect fast convergence for the corresponding additive Schwarz iteration.

2.3 Solution of the coupled subproblems

The goal of the enhancement of the matrix of a given linear system, together with a convenient

coupling matrixC, is to get two smaller mildly coupled subsystems that can be solved in parallel.
Additive Schwarz for the linear system (2.7) leads to the following iterative scheme

)

By By, By, _ng | d;
By By Bu| |yfV| = |d |,
| 0 Cu Cy| _g}ﬁ”l)_ _97(})_
Cro G 0] 3] (/]
Byy Bpr B y1(“l,+1) - de | > (2.8)
| By Bo, Boy| _yglﬂ)_ | do |
and
9D = Cu i’ + CouyD, gl = Croy + Crift?. (2.9)

The additive Schwarz method can be represented as a block Jacobi iteration method. To see this,
consider the matrix splittinB8c = M — N, where
My = M, 0 |
0 M,

with M; the matrix at the top in (2.8) arl, the matrix at the bottom. We assume tlats such
that M is nonsingular The approximate solutio;g(i“) of (2.7) at step + 1 of the block Jacobi
method,

v =y LM @ with 2 =d - Bey?, (2.10)

corresponds to the approximate solutions at step of the additive Schwarz method. In view of the
fact that one wants to ha\géi) andgéi) as small as possible in norm, the starting ve;glﬁl‘ﬁ =0is
convenient, but it is conceivable to construct other starting values for which the two vectors are small
in norm (for instance, after a restart of some acceleration scheme).

Jacobi is a one step method and the updates from previous steps are discarded. The updates can
also be stored in a spadg, and be used to obtain more accurate approximations. This leads to a
subspace method that, at step searches for the approximate solution in the spagewhich is
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precisely equal to the Krylov subspalﬁen(Mngc, Mg,lt_i). For instance, GMRES [14] finds the
approximation inV,,, with the smallest residual, and may be useful if only a few iterations are to be
expected.

Krylov subspace methods can be interpreted as accelerators of the domain decomposition method
(2.10). The resulting method can also be seen as a preconditioned Krylov subspace method where, in
this case, the preconditioner is based on domain decomposition: the MajriXhis preconditioning
approach where a system of the foMElBC)Nc = 5(0) is solved, is referred to as left preconditioning.
Heres(o) = MEI(Q — ch(o)) andy = X(O) +x,

SinceMEch =1- MEIN, the search subspat#, coincides with the Krylov subspace
Km(Mg'N,M,'d). The rank of botfN andM ' N is equal to the dimension @ which, in this
case wher&’ is nonsingular, i2n;. This shows that the dimension Bf, is at mosn,;. Therefore,
the exact solutiory of (2.7) belongs td/,,, for m > 2n; and GMRES findsy in at most2n,; steps.

(For further discussion see, for instance,§3.2], [22,§2], and [2].) -

2.4 Right preconditioning
We can also us®I¢ as a right preconditioner. In that case solutpif (2.7) is obtained ag =

v + M_'x wherex is solved from
BoMy'x =1 with ¢ =d - Bey©. (2.11)

Right preconditioning has some advantages for domain decomposition. To see this, first note that
any vector of the fornNv ‘vanishes outside the artificial boundgrthat is, only the-,. and-, com-
ponent of this vector are nonzero. SinB@Mg1 =1I- NMgl, multiplication by this operator
preserves the property of vanishing outside the artificial boundary. Moreoye?) i= M 'd, then
r® =d - Bcy® = NMg'd vanishes outside the artificial boundary.

Therefore, if, fory® = M'd, equation (2.11) is solved with a Krylov subspace method with an

initial guess that vanishes outside the artificial boundary, for instgfr?ée: 0, then all the interme-
diate vectors also vanish outside the artificial boundary. Consequently, only vectors i shmeve
to be stored and the vector updates and dot productamimensional operations.

For appropriate,é(o), the left preconditioned equation can also be formulated2n;alimensional
subspace. However, with respect to the standard basis, it is not so easy to identify the corresponding
subspace. We will use ti#; dimensional subspace, characterized by right preconditioning as corre-
sponding to the artificial boundary, for the derivation of properties of the eigensystem of the iteration
matrix.

2.5 Convergence analysis
As a consequence of (2.10), the errefd = y — X(i) in the block Jacobi method satisfy:

e(z‘+1) _ (I _ MEIBC)S(i) — MEINg(i)_ (2.12)

~

Therefore, the convergence rate of Jacobi depends on the spectral propertiegwbthmropagation

matrix MEIN. These properties also determine the convergence behavior of other Krylov subspace
methods. With right preconditioning, we have to work with- >Nc(i), which would lead to the error
propagation matri>NM51, but this matrix has the same eigenvalues as the previous one, so we can
analyse either of them with the same result.
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For the Jacobi iteration, the spectral radiusMGlN (or of NME1 in the right preconditioned
situation) should be strictly less than 1. For other methods, as GMRES, clustering of the eigenvalues
of the error propagation matrix aroufds a desirable property for fast convergence.

The kernel ofN forms the space of eigenvectorstglN that are associated with eigenvalue
Consider an eigenvalue # 0 of MglN with eigenvectoe = (z{,2/,27, 2/, 2 ,23)""

M/ 'Nz = oz. (2.13)

SinceN maps all components, except for theand-, ones, to zero, we have that all components of
M_cz, except for thé, and-, components, are zero. The eigenvalue probiévicz = Nz can be
decomposed into two coupled problems:

By By By [z 0 Cre Cor O 7 ge
o |Bun By By ze| =10], o|Bw Br B zr| =101, (2.14)
0 Cu Cu| |2 gr By By Boo| |22 0
with
9r =Cuze+ Cor 2ry, gt = Croze+ Crr 2y (2.15)

In the context of PDEs, the systems in (2.14) can be interpreted as representing homogeneous
partial differential equations with inhomogeneous boundary conditions along the artificial boundary:
the left system for domain 1, the right system for domain 2. The vajyiesnd g, at the artificial
boundaries are defined by (2.15): the vajudor domain 1 is determined by the solution of the PDE
at domain 2, while the solution of the PDE at domain 1 determines the value at the internal boundary
of domain 2.

We have the following properties, that help to identify the relevant part of the eigensystem:

() Nisann + 2n; by n + 2n; matrix. SinceC is nonsingular, we have that rafi) = 2n,;, and
it follows that dimker(N)) = n. Henceg = 0 is an eigenvalue with geometric multiplicity.

(i) Since rankKIN) = 2n;, there are at mosln; nonzero eigenvalues, counted according to
algebraic multiplicity.

(i) If ois anonzero eigenvalue then the corresponding compopgeatslg, are non-zero. To see
this, takeg, = 0. Then from (2.14) we have that{", z,,z")" = 0. Hence,g, = 0, so thatz
would be zero.

(iv) If o is an eigenvalue with corresponding nonzero compongnénd g, then—o is an eigen-
value with eigenvector with componengsand—g, (use (2.14) and (2.15)).

(v) The vector’?e = (2/,z")" is linearly independent of, = (z,2")". To prove this, suppose
thata z, = (8 z,. for somew, 8 # 0. Then, from (2.14) it follows thaBz = 0 where

z=(az!,az),az,8z3y)" = (az{,0% ,B2 ,8z5)".

As B is nonsingular, we have = 0. Hencez = 0 andz is not an eigenvector.



Consequently the value of cannot be equal te-1. To prove this, suppose that= 1. Then

by combining the last row of the left part and the first row of the right part of (2.14) with (2.15),
we find thatC'(z, — z,) = 0. SinceC'is nonsingular, this implies that = z,, i.e. the vectors
are linearly dependent. The valud for o is then excluded on account of property (iv).

The magnitude of dictates the error reduction. From (2.14) and (2.15) it follows that

0(Coze + Cp2y) = gr = Cuzp + Corzy

- ~ 2.16
U(CMZZ + Crrzr) =gr= Creze + CT‘T‘ZTa ( )
which leads to

o2 = (Creze + Cprzp)*(Crpzg + Crr2y) (2.17)

(Cuze + Corzp)*(Crezg + Crrzr)

From (2.16) we conclude that multiplying bofty, and Cy,. by a nonsingular matrix does not affect
the value ofo. Likewise, bothC,, andC,, may be multiplied by (another) singular matrix with no
effect too. This can be exploited to bring th& matrices to some convenient form.

The one-dimensional cas&Ve first study the one-dimensional case, because this will not only give
some insight in how to reduce, but it will also be useful to control local situations in the two-
dimensional case.

In this situation the problem simplifies: the matricég, C,,., C,,, andC,.. are scalars, and so are the
vector partsy, 2., zy, andz,.. Because of the freedom to scale the matrices (scalars), we mag take
as

Co  Cy

C =
- Crl _Crr

—a, —1

:[ L ‘”]. (2.18)

With py = 2/ 20, ptr = 2/ 2, We have from (2.17) that

My + Oy ) o + iy

. 2.19
L+ appe  arpr +1 (2.19)

of?2 = \

The p-values will be interpreted as local growth factors at the artificial boundaryshows howz
changes at the artificial boundary of the left domaipshows the same for the right domain.
Note thatz, depends linearly oi, if u.ue = 1. Since this situation is excluded on account of
property (v), we have that, .., # 1. The best choice for the minimization @fin (2.19) is obviously
ap = —py anda,, = —py, leading too = 0, which gives optimal damping.

The optimal choice fory, anda;,. results in a coupling that annihilates the ‘outfloyy’ and g, of
the two domains. This leads effectively to two uncoupled subdomains: an ideal situation.

More dimensionsin the realistic case of a more dimensional overlap> 1), there is no choice
for ay anda,. (i.e.,Cy = I, Cy = oy, etc.) that leads to an error reduction matrix with only trivial
eigenvalues. But, the conclusion that the outflow should be minimized in some average sense for the
best error reduction is here also correct. In our applicatiof#jrwe will identify coupling matrices
C' that lead to satisfactory clustering of most of the eigenvatuesf the error propagation matrix,
around0. We will do so by selecting the, and«, as suitable averages of the local growth facjors
and .
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3. THE EIGENVALUE PROBLEM

3.1 The Jacobi-Davidson method

For the computation of a solution to an eigenvalue problem the Jacobi-Davidson method [17], is an
iterative method that in each iteration:

1. computes an approximation for an eigenpair from a given subspace, using a Rayleigh-Ritz
principle,

2. computes a correction for the eigenvector from a so-called correction equation,

3. expands the subspace with the computed correction.

The correction equation mentioned in step 2 is characteristic for the Jacobi-Davidson method, for
example, the Arnoldi method [1, 13] simply expands the subspace with the residual for the approxi-
mated eigenpair, and the Davidson method [6] expands the subspace with a preconditioned residual.
The success of the Jacobi-Davidson method depends on how fast good approximations for the cor-
rection equation can be obtained and it is for that purpose that we will try to exploit the enhancement
techniques discussed in the previous section.

Therefore, we will consider this correction equation in some more detail. We will do this for the
standard eigenvalue problem

Ax=)A\x. (3.1)

Given an approximate eigenpd#, u) (with residualr = fu — Au) that is close to some wanted
eigenpair(\, x ), a correctiort for the normalized: is computed from the correction equation:

t L u, (I—uu*)(A—0I)(I—uu”)t=r, (3.2)

or in augmented formulation ([183.4])

iR

In many situations it is quite expensive to solve this correction equation accurately and fortunately
it is also not always necessary to do so. A common technique is to compute an approximation for
by a few steps of a preconditioned iterative method, such as GMRES or Bi-CGSTAB.

When a preconditioned for A — 61 is available, theflI —uu*)M(I — uu*) can be used as left
preconditioner for (3.2). This leads to the linear system (see Sy,

M 'uu*
wvM lu
The operator at the left hand side in (3.4) involves two (skew) proje®otdowever, when we start

the iterative solution process for (3.4) with initial gudsghenPt may be replaced witlh at each
iteration of a Krylov iteration method: projection at the right can be skipped in each step of the Krylov
subspace solver.

Right preconditioning, which has advantages in the domain decomposition approach, can be carried
out in a similar way, with similar reductions in the application®f as we will see ir§3.3 below.
However, because the formulas with right preconditioning look slightly more complicated, we will
present our arguments mainly for left preconditioning.

PM '(A-0)Pt=PM 'r where P=1- (3.4)
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3.2 Enhancement of the correction equation

We use the domain decomposition approach as presen§@ddansolve the correction equation (3.2).
Again, we will assume that we have two subdomains and we will use the same notations for the
enhanced vectors. WitB = A — 61 this leads to the enhanced Jacobi-Davidson correction equation

tlu (I-uu)Bc(I-uu)t=r (3.5)

withu = (uf,v/,07,07, %", uy)", and likewiser = (r/,r/,07,07,r",ry)". The dimension
of the zero parts, indicated Ity is assumed to be the same as the dimensian ¢dndw,.).

To see why this is correct, apply the enhancemeng2db the augmented formulation (3.3) of the
correction equation, and use the fact that the augmented and the projected form are equivalent. We

assumau to be normalized. Then is normalized as well.

With
(I-uu)Mc(I—-uu”) (3.6)
as the left preconditioner, we obtain
. Mfl *
PM;'BcPt=PM.'r with P=1—-—¢ 22 (3.7)
u*M; u

In comparison with the error propagation (2.12) of the block Jacobi method for ordinary linear sys-
tems, the error propagation matMglN is now embedded by the projectioRs These projections
prevent the operator in the correction equation from getting (nearly) singuléraggroximates the
wanted eigenvalug, in the asymptotic cageis even equal td, B gets close to singular in the direc-
tion of the wanted eigenvectar. For ordinary linear systems this possibility is excluded by imposing
B to be nonsingular (see remark (v) §@.5). Here we have to allow a singulBr. In our analysis
of the propagation matrix of the correction equation, for the model problefs.B) in first instance
we will ignore the projections. Afterwards, we will justify this (both analyticali¢.@) as well as
numerically ¢5.2)).

Note. We have enhanced the correction equation. Another option is to start with an enhancement
of the eigenvalue problem itself. However, this does not result in essential differences ([9]). If the
correction equations for these two different approaches are solved exactly, then the approaches are
even equivalent.

3.3 Right preconditioning

In §2.4 we have showed that, without projections, right preconditioning for domain decomposition
leads to an equation that is defined by its behavior on the artificial boundary only. Although the
projections slightly complicate matters, the computations for the projected equation can also be re-
stricted to vectors corresponding to the artificial boundary, as we will see below. Moreover, similar to
the situation for left preconditioning, right preconditioning requires only one projection per iteration
of a Krylov subspace method. In this section, we will use the underscore notation for vectors in order
to emphasize that they are defined in the enhanced space.

First we analyze the action of the right preconditioned matrix.
The inverse o™ of the projected preconditioner in (3.6) is equal to (cf. [§B1.1] and [8])

Mz 'uu* Mg
PM; = [1- —C¢ 22 Mg =Mt (1-22 2 ) (3.8)
u*M, u u*M, u
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with P as in (3.7). This expression represents the Moore—Penrose inverse of the operator in (3.6), on
the entire space. Note thatP = 0 (by definition of P) andu*N = 0 (by definition ofu andN).
Therefore, for the operator that is involved in right preconditioning (cf. (2.11)), we have that

(I-uu*)Bo(I-uu’)PM,'

« -1

= (I-uu’)BcM,! (1-%) (3.9)
-1

=I-uu" - (I-uu )NPM_

=I-uu* - NPM,!

Hence, this operator maps a vectothat is orthogonal ta to the vector
(I-uu)B¢(I-uu’)PM;'v =v—-NPM_ 'y

that is also orthogonal ta.
Therefore, right preconditioning for (3.5) can be carried out in the following step§2ef):

1. Compute t© =PM;'r and r® =NtO.
2. Compute an (approximate) solutighf") of
(1-NPM;)s =z,
with (m steps of) a Krylov subspace method with initial gu@ss

3. Updatet® to the (approximate) solutiohof (3.5):

As in §2.4, the intermediate vectors in the solution process for the equation in step 2 vanish outside
the artificial boundary. Therefore, for the solution of the right preconditioned enhanced correction
equation, only2n;-dimensional vectors have to be stored, and the vector updates and dot products are
also for vectors of lengthn;.

4. TUNING OF THE COUPLING MATRIX FOR A MODEL PROBLEM

Now we will address the problem whether it is possible to reduce the computing time for the Jacobi-
Davidson process, by an appropriate choice of the coupling né@tri¥e have, ir2, introduced the
decomposition of a linear system, into two coupled subsystems, in an algebraic way. In this section
we will demonstrate how knowledge of the physical equations from which the linear system originates
can be used for tuning of the coupling parameters.

4.1 The model problem
As a model problem we will consider the two-dimensional advection-diffusion operator:

0?2 0?2 0 0
3) =0 P+ b G+ Uu—3F+v— 3G+ 4.1
L(p) “agﬂ‘p+bay2“0+“ax‘p+”ay“0+c‘p’ (4.1)
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that is defined on the open domdih= (0,w,) x (0,w,) in R?, with constants; > 0, b > 0, c,u
andv. We will further assume Dirichlet boundary conditiors= 0 on 92 of . We are interested
in some eigenvalua € C and corresponding eigenfunctignof L:

{ L@)=XF on Q,

4.2
p=0 on of. (4.2)

We will use the insights, obtained with this simple model problem, for the construction of couplings
for more complicated partial differential operators.

Discretization.We discretizeC with central differences with stepsize= (hy, hy) = (5,237, n;"il)

for the second order part and stepstze= (2h,, 2h,,) for the first order part, where, andn, are
positive integers:

@) 5§A+665A+ 5mA+ 5yA+A 4.3)
Y)=a-5 S PtuUu—@Q+ Vv 5@+ cp. .
h2 h2 2h, 2h,

&

J . ,
The operatohﬁ denotes the central difference operator, defined as

b(x + Lheyy) — Pz — thy,y)
xr hl’ ’

andh—y is defined similar. This leads to the discretized eigenvalue problem
Y

{ L) = X on .

p=0 on 0%y,

where(2;, ando$2y, is the uniform rectangular grid of pointg, ., j, i) in Q and in0S, respectively.
We have skipped the hatin order to indicate that the functions are restricted to the appropriate grid,
and that the operatdt is restricted to grid functions. The vectpris defined or(2, U 992,.

We use the boundary conditiogs = 0 at 0€2;, for the elimination of these values @f from
L(p) = Xe.

Identification of grid functions with vectors and of operators on grid functions with matrices leads
to an eigenvalue problem as in (3.1) of dimensiore n, - n,: the eigenvectox corresponds to
the eigenfunctionp restricted tof2;,. The matrix A corresponds to the operatarfrom which the
boundary conditions have been eliminated. In our application, we obtain the corresponding vectors
by enumeration of the grid points from bottom to top first (i.e.,gk@ordinates first) and then from
left to right ([21,§6.3]). In our further analysis, we will switch from one representation to another
(grid function or vector), selecting the representation that is the most convenient at that moment.

4.2 Decomposition of the physical domain
For somed < w;1 < w, we decompose the domaihin two subdomaing); = (0, wz1] x (0,wy)
andQs = (wy1,wy) X (0,wy).

Let n;; be the number of grid points in the direction in2;. Then; N Q; and Qs N Qy, IS
anng x ny, andngo x n, grid respectively withn,; + nze = ng. To number the grid points in
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FIGURE 1. Decomposition of the domain into two subdomain®; and ..
The bulletge) represent the grid points of the original grid. The circlgd represent the extra grid points at the internal
boundary. The indiceg, and j, refer to numbering in the: direction andy direction respectively of the grid points
in the grids: the pair(jz, j,) corresponds to pointj.h=,j,hy) in Q. For the numbering of the grid points in the
direction in the two subdomains a local index is usgghi = j, in Q1 (0 < jo1 < Mp1 + 1) @andjze = jo — ne1 IN Qo
(0 < jz2 € ng2 + 2).

M
Ny e o o o o of0
e o o o o of0
Gy e o o o o of0
T e o o o o o O
9] e o o o o of0
ny+1 | e o o o o o0
Ny e o 0 0o 0 00 0 0 0 o 1 e o o o o of0
L IR N
jy ooooooiooooo / 1 — Nzl Ng1+1
T ® e e 00 00 oo Jzl
ooooooiooooo \ QQ
e o 0o 0o 0 00 0 0 0 o
1 ooooooiooooo Ny oO|e o o o o
0 : o|le © e o @
01 — Nz Ne+1 jyoooooo
VEY ole ®© e e @
Toooooo
o|le o o o @
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the x direction, we use local indiceg.1, 1 < jz1 < ng1, @andjzo, 1 < jzo < ngo, in Qp and 2y
respectively.

Because of the 5 point star discretization, the unknowns at the last row of grid pgints @.1) in
they direction inQ2; are coupled with those at the first row of grid poings;(= 1) in they direction
in Q, and vice versa. The unknowns fn, = n,; are denoted by the vectgy, and the unknowns
for j,o = 1 are denoted by,, just as ing2. Now we enhance the system with the unknownand
y¢, Which, in grid terminology, correspond to a virtual new row of gridpoints to the riglf?;ofand
the left of(2,, respectively. These new virtual gridpoints serve as boundary points for the ddmains
and(,. See Fig. 1 for an illustration.

The vectorsy,, v, y¢, andy, aren, dimensional (the:; in §2.1 is now equal ta,). The2n, by
2n,, matrix C', that couplesy,, ¥, y¢, andy, can be interpreted as discretized boundary conditions of
the differential operator at the internal newly created boundary bet@eemd(2, [19, 18].
Note that the internal boundary conditions are explicitly expressed in the total system Batrix
throughC, whereas the external boundary conditions have been used to eliminate the values at the
external boundary (seg.1).

4.3 Eigenvectors of the error propagation matrix

We will now analyze the eigensystem of the error reduction mM'g(lN (see§2.5) and discuss ap-
propriate coupling conditions (that is, the internal boundary conditions) as represented by the matrix
C. Here, the matricedl~ andN are defined foB = A — 61, as explained ir§§2.2-2.3, for some
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approximate eigenvalug(cf., §53.1-3.2). The matrixA corresponds td., as explained irg4.1.

First, we will discuss in sectiog4.3.1 the case of one spatial dimension (i.e.,ynaariable).
The results for the one-dimensional case are easy to interpret. Moreover, since the two-dimensional
eigenvalue problem in (4.2) is a tensor product of two one-dimensional problems, the results for
the one-dimensional case can conveniently be used for the analygis3i@ of the two-dimensional
problem.

4.3.1 The one-dimensional casdn this section, we will discuss the case of one spatial dimension:
there is noy variable. To simplify notations, we will skip the indexfor this case.

Suppose that we have an approximate eigenvafioe some eigenvalué of B.
To simplify formulas, we shift the approximate eigenvaluecbfyhe matrixB in §2.5 corresponds to
the three point stencil of the finite difference operator

For the eigensystem df/IglN, we have to solve the systems in (2.14) foraan£ 0 andz, # 0,
that is, we have to compute solutiort and+)y for the discretized PDE on domain 1 and domain 2,
respectively (cf§2.5). The functions), andi, should satisfy

2
[a%+u%_9:|¢p(jph):0 for 1<j,<n, and p=12. (4.5)

The conditions on the external boundaries imply that
U (0) =0 and Q/)Q(’ngh + h) =0.
For the solutions of (4.5), we try functions of the fogfjh) = ¢/. Then( satisfies

2
(1+4)¢—2D+ (1—4) ¢t =0 with DEI—{—Z—GH. (4.6)

Let {4 and(_ denote the roots of this equation, such tjgat| > |¢_|. In the regular case where
(1 # (_, the solutiong); andi), are, apart from scaling, given by

Pi(ith) = ¢ = ¢ and gha(joh) = (2T - (T
We distinguish three different situations:

(i) Harmonic behavior¢_ = ¢, ¢ R.
If (o € Randr € [0,2n) are such thaf; = (pexp(i7). Then, up from scaling factors,

P1(j1h) = (It sin(rj1)  and 4o (joh) = ¢? sin(r(jo — ny — 1)).

(i) Degenerated harmonic behaviafy = (_.
In this case we have, apart from scaling factors,

b1(ih) = 1¢0 and ha(ah) = (ng + 1 — ja) P
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(i) Dominating behavior{¢| > [¢_|.
Near the artificial boundary, that is fgr ~ n, andj, ~ 1, we have apart from scaling factors

that
. C_ J1 .
Pi(inh) = I (1— (—) )ch:
Gt

] na+1—j2 ]
o (joh) = (27! (1 —~ <§—+> ) ~ o,

and

so that, apart from a scaling factor agajn(j:h) ~ g‘ff.
How accurate the approximation is depends on the fétify|(;.| and on the size af; andna.

The coupling matrixC' is 2 by 2 (n; = 1). We consider & as in (2.18). Then, according to (2.19),
the absolute value of the eigenvalués given by

oy + iy
1+ oy pr

ar + Ly

2
o2 =
i L+ appyg

: (4.7)

wherepy = 1 (nih + h) /11 (n1h) andu, = 12(0)/¢2(h): z¢ in (2.14) corresponds t@; (n1h), z,
to 41 (n1h + h), etcetera.

In the case of dominating behavior (cf. (iii)), we have that~ ¢, andu, ~ 1/{_. As observed
in (iii), the accuracy of the approximation depends on the 1gti¢/|(. | and on the values of; and
ng. But already for modest (and realistic) values of these quantities, we obtain useful estimates, and
we may expect a good error reduction for the cheige= —1/(_ anda, = —(,. The parameters
¢+ and(_ would also appear in a local mode analysis: they do not depend on the external boundary
condition nor on the position of the artificial boundary.

The value follo| in (4.7) is equal to one whem,. = 1/, regardlessy, anda, (assuming these are
real). If we would follow the local mode approach for the situations (i) and (ii), that is, if we would
estimateu, by ¢ andpu, by 1/¢_, then we would encounter such values fgrand u,-. In specific
situations, we may do better by using the expressiong/foand), in (i) and (ii), that is, we may
find coupling parameters, andc, that lead to an eigenvaluewith |o| < 1. However, then we need
information on the external boundary conditions and the position of the artificial boundary. Certainly
in the case of a higher spatial dimension, this is undesirable. Moreovkis ifin exact eigenvalue
of A then we are in the situation in (i): the functiotts and«), are multiples of the components on
domain 1 and domain 2, respectively, of the eigenfunctionaagdl (see (v) in§2.5 and the remark
in §3.2). In this case there is no valueaf anda, for which|o| < 1.

We definer = (2a+uh)/(2a—wuh). In order to simplify the forthcoming discussion for two spatial
dimensions, observe that, in the case of dominating growth (iii), that,isy ¢, andu, ~ 1/(_,
(4.7) implies that

ar + ¢

1+a,¢

ar+¢
14+ ap(

lo|* ~ where oy = %, &y = vy, (= VUCy. (4.8)
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Here we have used that - _ = 1/v, which follows from (4.6).

If, for the Laplace operator (where = 0 andc = 0), we use Ritz values for the approximate
eigenvalued), thend takes values betweekl™ and A\(*). Hence,d € (—4a/h?,0), and the roots
¢, and(_ are always complex conjugates. We will see in the next subsections that, for two spatial
dimensions, the Ritz values that are of interest lead to a dominant root, also for the Laplace operator,
and we will see that local mode analysis is then a convenient tool for the identification of effective
coupling parameters.

4.3.2 Two dimensions Similar to the one-dimensional case we are interested in funcierad
2 such that,

L(xp,) =0 on Q,NQ,, p=12, (4.9)

and that satisfy the external boundary conditions. But iygvandy, are functions that depend on
both thez- andy direction whereas the operatér(hereL is introduced irng4.1) acts in these two
directions. Since the finite difference operaggracts only in ther direction ande—Z acts only in they

direction, their actions are independent of each other. Therefore, in this case of constant coéfficients
we can write the operatdr in equation (4.9) as a sum of tensor product of one-dimensional operators:

L=L,I+1I® L,, (4.10)
where
62 b} 52 b)
L,=a-"% 2 and L,=0b-% 4 —0. 4.11
ah%—i-thI y hz+v2hy+c ( )

L, andL, incorporate the action af in the z direction andy direction respectively.

Since the domaif is rectangular and since on each of the four boundary sid&sveé have the
same boundary conditions, the tensor product decompositidnaafrresponds to a tensor product
decomposition of the matriA.

We try to construct solutions of (4.9) by tensor product functions, that is by functiprd the
form

Xp(jmphmajyhy) = Q/’p(jzphz) ® W(jyhy) = Q/)p(jfphf) : W(jyhy)'
For ¢ we select eigenfunctions(’) of the operatolL,, that satisfy the boundary conditions for the
direction. Then

L(xp) = (Lathp) ® ‘PU) +1p ® A(l)‘P(Z) = (Ls + A(Z))(@/’p) ® ‘P(Z)a

whereX(!) is the eigenvalue of., that corresponds tp("). Apparently, for each eigensolution of the
‘y-operator’' L, the problem of finding solutions of (4.9) reduces to a one-dimensional problem as
discussed in the previous subsection: fiipdsuch that

2

82 b,
(Ly + 2D) () = ag +ugy—+ AD Y ap, =0, (4.12)

L1t is sufficient if « andu are constants as functionssfb andv are constants as function of andc is a product of a
function inz and a function iny.
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and that satisfy the external boundary conditions irnutldgrection. To express the dependency of the

solutionsy, on the selected eigenfunction bf,, we denote the solution dz{,l).
Now, consider matrixpairéCy,, Cye) and(C,¢, Cy) for which the eigenfunctions®) of L, are
also eigenfunctions:

Corp® = ol Cup®  and Crep = P Crriplh). (4.13)

Examples of such matrices are scalar multiples of the identity matrix (for instahce— agl)l
and Cy, = I), but there are others as well, as we will seegdn4. For such & there is a 1-
1 correspondence for each functigif) on the two subdomains: a component in the direction of

" @ (1) on subdomain is transferred b ;' N to a component in the direction gf ® () on

subdomair2 and vice versa. More preciselyGfis such that (4.13) holds andif!) = (clz/)§l), 1/;&”) T
for some scalar; then, by construction ap(®), M mapsy(Y) ® () onto a vector that is zero except
for the™, and-, components (cf. (2.14)) which are equal to

& (¥ (m1che) + af? $ (m1chs + ha) ) Coep® (4.14)
and
(98 (0) + 4 (1)) Crrip?, (4.15)

respectively. In its turnN mapsy(®) @ () onto a vector that is zero except for thend~, compo-
nents (cf. (2.14) and (2.15)) which are equal to

(480 + o "6 (1)) Cerp® (4.16)
and
& (a0 (n1pha) + 9 (1 + a)) Crrp?, (4.17)

respectively. By a combination of (4.14) and (4.16), and (4.15) and (4.17), respectively, one can
check that, for an appropriate scatay/(") ® ¢ is an eigenvector aM'N with corresponding
eigenvaluez(!) such that

oz,(nl) + ugl)

1+ agl) ,ugl)

agl) + ,u1(~l)
1+ oz,(ul)ug)

e V? = : (4.18)

where (here we assumed thlz{p (nizhyz) #0 andz/)él)(hx) # 0)

) = B (n1aha + ha) 9 (n12ha) and ) = 9 (0) /4 (ha).
Note that the expression fef!) does not involve the value of. From propertyif) in §2.5 we know
thaty” @ o® wherey") = (¢, —y{’) 7 is also an eigenvector with eigenvalue V).

As spar{yp®, 1 = spar{(»\",0)7, (0,) 7} the functionsp®) @ o andy” & o1 are lin-
early independent and

spar{z/)(l) ® (p(l),i/)(j) ® (,0(1), . ’z/)(ny) ® (p(ny)’ngny) ® (p(ny)} —
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spar Y @ oM 0 ™) @ o) 0 \
0 ) ’(,bél) ® (,0(1) 1ty 0 ’ ény) ® (,O(ny) :

From this it follows that the total number of linear independently eigenfunctions of theyfétm(?)

is equal ta2 n,. Note that our approach with tensorproduct functions leads to the required result: once

we know then,, functionse™), ... | (™), we can, up to scalars, construct all eigenvectodsIof N

that correspond to the casé) {n §2.5, i.e. the eigenvectors with, in general, nonzero eigenvalues.
Apparently, the problem of finding the two timeg nontrivial eigensolutions oMglN breaks

up inton, ‘one’-dimensional problems. For eatlthe matringlN has two eigenvectors) and

—o M with components that, on domgjn correspond to a scalar multiple qz)zl) @ ¢ (p=1,2).

Errors will be transferred in the iterative solution process of (2.7) from one subdomain to the
other. These errors can be decomposed in eigenvectMgéN , that is, they can be expressed on
subdomairp (p = 1, 2) as linear combination of the functionxél) ® . The component of the error
on domairp in the direction ofz/)g) ® o) is transferred in each step of the iteration process precisely
to the component in the direction ¢§Qp ® ) on domair8 — p. In case of the block Jacobi method,
transference damps this component by a faettt|.

Here, as in the case of one spatial dimensi@n3.1), the size of the eigenvalue®) is determined
by the growth factouél) of ngl) andpﬁl) of z/)él) in (4.18).

In case of dominated behavior, these factors can adequately be estimated by the dominating root of
the appropriate characteristic equation (cf. (4.6)). The scalars, that is, the méyicasd C,, can

be tuned to minimize thiz(V|. This will be the subject of our next section.

As we explained ir§4.3.1, we see no practical way to tune our coefficients in case of harmonic
behavior. However, in our applications the number of eigenvalues that can not be controlled is limited
as we will see in our next subsection. Except for a few eigenvalues, the eigenvalues of the error
reduction matrixM "IN will be small in absolute value: the eigenvalues cluster arduntf ¢ is

equal to an eigenvalug of A, then1 is an eigenvalue OMEIN (see (v) in§2.5 and§3.2) and
MEIBC is singular. However, the projections that have been discussg8.2n will remove this
singularity. An accurate approximatighof A (a desirable situation) corresponds to a near singular
matrix MEIBC, and here, the projection will also improve the conditioning of the matrix.

4.4 Optimizing the coupling
In this section, we will discuss the construction of a coupling matfithat leads to a clustering of
eigenvalues () of MEIN round 0. We give details for the Laplace operator. We will concentrate on

the error modes),(,l) ® ¢ on domainp with dominated growth in the direction, that is, modes for

which @/;,(,l) exhibits the dominated behavior as described in (iiij4B.1. For these modes and for
asin (2.18) and (4.13), we have that (cf., (4.8) and (4.18))

& + (W
1+a o]

a4+ ¢
1+ &) ¢

l)|2 ~

~

(4.19)

Here, forv = (2a + uh,)/(2a — uh,), the quantitiesi’”, " and () are defined as in (4.8);
&’g) = aél)/ﬁ, all) = \/Eag), (O = \/DCJ(:), where here;‘frl) is the dominant root of (4.6) for

2F0ra§l> — —,uﬁl) oral’ - —,uw one of the nonzero eigenvalues degenerates to a defective zero eigenvalue. But
then still this construction yields all nonzero eigenvalues. To avoid a technical discussion we give no details here.
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X = X Note that, in view of the symmetry in the expression|tdt |2, it suffices to study & for
whichal” = al".

Let £ be the setof'sin {1, ... ,n,} for which the@/;,(,l) exhibit dominated growth, or, equivalently,
for which the characteristic equation associated with the opefatar \() in (4.12) (cf., (4.6)) has a
dominant root'™: E= {1 =1,... ,n, | |cV] > [¢Y]}. We are interested in®) = &Y = & for
which

Oopt = Max {

is ‘as small as possible’.

® 4 - o
_1a+—oz(l)§<‘ CEE} with B = (v (|1 e B) (4.20)

Simple coupling.For the choiceCy, = /val andC,; = (a/\/v)I, we can easily analyze the
situation.
Thena!Y) = « for all I and we should find the = a, that minimizesmax |(« + ¢)/(1 4 a¢)|. We
assume thafuh,| < 2a. Note that then/v times the dominant characteristic roots are realand
Therefore, the two extremal values

p=minE and M =maxFE (4.21)
determine the size of the maximum. This leads to

V-2 -1) | (p-1)(M -1)
pu+ M w+M

o= 1+ > 1 (4.22)

and

VM2 —1—\/p? -1
M2 —1+pv/M?2 -1

(4.23)

Oopt =

Laplace operator.To get a feeling for what we can expect, we interpret and discuss the results for
the Laplace operator, that is, we now take- v = ¢ = 0. Further, we concentrate on the computation
of (one of) the largest eigenvalue bfand we assume thatis close to the target eigenvalue. Then
2b [

A — 27—
hg( COS(Wny—i- 1

)) — 6. (4.24)

First we derive a lower bound farand an upper bound fav/.
2
For DO = 1— %20 (cf,, (4.6)), we have thatD()| > 1, or, equivalently)¢\”| > |¢], if and only
if \() < 0. Hencel, = min E is the smallest integérfor which A\(). < 0 and

~ ~ 2 hy [—0
le=|lc]+1 where [, =—(n,+1)arcsi i —=1.
s 2 b

(The noninteger valué= I, is the ‘solution’ ofA®) = 0.) Forh, < 1,1, ~ £/ _79

™
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For an impression on the error reduction that can be achieved with a suitable coupling, we are
interested in lower bounds far — 1 that are as large as possible. With= D<) — 1 we have that
p—1=103++v2§ + %2 > +/20. Therefore, we are interested in positive lower bounds for

I l l, — 1, I

§ — 2 _ > 2 le e . e
P (cos(wny 1) os(wny+1)) >mp ny+181n(7rny+1)
b~ ~ (hs\? he [b
> 2=l (le — ) (—) where p = —\/j
a wy hy V a

The bound for§ depends on the distance Iofto the integers, which can be arbitrarily small. This
means that, even for the optimal coupling parameters, the (absolute value of the) eigefvatsn

be arbitrarily close to one. Since, for optimal coupling, the damping that we achieve for the smallest

[ in E is the same as for the largest, it seems to be undesirable to concentrate on damping the error
modes associated withas much as possible. Therefore, we remig¥eom the sety and concentrate

on damping the error modes associated with ' = E\{l.}. For thed andu associated with this
slightly reduced seE’ we have that

1 b
p—1>+28 >2kh, where k= —y/7l,—. (4.25)

Wy a

The lower bound fop: — 1 is sharp forh — 0 with p fixed, i.e., for giverp, h = (hy, hy) is such that

hy = hypy/a/b.
An upper bound for\/ follows from the observations thét< 0 and that the cosine takes values
between—1 and1: we have thaD®) < 1 + 2p? and

M —1 < 2p% 4+ \/4p? + 4p*.

—1
=V —|—1 l—l—p'

Then, forh — (0, 0) such thap is fixed, we have that

—Qopt =1 +2M'\/khy + O(hy) and 1 — ogy=2-—+— + O(hy).

Here we used that

Q=1+ V2(p—1)M" +0(u—1) and 1—om=2(p—1)/M"+O(u—1)

for 4 — 1 (see (4.22) and (4.23)).
So, for small stepsize’s, the ‘best’ ‘asymptotic error reduction factar;, is less than one with a
difference from one that is proportional to the square rodt,of

We tried to cluster the eigenvalues MEIB around one as much as possible. With= «,,, at
most/, eigenvalues may be located outside the disk with radipignd center one. After an initigl
steps we may expect the convergence of GMRES to be determinateg {provided that the basis
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of eigenvectors is not too skew). Therefore, as long. as a modest integer, we expect GMRES to
converge well in this situation. We will now argue that, in realistic situatignsyill be modest as
compared to the index of the eigenvaluefofvhere we are interested in. For clearness of arguments,
we assume the stepsizes to be smiak (0,0) with p fixed: Ale) ~ —br?(l, /w,)? — 6.

Suppose that, for some > 0, we are interested in the smallest eigenvaluef A that is larger
than—7. Since, in the Jacobi-Davidson proce@s;onverges to\, 6 will eventually be larger than
—7. We concentrate on this ‘asymptotic’ situation.

Then,l. < Ci(7") + 1, where

w2
Ci(r)=#{leN[IF <7} and 7'=715.
The number of eigenvalugs™="™) ~ —an?(m, /w;)? — br?(m, /w,)? of A that are larger than
—7 is approximately equal to

2
@Yy

2 !
——=m. < T}
bw2 }

Co(7') = #{(mg,my) € N* | m +
SinceCy (7')? < 2:’—3\/%02(7’), the numbet, + 1 of error modes that we do not try to control with
appropriate coupling coefficients is proportional to sigeiare rootof the index number of the wanted
eigenvalue (if the eigenvalues have been increasingly ordered). For instamee bifw, = w,, and
7' = 15, then eight eigenvalues & are larger than-7, and we do not ‘control’ four modes. One
of these modes corresponds with the wanted eigenvalue and is ‘controlled’ by the projections in the
correction equation of the Jacobi-Davidson process.

In practice, deflation will be used for the computation of the, say, eight eigenvalie ©he first
seven eigenvalues will be computed first and will be deflated fAanin such an approach, the three
modes that we did not try to control in our coupling, will be controlled by the projection on the space
orthogonal to the detected eigenvectors. §e.2 for a numerical example.

We analyzed the situation where the domain has been decomposed into two subdomains. Of course,
in practice, we will interested in a decomposition of more subdomains. In these situations, the num-
ber of modes that we did not try to control by the coupling, will be proportional to the number of
artificial boundaries. For numerical results, §6et. Deflation will be more important if the number
subdomains is larger. Note that the observations inggde3.1 and 4.3.2 on the error modes that
exhibit dominated behavior also apply to the situation of more than two subdomains: the essential
observation in case of dominated growth is that, on one subdomain, the influence of the ‘dominated’
component (as represented @Sl/)) is negligible at the artificial boundary regardless the boundary
condition at the other end of the subdomain.

Stronger couplingsln §4.3.2, we considered coupling matricésith eigenvectors related to ones
of L,, they-component of the finite difference operator Instances of such matrices can easily be
formed by usingL, itself.

3The Jacobi-Davidson process can often be started in practice with an approximate eigenvector that is already close to
the wanted eigenvector. Thénwill be close toX. For instance, if one is interested in a number of eigenvalues close to
some target value, then the search for the second and following eigenvectors will be started with a search subspace that
has been constructed for the first eigenvector. This search subspace will be ‘rich’ with components in the direction of the
eigenvectors that are wanted next (se€834]).
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TABLE 1. The table shows the values that can be achieved for the darafjinia (4.28)for the Laplace equation on
the the unit square by optimizing the coupling4n26)with respect to some of the parametess3 and-~y. For explanation
see the example §4.4.

1 2 3 4
optimized w.r.t.| « af | ay | a B,y
o! 0.696| 0.157| 0.376| 0.093

opt

For ease of notation we consider the Laplace operator. Inclusion of first order terms only results in
extra factorss (cf. (4.8) in§4.3.1). Consider the matrices

Cy=0Crr=1+ ’)/Ly and Cp =Cp=a+ ,BLy, (4.26)

wherea, 3, andy are appropriate scalars. Withandy, we introduce interaction parallel to the
interface in the coupling. Themy) in (4.13) is equal to

a+ BA
agl) _ qz()\(l)) where ¢(\) = 1_,_5)\'

(4.27)
Note that the dominant roqjtff) (cf. (4.6) with\' = X(D) depends on\(®): Cfrl) = we (A1) for some
functionw,. Hence, we are interested in finding scalarg?, and~y for which

' qe(A) + we(N) ‘

= - 4.28
Topt = ‘ L+ qe(Awe(N) (4.28)

is as small as possible. Hexeanges over the set of eigenvalug$ of L, that lead to a dominant root

Cfrl) = wg(A(l)). For = v = 0 we have the ‘simple coupling’ as discussed above. For the coupling
at the right side of the artificial boundary, we have similar expressions. Finding the minimum of
(4.28) is a non-linear problem (i, 8 and+y; ¢, is rational andy, is in the denominator) and can not
analytically be solved. But a numerical solution can be obtained with, for instance, a modifie R”
algorithm. We discuss our results for a simple example in order to illustrate how much can be gained
by including interactions parallel to the artificial boundary in the coupling.

Example. Table 1 shows values far;, for the Laplace operator on the unit squate= b = 1,
u=v=c=0,Q=(0,1)x(0,1)), with & = —34x?2 (thenl, = 6 and24 eigenvalues are larger than

6), ny = 180, ny, = 120 andw,; = % In case 1 in the table, we togk= ~ = 0 and we optimized

with respect tax. This case corresponds to the ‘simple coupling’ as discussed above. We learn from
column 2 of Table 1 that an additional parameieallows a considerable reduction of the damping
factor.

With 8 = v = 0 the explicit coupling is in the: direction only, this corresponds to a two point stencil

for the boundary conditions on the artificial boundary. The paranteietroduces a coupling in the

y directions which corresponds to a four point stencil for the artificial boundary conditions. If in
additiony # 0, the coupling corresponds to a six point stencil. Extension from a two to a four point
stencil appears to be more effective than the extension from a four to a six point stencil (a reduction of
0, from 0.696 to 0.157 as compared to a reduction frami57 to 0.093 in Table 1). The parameter

0 # 0 gives a coupling of the internal boundary conditions on the artificial interface '@fe Fig. 1),

while vy gives a coupling of the internal boundary conditions on points of the original domaiw'gthe
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in Fig. 1 closest to the cut). Note that an optingawith v = 0) gives better values than an optimal
~ (with g = 0).

Experimentally we verified that the values fef, obtained with a ‘local mode analysis’ (where
we neglected _ terms) correspond rather well with the actual radius of the cluster of eigenvalues of
MEIN: except for the first, + 1 eigenvalues, in all cases all eigenvalueﬂ\/bglN are in the disc
with center 0 and radius’ .. Since we did not optimize for the firgt eigenvalues, it is no surprise

opt*

that these eigenvalues are not in the disc. [Lhe 1th eigenvalue corresponds to the situation where
|§$)| is closest tqc<f>| and then the predictions of the local mode analysis may expected to be the
least reliable. For an experiment with larger stepsize;See3.

5. NUMERICAL EXPERIMENTS

The experiments presented in this section illustrate the numerical behavior of the Jacobi-Davidson
method in combination with the domain decomposition method, as descril3&daimd§4. We will

focus on some characteristic properties. All experiments are performed withAd 5.3.0 on a Sun

Sparc Ultra 5 workstation.

In §5.1 we will discuss the circumstances under which experiments have been performed. Because
Jacobi-Davidson is a nested iterative method, an inexact solution of the correction equation affects
the outerloop. Therefore, we will also check how the exact process behaves and which stage of the
process is most sensitive to inexact solution.

Then, in§5.2, we consider the spectrum of the error propagator for the asymptotic sit@ation
This spectrum contains all information for understanding the convergence behavior of the Jacobi
iteration method. The predictions &§4.4 on the optimized coupling are verified and we investigate
the effect of deflation.

The next question is how the Jacobi-Davidson method behaves when inexact solutions for the cor-
rection equation are obtained with Jacobi iterations59:/3 we compare different types of coupling,
and left and right preconditioning. Furthermore, we consider GMRES as an accelerator of the Jacobi
iterative method.

We conclude, 5.4, with an experiment that shows what happens when we have more than two
subdomains.

5.1 Reference process
We first consider the standard Jacobi-Davidson method, when applied to the discretized eigenvalue
problem for the Laplace operator. No domain is decomposed and correction vectors are obtained by
accurate solution of the correction equation.

The first experiment gives a global impression of the speed of convergence. For that purpose we
confine ourselves to the one-dimensional case, describgt3ril. We taker = 99, h = 0.01. For
the starting vector of the Jacobi-Davidson process, we take a random vector generated A8 M
(with seed equal to 226). We want to compute the eigenvalue of smallest absolute Malee (
— (200 sin ﬁ)Q = —9.86879268536...). The corresponding eigenvector describes the largest
eigenmode of the discretized PDE.

Table 2 and Fig. 2 show what happens in the iteration process. The second column of Table 2 gives
the selected Ritz valugfor the correction equation, the third column gives 2hgorm of the residual
r = Au — fu of the corresponding Ritz paff, u), and the fourth column lists the number of correct
digits of the Ritz value:-log!® |\ — 4.

From Table 2 we observe that Jacobi-Davidson needs about 8 steps before the (theoretically cubic)
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FIGURE 2. Convergence behavior of Jacobi-Davidson with accurate solution of the correction equation, when applied
to the discretizedr{ = 99, h = 0.01) eigenvalue problem for the one-dimensional Laplace operator. The process is started
with one random vector. In each step a correction vector is computed (second column) by which the search subspace is
expanded. In the third column all Ritz values of the search subspaces before/after expansion are printed. Right below this
number the corresponding Ritz vector is graphically displayed.

step | correction vector Ritz values and Ritz vectors
-4.0e+03
1 W\/\N\/\Mp -1.5e+03 -8.6+03
2 \/\/\/\/\/\[\/\ -5.8e+02 -2.9e+03 -1.0e+04
3
-2.8e+02 -1.0e+03 -3.1e+03 -1.1e+04
4
~1.2e+02 ~4.6e+02 -11e+03 33403 -12e+04
5
430 236402 -5.0e+02 -1.3e+03 -3.6e+03 “Lderod
-17e+01 -8.0e+01 -2.4e+02 -5.1e+02 -13e+03 /\;MW LMM
7 9.9¢+00
9.9+ -4.0e+01 -9.4e+01 25402 -5.3e+02 Mi/\/\ /\KME{W W
-3.9e+01 -8.9e+01 -2.3e+02 -3.5e+02 -5.6e+02 -1.4e+03 -4.0e+03 -1.9e+04
9 -9.9e+00
-39e+01 -8.9e+01 -16e+02 -2.5e402 -5.0e+02 -8.0e+02 -16e+03 426403 -2.2e+04
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TABLE 2. Convergence of Jacobi-Davidson, with accurate solution of the correction equation, towards the eigenvalue
of smallest absolute value (=largest eigenmode) of the discretized 09, h = 0.01) eigenvalue problem for the one-
dimensional Laplace operator.

step| selected Ritz value residual selected number of correct digitg
Ritz pair selected Ritz value
1 -3992.4322622 9.74e+03 -3.6
2 -1487.8343933 3.99e+03 -3.2
3 -581.73159839 1.62e+03 -2.8
4 -283.84104294 7.22e+02 -2.4
5 -123.01979659 3.23e+02 2.1
6 -42.762088608 1.15e+02 -1.5
7 -17.253205686 4.49e+01 -0.87
8 -9.8982441731 7.41e+00 15
9 -9.8687926855 5.15e-04 9.8
10 -9.8687926854 6.26e-12 12

convergence to the desired eigenvalue sets in. This might have been expected: as the startvector
is random it is likely that the components of all eigenmodes are about equally represented in the
startvector. Therefore, in the beginning the eigenvalues with larger absolute value will dominate for

a while. In Fig. 2 we display the Ritz vectors after each iteration of the Jacobi-Davidson process.
The corresponding eigenmodes are of high frequency, which explains the order of appearance of Ritz
vectors (high frequencies dominate initially).

A proper target value in the correction equation (3.2), instead of the Ritz value, may help to over-
come the initial phase of slow convergence, but this is beyond the scope of this paper. Our concern is
the question how much the process is affected when the correction equation is solved approximately
by performing accurate solves on the subdomains only and by tuning the interface conditions. A less
accurate solution of the correction equation will, in general, result in more steps of Jacobi-Davidson
(outer iterations) for the same precision for the approximate eigenpair. In particular, we do not want
to extend the ‘slow phase’ by destroying the ‘fast phase’ with too inaccurate solution steps. We take
the ‘exact’ Jacobi-Davidson process in Table 2 as our reference. In order to see what happens in the
final, potentially fast phase, we select a parabola shaped startvector.

In the next subsections we will mainly consider the more interesting two-dimensional case, with
physical sizesv, = 2 andw, = 1. The number of grid points ir- andy direction aren, = 63
andn, = 31, soh; : hy = 1 : 1. The eigenvalue corresponding to the largest eigenmode of
the discretized Laplace operator is equaHi®2.328585. ... In Table 3 the convergence history for
Jacobi-Davidson to this eigenpair is presented when starting with the parabolic vector

- == ) 1Sz Sne 1<y < 5.1
{(nx—i—l( nx-{—l)’ny_{_l( ny+1)) | S Jz S Ny, _]y_ny}, ( )

and with accurate solutions of the correction equation. The second column of this table shows the
selected Ritz value for the correction equation, the third column the @rroi for this Ritz value,
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TABLE 3. Convergence history of Jacobi-Davidson applied to the discretized eigenvalue problem of the two-
dimensional Laplace operatom{ = 63,n, = 3l,w, = 2 andw, = 1) with accurate solutions of the correction
equation.

step) ¢ 0 —A [l ("]l

1 |-12.4896 -1.61e-01 4.19e+00 4.19e+00
2 |-12.3286 -9.65e-07 8.55e-03 6.10e-D3
3 |-12.3286 -1.55e-13 1.76e-10 1.19e-10
4 |-12.3286 -1.33e-13 7.71e-14 3.90e-14

and the fourth column gives ti®norm of the residuat for the corresponding normalized Ritz pair.

Jia and Stewart [11] have pointed out thatfpand given the information in the subspaéea better,

in residual sense, approximate eigenvector can be computed; the norm of the residual of this so-called
refined Ritz vector is given by the quantity

I .
- )
It'||]2 = min ||Au — Oul|
ucy

represented in the fifth column in Table 3.

These experiments set the stage for the domain decomposition experiments.

5.2 Spectrum of the error propagator

From §2.5 we know that the convergence properties of the Jacobi iterative method depend on the
spectrum of the error propagamglN. Therefore, we will investigate these spectra for some typical
situations. We consider the asymptotic cése . Although# approximates\ in practice, during

the iteration proces8 becomes very close ty, and that is the reason we think that the asymptotic
case gives a good indication.

5.2.1 Predicted and computed spectrdrirst we consider the determination of the parametgr
(4.22) for the simple optimized coupling. The valuewf; depends on the extremal valugsand
M of the collection of dominant root& (4.20) for whicha,, is optimized. The valug: depends
amongst others ofy, andM only depends on., h,, and on the coefficients andb.

We illustrate the sensitivity of,, W.r.t. the lower boundgl, for # equal to the largest eigenvalue
A(L1) of the Laplace operator, with, = 2,w, = 1,1, = 63,n, = 31 andn,; = 26. For a dominant

. 4 .
root(ﬁ), A in (4.24) should be smaller thdn Then—b sin? [ T le > 6. Sincef) ~ 52 and
h? 2n,+1 4

b 5 (7 e 9 9 . 5 . .
— — ~ [“7*, we have approximately th —. The smallest such inte S
h.%Sln <2ny+1> 272, we have approxi y thag > T uch integéri

l. = 2. In order to show that this is a sharp value foand thus a sharp lower bound for thé4.25),
we shall compare the cage= 2 with the case for the smaller valig= 1.2. We also included the
casel, = 4, where apart from the modg = 1, the modes, = 2 andl, = 3 are excluded from the
optimization process (i.e. for the computation of an optimal

For these three casek (= 2,l, = 4, andl, = 1.2) we have computed the corresponding
(v = —1.6287... ,a = —2.1279..., anda = —1.2800. .., respectively). In Fig. 3 the predicted
amplification of the error propagatMElN for these values o are shown. Here we calculated for
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FIGURE 3. Predicted amplification of the error propagathglN with simple optimized coupling for the largest
eigenvalue\(™>) of the Laplace operator fof, = 2, [, = 4, andl. = 1.2. For explanation, se§5.2.1.
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each mode (with wavenumbgy) the expected amplificatiohr(ly)| with expression (4.18). Indeed,
we see that (fof, = 2) the second leftmost circlé,(= 2) in Fig. 3 represents the same value as for
the rightmost circlel(, = 31), which was our goal. If, is close tol, then because the modg= 1
can not be damped at all, the overall dampingifoe 1.2 is predicted to be less, whereas= 4
should lead to a better damping of the remaining mdges 4, ... ,31 that are taken into account,
which is confirmed in Fig. 3 for different values af

Fig. 4 shows thexactnonzero eigenvalues of MglN sorted by magnitude for different values
of a. We also plotted in this figure tharedictednonzero eigenvalues sorted by magnitude. We see
that the predictions are very accurate.

In Fig. 4 we see also the effect of the valldeon the eigenvalues. Again, we see that it is better
to overestimaté, than underestimate. The point symmetry in Fig. 4 is due to the fact thasifin
eigenvalue OMEIN then—o is also an eigenvalue (remark (iv) §2.5). Furthermore, note that for
each process one eigenvalue is equdl, imdependent of.. By a combination of remark (v) ¢f2.5
and the discussion at the ends&2, we see that the corresponding eigenvector is of the fothat
corresponds to the eigenvectprthat we are looking for with our Jacobi-Davidson process. Hence
the occurrence of in the spectrum is not a problem: the projections in the correction equation take
care of this, as we will show now.

5.2.2 Deflation Now we show, by means of an example, how deflation improves the condition of
the preconditioned correction equation (3.7). For the discretized Laplace operator we,take

wy = 1,n; = ny = 31,n, = 15 andf = A*4. There arel9 eigenvalues larger thaxi*4. If we
determine thex,, for the simple optimized coupling, thép ~ 5.6944. So the modes, =1,...,6
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FIGURE 4. Predicted and computed nonzero eigenvalues of the error propa@dth‘N with simple optimized
coupling for the largest eigenvalug’-!) of the Laplace operator fol, = 2, l. = 4, andl. = 1.2. For explanation, see
§5.2.1.
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are not taken into account for the optimizatiomgfince they do not show dominant behavior. Hence

we do not necessarily damp these modes with the resuitjng

One of them, more precisely the motje= 4, is connected to thg-component of the eigenvector

%4 corresponding ta (44 this mode can not be controlled at all withbecause the operatér is

shifted byA(*:%) and therefore singular in the direction @f**). In the correction equation (3.7) the
operator stays well-conditioned due to the projecibthat deflates exactly the directian= ¢(*%),

Since the error propagator originates from the enhanced operator in the correction equation, this
projection is actually incorporated in the error propagai8r2): PMEINP.

The other non-dominant modés = 1,2, 3,5,6, can not be controlled by,,. But, as remarked in

§4.4, in practice one starts the computation with the largest eigenvalues and when arpiVed at

the 19 largest eigenvalues with corresponding eigenvectors are already computed and will be deflated
from the operatoB. Deflation in the enhanced correction equation is performed by the projection

P'=1-M/'X (X*M.'X) ' X",

HereX = (X{, X,//,0",0", X,",XJ) ", whereX = (X{, X/, X,7,XJ) " is a matrix of which the
columns form an orthonormal basis for the space spanned bi\dtaleady computed eigenvectors
and the approximat20th eigenvector. This implies that we are dealing with the error propagator
P'M_'NP'.

For a,, we computed the nonzero eigenvaluedVbf,' N, PM ' NP andP'M_/'NP’. In Fig. 5
their absolute values are plotted. The-s (no deflation) indicate that the most righit eigenvalues
have not been controlled by, This is in agreement with the fact that the modlgs- 1,. .. , 6 have
not been taken into account for the determinatiorvgf to each modé, there correspond exactly
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FIGURE 5. The effect of deflation on the nonzero eigenvalues of the error propagator with simple optimized coupling.
For explanation, seg5.2.2. The dotted lines indicate the area of Fig. 6.
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two eigenvalues-o("») and+o("»). Two eigenvalues have absolute valuéposition 57 and58 on

the horizontal axis). They correspond to the eigenveptdf) of A.

The '-s show that deflation witlu makes these absolute values become lessith&ut, with de-
flation byu, the other uncontrolled eigenvalues stay where they were without deflation; four absolute
values are even larger th&%. Fortunately, deflation with thé9 already computed eigenvectors
drastically reduces these absolute values, asstheshow.

From this example we learned that deflation may help to cluster the part of the spectrum that
we can not control with the coupling parameters, and therefore improves the conditioning of the
preconditioned correction equation. The remaining part of the spectrum, that is the eigenvalues that
are in control (indicated by the dotted lines in Fig. 5), may be damped even more. This will be subject
of the next section.

5.2.3 Stronger coupling At the end of§4.4, it was illustrated that the inclusion of interactions
parallel to the artificial boundary provides more coupling parameters by which a better coupling can
be realized. We will apply this now to the exampl&,2.2 in order to investigate how much we can
improve the spectrum of the error propagator and how accurate the value of the predicted amplification
o, 1S for the different types of coupling.

Table 4 contains the values of the coupling parameters and the predicted amplifiggtionthe
different types of coupling whehh = 7, as in§5.2.2. These values are obtained by application of
a Rénmes algorithm to expression (4.28). As in the final exampl€%#fl, we see that be the best
coupling is predicted to be of typk followed by type2, and then typ&. But, the question remains
what the exact spectrum may be for these types op coupling.

We computed the exact nonzero eigenvalues of the error propagbng for the four types of
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TABLE 4. Values of coupling parameters and predicted amplificatigq for four types of optimized coupling. For
explanation, se§5.2.3.

type no. 1 2 3 4
optimized w.r.t. « a, 0 Q,y a, B,y
e —2.138 | —0.4988 —1.373 —0.2080
I} 0.001375 0.001959
y 0.0002230 | —0.0001352
predictedo;,, | 0.3128 | 0.01875 0.1196 0.007686

FIGURE 6. The effect of different types of optimized coupling on the nonzero eigenvalues of the error propagator. The
values of the coupling parameters are given in Table 4. The corresponding predicted valiggsaa indicated by dotted
lines. For explanation, se$5.2.3.
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coupling from Table 4. Fror§5.2.2, we know that with the coupling parameters we only control the
2n, — 12 = 50 nonzero eigenvalues of the error propagator with lowest absolute value. Therefore,
we exclude thé@2 other nonzero eigenvalues from our further discussion. In Fig. btleggenvalues
with lowest absolute value are plotted. The corresponding predicted valugs afe indicated by
dotted lines in Fig. 6. From inspection of the eigenvectors, we have verified that for the four different
types of coupling, thé2 eigenvalues with highest absolute value that are excluded correspond to the
modesl, = 1,...,6. (Computation of the eigenvectors is rather time consuming. Therefore, we
restricted ourselves here to a grid that is coarser than the one in the example at thg4esad of

Indeed, as predicted, it pays off to include more coupling parameters. Fot tipe predicted
value ofoy,, is almost exact. The value for tygeseems to be accurate for the eigenvalues at positions
1,...,38. Fortype and4, the value becomes less accurate after positiotwe believe that this is
because of neglecting tiie terms in the expression fer, . for types2 and4 the eigenvectors, that
correspond to the eigenvalues with position larger théirhave a low value of,. In our quest for
optimizing the spectral radius of the error propagator, we have now arrived at a level where we can no
longer ignore the contributions of the teriqis. This is confirmed by inspecting the eigenvectors: the
eigenvalues that deviate from the predicigg have eigenvectors that correspond to low valuelg of
But still, the predicted;, gives a good indication for the quality of the coupling and will be better
for finer grids.

5.3 Effect on the overall process

In §5.2 spectra of the error propagator have been studied. These spectra provide information on the

convergence behavior of the Jacobi iterative method. Now we turn our attention to the overall Jacobi-

Davidson method itself. We are interested in how approximate solutions of the correction equation,

obtained with a linear solver (‘the innerloop’), affects the Jacobi-Davidson process (‘the outerloop’).
Here we consider two types of coupling:

1. the simple optimized coupling with one coupling parameter
2. the Neumann-Dirichlet coupling.

Although we have seen ig4.4 andg5.2.3, that there exist better choices for the coupling, we be-
lieve that the overall process with the simple optimized coupling gives a good indication of what we
may expect for the stronger optimized couplings. The choice for the Neumann-Dirichlet coupling is
motivated by the fact that it is commonly used in domain decomposition methods.

The testproblem will be the same as the ong5r2.1. First we discuss the Jacobi iterative method
as a solver for the correction equation. We do this for both the left and right preconditioned variant.
Then we compare the results with those obtained by the GMRES method.

5.3.1 The Jacobi iterative processin §5.2.1 we have computed the spectra of the error propagator
M_'N, for o, and two other near optimal values @f We further investigate these three cases for
the Jacobi iterative process.

Table 5 shows the convergence behavior of Jacobi-Davidson, when the correction equation is solved
with the Jacobi iterative method and with coupling parametgr obtained forl, = 2. The left (on
the left) and right (on the right) preconditioned variant are presented. Moreover, we have varied the
number of Jacobi inner iterations.

When we compare the top part of Table 5 with the bottom part, then we see that more Jacobi inner
iterations lead to less outer iterations for the same precision. More Jacobi iterations yields a better
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TABLE 5. Convergence history of Jacobi-Davidson applied to the discretized eigenvalue problem of the two-
dimensional Laplace operator for approximate solutions to the correction equation obtained with left (left) and right (right)
preconditioned Jacobi iterations on two subdomains and simple optimized coupling. For explana§ér3ske

optimized couplingj, = 2

left DD-preconditioned right DD-preconditioned
step|| #-A Iz [[2 lIx"]]2 o f—A e[ Il o
3 Jacobi inner iterations 2 Jacobi inner iterations

1 -1.61e-01 4.19e+00 4.19e+00 -1.62[r51.61e-01 4.19e+00 4.19e+00 -1.62[/5
2 | -4.98e-03 3.14e+00 2.55e+00 -1.62B74.98e-03 3.14e+00 2.55e+00 -1.6287
3 | -2.20e-04 1.90e-01 1.81e-01 -1.62872.20e-04 1.90e-01 1.81e-01 -1.62B7
4 | -1.62e-07 7.12e-03 6.74e-03 -1.62B71.62e-07 7.12e-03 6.74e-03 -1.6287
5 | -2.13e-12 4.16e-05 3.91e-05 -1.62872.09e-12 4.16e-05 3.91e-05 -1.62B7
6 | -1.53e-13 1.36e-06 9.37e-07 -1.62871.47e-13 1.36e-06 9.37e-07 -1.6287
7 | -1.62e-13 8.43e-09 5.78e-09 -1.62871.81e-13 8.43e-09 5.78e-09 -1.6287
8 | -1.39e-13 1.19e-10 8.84e-11 -1.44e-13 1.19e-10 8.84e-11
4 Jacobi inner iterations 3 Jacobi inner iterations

-1.61e-01 4.19e+00 4.19e+00 -1.62751.61e-01 4.19e+00 4.19e+00 -1.6275
-4.23e-03 2.89e+00 2.43e+00 -1.62874.23e-03 2.89e+00 2.43e+00 -1.6287
-2.70e-05 6.42e-02 6.20e-02 -1.62872.70e-05 6.42e-02 6.20e-02 -1.6287
-5.95e-09 1.02e-03 7.36e-04 -1.62875.95e-09 1.02e-03 7.36e-04 -1.6287
-1.53e-13 2.84e-06 2.61le-06 -1.62871.58e-13 2.84e-06 2.61e-06 -1.6287
-1.76e-13 2.81e-08 1.54e-08 -1.62879.95e-14 2.81e-08 1.54e-08 -1.6287
-1.44e-13 8.33e-12 8.30e-12 -1.42e-13 8.34e-12 8.28e-12
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TABLE 6. Convergence history of Jacobi-Davidson applied to the discretized eigenvalue problem for the two-
dimensional Laplace operator for approximate solutions to the correction equation obtained with 3 left preconditioned
Jacobi iterations on two subdomains and two almost optimal simple couplings. For explanatii Zde

[sep 6-Xx  [el> Kl o [ 6-X b b«
le =4 le =12

1 -1.61e-01 4.19e+00 4.19e+00 -2.12741.61e-01 4.19e+00 4.19e+00 -1.27R9
2 -2.93e-03 2.27e+00 2.00e+00 -2.12791.33e-02 5.03e+00 3.31e+00 -1.27P4
3 -1.12e-03 5.92e-01 4.62e-01 -2.12(91.92e-06 2.96e-02 2.94e-02 -1.28P0
4 | -1.46e-05 6.50e-02 5.83e-02 -2.12794.11e-10 6.69e-04 5.57e-04 -1.28D0
5 -4.02e-10 5.91e-04 5.71e-04 -2.12|91.18e-12 5.35e-05 3.97e-05 -1.28p0
6 -2.47e-12 6.71e-05 4.05e-05 -2.1291.24e-13 1.45e-06 1.21e-06 -1.28D0
7 -1.47e-13 1.82e-07 1.14e-07 -2.12|93.13e-13 9.31e-08 5.82e-08 -1.28D0
8 -1.67e-13 2.84e-10 2.82e-10 -1.46e-13 2.83e-09 2.09e-09 -1.28p0
9 -1.72e-13  1.24e-10 1.09e-10

approximation of the correction vector and a better approximation of the correction vector results
in fewer Jacobi-Davidson steps. When we compare the left part with the right part in Table 5, then
we see thatn steps with right preconditioned Jacobi iterations produces exactly the same results
as withm + 1 left preconditioned Jacobi iterations. This is explained by stage 3.3 of right
preconditioning: one extra preconditioning step is performed.

From §5.2.1 we know that the spectra of the error propagator are less optimal fer4 and
lo = 1.2, and therefore Jacobi will perform not as good asi/foe= 2. How does this affect the
Jacobi-Davidson process? In Table 6 data are presented for three left preconditioned Jacobi iterations
in each outer iteration, fdy, = 4 (left) andi, = 1.2 (right). We should compare this with the top
left part of Table 5. From this we see, that also Jacobi-Davidson performs less well for less optimal
couplings.

Now we consider the Neumann-Dirichlet coupling. In our enhancement terminologyZ)
this can be interpreted as a Neumann boundary condition on th&left= 7 andCy, = —1I, and a
Dirichlet boundary condition on the righ?,; = I andC,,, = I. For dominated behavior (c§4.3.1
(i), and §4.4 (4.20)) and for two subdomains it follows from (2.16) that

2 oD+
1-0E+1)

From this we see that far = A1), the error propagator has, besides and+1, only eigenvalues
near—+/—1 and+/—1. Hence, the eigenvectors MEIN will hardly be damped. Therefore, the

Jacobi iteration will not perform well with Neumann-Dirichlet coupling. From Table 7 we see that
Jacobi-Davidson clearly suffers from this effect.

5.3.2 GMRES Atthe end of§2.3 we noted that Krylov subspace methods can be viewed as acceler-
ators of the Jacobi iterative method. If we apply GMRES for the solution of the correction equation,
instead of Jacobi iterations as§h.3.1, then we should expect at least the same speed of convergence
in the inner iteration. As a consequence, the speed of convergence of the Jacobi-Davidson (outer)
iteration should be not worse but presumably better.
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TABLE 7. Convergence history of Jacobi-Davidson applied to the discretized eigenvalue problem for the two-
dimensional Laplace operator for approximate solutions to the correction equation obtained with left (left) and right (right)
preconditioned Jacobi iterations on two subdomains and Neumann-Dirichlet coupling. For explanatffnée

Neumann-Dirichlet coupling

left DD-preconditioned right DD-preconditioned
step| 60— Il ][ f—A Il [LlE
4 Jacobi inner iterations 3 Jacobi inner iterations

1 -1.61e-01 4.19e+00 4.19e+(00-1.61e-01 4.19e+00 4.19e+00

2 | -5.07e-02 8.72e+00 3.98e+005.07e-02 8.72e+00 3.98e+00

3 | -1.79e-02 4.85e+00 3.29e+00-1.79e-02 4.85e+00 3.29e+00

4 | -1.20e-02 2.40e+00 2.03e+00-1.20e-02 2.40e+00 2.03e+00

5 | -4.55e-03 2.69e+00 1.68e+00-4.55e-03 2.69e+00 1.68e+00

6 | -2.93e-04 6.90e-01 6.13e-01-2.93e-04 6.90e-01 6.13e-01

7 | -1.40e-04 3.74e-01 3.29e-01-1.40e-04 3.74e-01 3.29e-01

8 | -2.00e-05 2.10e-01 1.74e-Q1-2.00e-05 2.10e-01 1.74e-01

9 | -4.11e-06 7.32e-02 6.63e-02-4.11e-06 7.32e-02 6.63e-02
10 | -8.12e-07 3.88e-02 3.49e-02-8.12e-07 3.88e-02 3.49e-02
11 | -1.54e-07 1.41e-02 1.12e-02-1.54e-07 1.41e-02 1.12e-02
12 | -1.50e-08 5.84e-03 5.28e-03-1.50e-08 5.84e-03 5.28e-03
13 | -3.20e-09 2.62e-03 1.59e-03-3.19e-09 2.62e-03 1.58e-03
14 | -7.27e-10 1.22e-03 1.01e-03-3.68e-10 9.02e-04 8.00e-04
15 | -1.31e-10 5.86e-04 5.38e-04-1.30e-10 5.82e-04 5.35e-04
16 | -2.34e-11 2.63e-04 1.72e-04-2.35e-11 2.63e-04 1.72e-04
17 | -2.26e-12 5.03e-05 4.78e-054.16e-13 5.03e-05 4.78e-05
18 | -7.46e-13 2.08e-05 1.65e-05-5.68e-14 2.08e-05 1.65e-05
19 | -1.63e-13 3.90e-06 3.21e-06-7.53e-13 3.88e-06 3.19e-06
20 | 4.12e-13 1.49e-06 1.25e-061.14e-13 1.27e-06 1.04e-06
21 | 9.95e-13 8.53e-07 7.63e-07 6.25e-13 3.60e-07 2.54e-Q7
22 | -6.79e-13 2.55e-07 1.30e-07-3.91e-13 2.30e-07 1.25e-Q7
23 | 4.01e-13 3.81e-08 3.56e-087.11e-14 3.81e-08 3.56e-08
24 | 7.11e-14 1.18e-08 8.40e-09-5.47e-13 1.18e-08 8.39e-09
25 | 4.90e-13 1.45e-09 1.41e-092.98e-13 1.19e-09 1.16e-09
26 | 6.98e-13 6.58e-10 6.30e-10-5.90e-13 5.02e-10 4.80e-10
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TABLE 8. Convergence history of Jacobi-Davidson applied to the discretized eigenvalue problem for the two-
dimensional Laplace operator for approximate solutions to the correction equation obtained with left (left) and right (right)
preconditioned GMRES on two subdomains and simple optimized coupling. For explanatién3s2e

optimized couplingj, = 2

left DD-preconditioned right DD-preconditioned
step| 0-X il e[l a O-X el 'l o
GMRES(3) GMRES(2)
1 | -1.61e-01 4.19e+00 4.19e+00 -1.62[751.61e-01 4.19e+00 4.19e+00 -1.62[75
2 -2.72e-05 1.67e-01 1.67e-01 -1.62873.74e-05 1.16e-01 1.16e-01 -1.62B7
3 | -3.05e-08 6.68e-03 6.23e-03 -1.62B75.89e-08 6.63e-03 5.43e-03 -1.6287
4 | -3.06e-11 2.72e-04 2.71e-04 -1.62B71.46e-11 1.19e-04 1.13e-04 -1.62B7
5 1.78e-15 1.72e-06 1.66e-06 -1.62B71.56e-13 1.46e-06 1.26e-06 -1.62B7
6 | -2.59e-13 1.34e-08 1.03e-08 -1.62871.69e-13 6.81e-09 5.71e-09 -1.6287
7 -1.26e-13 7.94e-10 6.71e-10 -7.28e-14 4.38e-11 4.03e-11
GMRES(4) GMRES(3)
1 -1.61e-01 4.19e+00 4.19e+00 -1.62[751.61e-01 4.19e+00 4.19e+00 -1.62[75
2 | -1.52e-06 3.07e-02 3.02e-02 -1.62B71.34e-06 2.76e-02 2.71e-02 -1.62B7
3 | -1.3%-12 3.35e-05 3.32e-05 -1.62B74.85e-12 4.30e-05 4.13e-05 -1.6287
4 | -1.42e-13 1.87e-07 1.76e-07 -1.62B71.42e-13 7.62e-07 7.31e-07 -1.62B7
5 | -1.79e-13 1.21e-09 1.17e-09 -1.62871.19e-13 3.20e-09 3.19e-09 -1.6287
6 -1.85e-13 4.64e-12 4.09e-12 -1.28e-13 1.10e-11 1.05e-11

Our expectations are confirmed by the results in Table 8, for the simple optimized coupling and in
Table 9 for the Neumann-Dirichlet coupling. For the same type of coupling one should compare the
data for GMRES{) with m Jacobi iterations: GMRES optimizes over the Krylov subspace spanned
by powers of the (preconditioned) operator, whereas Jacobi uses only the last iteration vector for the
computation of a solution to the linear system.

Note that with left preconditioned GMRES(4) and with Neumann-Dirichlet coupling, we have
almost recovered the exact Jacobi-Davidson process{soin This can be explained as follows. The
eigenvalue distribution of the error propagator has besideand+1, all other eigenvalues clustered
around++/—1 for two subdomains. However, for four distinct eigenvalues, GMRES needs four steps
at most for convergence. So the spectral properties of the error propagator for two subdomains with
Neumann-Dirichlet coupling are worse for the Jacobi iterative method but ideal for the acceleration
part of GMRES. This is not a typical situation. §6.4 we will see how the picture changes for more
subdomains and with less accurate preconditioners.

5.4 More subdomains
We describe an experiment that illustrates what happens when the number of subdomains is increased.
For each number of subdomains we keep the preconditioner fixed.

Our modelproblem is a channel that is made larger by extending new subdomains. We compute
the largest eigenvalue and corresponding eigenvector of the Laplace operator on this channel. After
adding a subdomain, this results in a different eigenvalue problemp Bobdomains the physical
size and number of gridpoints in thedirection are taken to be fixedy, = 1 andn, = 63, whereas
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TABLE 9. Convergence history of Jacobi-Davidson applied to the discretized eigenvalue problem for the two-
dimensional Laplace operator for approximate solutions to the correction equation obtained with left (left) and right (right)
preconditioned GMRES on two subdomains and Neumann-Dirichlet coupling. For explanatgm32e

Neumann-Dirichlet coupling

left DD-preconditioned right DD-preconditioned
step| 0-X el Al | 0=X el ]k
GMRES(3) GMRES(2)
1 |-1.61e-01 4.19e+00 4.19e+00-1.61e-01 4.19e+00 4.19e+Q0
2 | -1.20e-04 3.80e-01 3.80e-01-5.87e-05 8.67e-02 8.48e-02
3 | -5.48e-05 2.00e-01 1.96e-01-7.21e-09 2.19e-03 2.18e-03
4 | -1.13e-06 2.78e-02 1.73e-02-1.71e-13 1.57e-06 1.22e-06
5 | -1.99e-08 5.95e-03 4.43e-03-1.49e-13 3.25e-08 3.09e-08
6 | -8.17e-12 7.64e-05 7.48e-051.74e-13 3.10e-12 2.98e-12
7 | -1.79e-13 3.88e-06 3.83e-06
8 | -1.99e-13 1.41e-07 1.32e-Q7
9 | -1.14e-13 1.90e-09 1.61e-Q9
10 | -1.71e-13 4.80e-11 2.58e-11
GMRES(4) GMRES(3)
1 |-1.61e-01 4.19e+00 4.19e+00-1.61e-01 4.19e+00 4.19e+Q0
2 | -9.65e-07 8.55e-03 6.10e-03-9.65e-07 8.55e-03 6.10e-03
3 | -1.44e-13 5.84e-10 5.79e-10-1.55e-13 5.35e-10 5.30e-10
4 -1.21e-13 8.56e-14 1.0le-14-1.49e-13 3.92e-14 4.12e-14
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in the z direction they increases, = pandn, =63+ (p — 1) - 64for 1 <p <6.

Now, the idea is that the DD-preconditioner consists of block matrices defined on the enhanced
subdomain grids. For the channel this results in one block matrix of (sizer 1) x (63 + 1)
(corresponding to the first subdomain on the lgift); 2 block matrices of siz¢64 + 2) x (64 + 2)
(corresponding to the — 2 intermediate subdomains) and one block matrix of §iide+ 1) x (64 +
1) (corresponding to the last subdomain on the right). If we select the same coupling between all
subdomains, then we need to know the inverse actiGrbédcks (corresponding to the left, right, and
a single intermediate subdomain). Furthermore, we construct the preconditioner only for the value of
6, of the first Jacobi-Davidson step. This fixed preconditioner is used for all iteration steps.

In order to be able to interpret the results properly, we have checked how Jacobi-Davidson with
accurate solutions to the correction equation on the undecomposed domain (the ‘exact’ process) be-
haves. In Fig. 7 and Fig. 8 this is represented by the solid line.

We consider simple optimized (type 1), strong optimized (type 4), and Neumann-Dirichlet cou-
plings. In each Jacobi-Davidson step we solve the correction equation approximately by right pre-
conditioned GMRES(3). The number of nonzero eigenvalues of the error propagator is proportional
to the number of subdomains. Because of this, it is reasonable that with a fixed number of inner
iterations the accuracy will deteriorate for more subdomains.

Fig. 7 represents the convergence history of Jacobi-Davidson for the ‘exact process’ and for the
inexact processes with different types of coupling, when starting with the vector (5.1). The ‘exact
process’ does not change significantly for increasing values. oFor the inexact processes, the
number of outer iterations increases when the number of subdomains increases (as expected). For the
simple optimized coupling one can roughly say that convergengesabdomains requirés+ p outer
iterations. The strong optimized coupling needs aldout?2 iterations less. But for the Neumann-
Dirichlet coupling the results do not show such a linear relationship: when increasing fi@fhor
from 3 to 4 subdomains, the number of outer iterations almost doubles.

When we compare the right bottom part of Table 9 with the two subdomain case in Fig. 7, then we
see what happens when the preconditioner is less accurate for Neumann-Dirichlet coupling: the exact
Jacobi-Davidson process can not longer be reproduced. Because thtg #hiNI~ is not equal to
the shiftd in B¢, the eigenvalues of the error propagator that were closete-1 (cf. §5.3) start to
deviate. This results in worse circumstances for GMRES.

From these results we conclude that the optimized couplings outperform the Neumann-Dirichlet
coupling for more thal subdomains and a less accurate preconditioner

So far we have only considered the eigenvalue problem for the Laplace operator. The anglysis of
also accommodates problems with first order operators. To illustrate that this does not give essential
differences, we consider

P 20 # 0
or?  por Oy? oy

on a domain with physical sizes, = %p andw, = % Herep € {2,3,4} is the number of subdo-
mains. With Jacobi-Davidson we compute the largest eigenvalue. In order to be in the convergence
region of interest, Jacobi-Davidson is started with a vector eqya to25I) ! times the vector (5.1)
(25 is close to the largest eigenvalue). All other settings are the same as in the previous experiment of
this section.

Fig. 8 shows the convergence history of Jacobi-Davidson for accurate solutions and for approxi-
mate solutions of the correction equation. The approximate solutions are obtained from right pre-

(5.2)
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FIGURE 7. Convergence history of Jacobi-Davidson applied to the discretized eigenvalue problem for the two-
dimensional Laplace operator for accurate solutions to the correction equation and increasing valueara n,, (solid
lines) versus approximate solutions to the correction equation obtained from right preconditioned GMRES(3) with strong
optimized (type 4) coupling (dashed lines with), simple optimized (type 1) coupling (dash-dotted lines wiff) ‘and
Neumann-Dirichlet coupling (dotted lines witk} on an increasing number of subdomains. For explanation§eé.
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FIGURE 8. Convergence history of Jacobi-Davidson applied to the discretized eigenvalue problem for the two-

dimensional advection-diffusion operator (5.2) for accurate solutions to the correction equation and increasing values
of w, andn, (solid lines) versus approximate solutions to the correction equation obtained from right preconditioned GM-
RES(3) with simple optimized (type 1) coupling (dash-dotted lines lijron an increasing number of subdomains. For
explanation seé5.4.
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conditioned GMRES(3) with simple optimized (type 1) coupling. As in the previous experiment, the
preconditioner is constructed only once at the first Jacobi-Davidson step. We see that the pictures in
Fig. 8 are similar to those in Fig. 7.

6. CONCLUSIONS

In this paper we have outlined and analyzed how a nonoverlapping domain decomposition technique
can be incorporated in the Jacobi-Davidson method. For large eigenvalue problems the solution of
correction equations may become too expensive in terms of CPU time or/and memory. Domain
decomposition may be attractive in a parallel computing environment.

For a model eigenvalue problem with constant coefficients we have analyzed how the coupling
equations should be tuned. By numerical experiments we have verified our analysis. Indeed, further
experiments showed that tuning of the coupling results in faster convergence of the Jacobi-Davidson
process.

In realistical problems, the coefficient functions will not be constant and the domain will have a
complicated geometry. For the determination of suitable coupling matrices, we intend to locally apply
the approach that we discussed here. This ‘local’ approach is the subject of our next study.
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