@ Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Reordering strategies and LU-decomposition of block tridiagonal
matrices for parallel processing

A. van der Ploeg
Department of Numerical Mathematics

NM-R9618 1996

Report NM-R9618
ISSN 0169-0388

CWwiI

P.O. Box 94079

1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.

SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Reordering Strategies and LU-decomposition of Block Tridiagonal Matrices
for Parallel Processing

A. van der Ploeg

cwi
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

Solution of large sparse systems of linear equations continues to be a major research area with widespread
application. In many applications, the unknowns appear in groups, and the coefficient matrix has a block
structure corresponding to these groups. For example, in discretised incompressible Navier-Stokes equations
the velocities and the pressure belonging to the same grid point form such a group.

Another example arises in molecular hydrodynamics computations when a combination of a finite element
discretisation in a given spatial direction and a Fourier decomposition in other directions is used. In many
cases, it appears to be important to be able to solve block tridiagonal systems efficiently. A possible strategy
for obtaining parallelism is to apply a reordering of the unknowns before a decomposition of the coefficient
matrix is constructed. In this paper, we compare reordering strategies based on block cyclic reduction and
on domain decomposition. Estimates of the number of floating point operations and the amount of data
transport will be discussed, and results on a CRAY C90 and CRAY T3D will be presented.

AMS Subject Classification (1991): 65F05, 65F10, 65F50, 65Y05

CR Subject Classification (1991): G.1.3, J.2.

Keywords & Phrases: CRAY C90, CRAY T3D, block tridiagonal, distributed memory, domain decompo-
sition, nested dissection, parallel linear solver, reordering strategies.

Note: This research is sponsored by the NWO Priority Program “Massaal Parallel Rekenen” (MPR) and car-
ried out within MPR-cluster 95MPRO04: “Parallel computational magneto-fluid dynamics: nonlinear dynamics

of thermonuclear, astrophysical, and geophysical plasmas and fluids”.

1. INTRODUCTION

Numerical simulations are of increasing importance due to the demand for insight in the
behaviour of physical phenomena on the one hand, and the advances in computational hard-
ware and numerical algorithms on the other hand. The CPU-time is often dominated by the
time needed for solving large systems of equations and, in many situations, the quality of the
numerical simulations is determined by the limited amount of computer power and memory.
This induces an unceasing quest for efficient implementations of advanced solution methods
on vector/parallel supercomputers and massively parallel distributed-memory systems.

In many applications, the unknowns appear in groups, and the coefficient matrix has a block
structure corresponding to these groups. An efficient solver for block tridiagonal systems of

linear equations is often very useful in such cases. For example, a block form of an ADI-
method frequently requires the solution of such linear systems. In this paper we consider
parallelisable methods to solve a block tridiagonal system

Mz =y, M e CNXm 5 cNxm z and y € CVX", (1.1)

in which n is the size of the subblocks, and N is the number of diagonal blocks.

This paper was inspired by the block tridiagonal systems of linear equations generated by
the CASTOR finite-element spectral code which is applied intensively at FOM Rijnhuizen
for the stability investigation of tokamak plasmas [5]. The model describing the behaviour of
plasmas contains eight partial differential equations for eight unknowns: the magnetic field
and velocity field, the plasma pressure, and the density. When it is assumed that the per-
turbed quantities are of the form e, after linearisation of the PDE’s and after discretisation
one obtains a generalised eigenvalue problem Ax = ABz. The discretisation consists of a
combination of a truncated Fourier series in the poloidal direction, and of a finite element
discretisation in the radial direction. As a result of this discretisation, the matrices A and B
are block tridiagonal, A is non-Hermitian, and B is Hermitian positive definite. In general,
the non-zero entries of A and B are not real, and we have to use complex arithmetic.

We want to solve the eigenvalue problem by a Jacobi-Davidson method [7]. This method
frequently requires the approximate solution of a linear system (A — oB)x = y for given
right-hand side vector y. Since o will be some approximation of an eigenvalue we are looking
for, A — 0B can have a large condition number.

1.1 Incomplete LU-decompositions

If M is sparse, one can often solve (1.1) with an iterative method such as Bi-CGSTAB [10]
or GMRES [6]. In order to improve the convergence speed, the iterative method is usually
combined with a preconditioner. As an example, we consider a coefficient matrix M = A—oB
coming from CASTOR, in which n = 16, and N = 26. A characteristic part of M is shown in
Fig. 1. The dots indicate nonzero entries, and the size of a dot corresponds with the absolute
value of a matrix entry as indicated at the right.

Table 1 shows the results of Bi-CGSTAB combined with an incomplete LU-decomposition
as a preconditioner. As a stopping criterion for the iterative method we demand that the
2-norm of the preconditioned residual has to decrease with at least a factor 108. As a first
step, M is scaled in such a way that the sum of the moduli of the entries in each row is
equal to one. Next, a splitting LU + R is constructed in which the factors L and U are
lower- and upper-triangular matrices respectively, and the residual matrix R is small in some
sense. The construction of L and U is based on a threshold parameter ¢, e.g. all entries
of the residual matrix are in modulus smaller than €. Hence when ¢ = 0 we construct
a complete decomposition of the matrix. The incomplete decomposition is combined with
partial pivoting. In order not to disturb the block structure of the matrix, the search for
pivot elements is restricted to the blocks on the main diagonal. From the results in Table 1
it appears that when more elements in the factors L and U are dropped, the number of
iterations increases dramatically, even when those elements are very small in modulus. The
subblocks of the coefficient matrices in CASTOR appear to be relatively full (more than 50

252.02430
104.83107
43.605138
18137828
7.5445424
31381993
1.3053535
0.5429699
coreeenene. 0.2258517
0.0939444

0.0390768
0.0162542
0.0067610
ee0ebe0 . . 0-0028123
. 00011698
...... R] 0.0004866
0.0002024
8.419¢-05
3502605
1.457e-05
6.059¢-06
2.520e-06

Figure 1: Characterictic part of the testmatrix M = A — 0B coming from CASTOR.

percent of the entries is not zero). Hence when a complete LU-decomposition is constructed,
the total number of non-zero entries will never be more than twice the number of non-zero
entries in the coefficient matrix. Therefore, in the sequel of this paper we will focus on
complete LU-decompositions.

Table 1: Results of incomplete LU-decomposition.

e | # entries L + U | # Bi-CGSTAB it.
0 17887 1

108 17863 3

1074 14741 82

1.2 Complete block LU-decompositions

We do not use sparse matrix storage techniques, but we store all elements of the subblocks,
including zero elements. This has the advantage that the construction of a complete block
LU-decomposition can be implemented by using mainly level-3 BLLAS routines. Once the
factors L and U have been constructed, (1.1) can be solved with a pair of triangular solves,
which can be implemented by using level-2 BLLAS routines. The construction of the factors
L and U has to be done only once if several systems with different right-hand sides but with

the same coefficient matrix have to be solved. These computations are referred to as the
preprocessing. The computation of the solution for given right-hand side is referred to as the
solution process. In the Jacobi-Davidson method, several systems with the same coefficient
matrix have to be solved. Hence it is very important that the solution process is implemented
efficiently.

A block LU-decomposition of M in the given ordering generates no fill-in blocks outside
the blocks already present in the matrix. Therefore, on a sequential machine, this technique
is efficient. In the sequel of this paper, this approach is referred to as the direct LU-approach.
The construction of one block-row of the factors L and U requires two matrix-matrix multipli-
cations of two subblocks of size n, and one complete LU-decomposition of a subblock on the
main diagonal. Hence the number of multiplications for the preprocessing is approximately
%n?’N . The number of multiplications for the solution process is approximately 3n’N 1.

A drawback of the direct LU-approach is that the algorithm is strongly recursive: there
is no parallelism between the subblocks, so that on parallel computers this technique seems
only interesting when the size of the subblocks is large. In that case, a possible approach
to obtain parallelism is to distribute each subblock over the processors, and to use PBLAS-
and SCALAPACK routines for both the construction of the block LU-decomposition and the
triangular solves [3].

In order to obtain more parallelism, one can combine the LU-decomposition with a re-
ordering technique based on a block form of some parallelisable method to solve tridiagonal
systems of linear equations, for example recursive doubling [8], cyclic reduction [4], a divide
and conquer technique [11], or a domain decomposition method. In this paper, we study two
reordering techniques. In Section 2 the complete LU-decomposition is combined with a re-
ordering based on a domain decomposition technique, and in Section 3 we study an approach
based on cyclic reduction. Section 4 describes a combination of both approaches. Estimates
of the number of floating point operations and the amount of data transport will be discussed.
The results of some numerical experiments are presented in Section 5, and in Section 6 some
conclusions are presented.

2. REORDERING BASED ON DOMAIN DECOMPOSITION

Let p, be the number of available processors, and suppose that the integer N, = [p—l\ﬂ 2
represents the number of diagonal blocks to be treated on one processor. The number of
processors actually used is equal to [Nip] In the sequel of this paper this number is denoted
by p. In this section we describe a reordering technique based on a domain decomposition
strategy with p non-overlapping subdomains. First we number the unknowns of all blocks,
except those of blocks N, + 1, 2N, + 1, etc. Those unknowns are numbered last.

After reordering, the block tridiagonal matrix of the resulting system of linear equations

!Suppose that one floating point operation (flop) denotes either a multiplication, a division, a subtraction,
or an addition of two real variables. Since we use complex arithmetic, and since both in the preprocessing
and in the solution process almost every multiplication can be combined with a subtraction or an addition,
the number of flops is approximately equal to the number of multiplications multiplied by 8.

2By [z] we denote the smallest integer >

can be partitioned as

A 0 ... 0 Apn
0 Ag 0 A2,p—|—1
: : : : : 5 (21)
0 o0 Ay Appa
Aprin Apriz o Aprip Apn

in which the matrices A; are block tridiagonal with [V, diagonal blocks for j = 1 and with
N, — 1 diagonal blocks for j = 2,...,p — 1. The number of diagonal blocks in A, is equal to
N —1—(p—1)N,. Note that A, is block diagonal with p — 1 blocks on the main diagonal.
The corresponding system of equations is denoted by

Cl 012 I bl
= , 2.2
lcm Ap+1]l$2] [52] (22)
where C] is a block diagonal matrix which has the block tridiagonal matrices A;, j =1,...,p

on the main diagonal. One possible strategy is to make a block decomposition of the coefficient
matrix and write (2.2) as

1 0 01 012 1 o bl
lCzlcflfHO SH]‘lb] .
in which S is the Schur-complement A, — Cy1Cy 1C15. Note that the action of Cr 1 can be
computed in parallel, since one can exploit the structure of C; mentioned above.

In general, the Schur-complement is dense and its explicit computation should be avoided.
However, if one starts with a block tridiagonal matrix, it can be shown that the Schur-
complement is also block tridiagonal, and it is relatively easy to compute the action of S~1.
A drawback of applying the block decomposition (2.3) directly is that it requires the matrix-
vector product C| ly twice. Therefore, we consider the approach of constructing an LU-
decomposition of the coefficient matrix (2.1).

Assume that we want to construct a block lower-triangular factor L and a block upper-
triangular factor U in such a way that M = LU and the subblocks on the main diagonal of
U are all unity blocks. The first step is to copy the block lower- and upper-triangular part of
M to L and U respectively. Hence after this first step, L + (U — I) has the block structure
shown in (2.4)

L1 0 ... 0 U17p+1
0 L, ... 0 Uspi1
L+U-1)= : : : : : : (2.4)
0 e 0L Uppi1
Lpt1n Lptre oo Lpiip Lpir + (Uppa — 1)

During the construction of the factors L and U, fill-in blocks of size n can only be generated
in Lpy1 and in Upy1, and in Ly ; and Ujpqq for 1 < j < p.

To illustrate this, suppose that we have started with a block tridiagonal matrix with NV =
16 and the matrix has been reordered according to the domain decomposition strategy as
described above, where IV, = 4. Hence the blocks are numbered in the order

1 2 3 4 14 5 6 7 15 8 9 10 16 11 12 13.

After calculating the LU-decomposition, the sparsity pattern of L 4+ U can be represented by

(al ay
a; a ai
a; ayp a
a; ai al
az az a
ay az ap fa
ay ap fo a2
a3 ag a3
a3 a3 a3 I3 (25)
az as f3 ag
a4 Q4 a4
as a4 Qg f4
as a4 Ja
a; ay f2 fo az fo
az a3 f3 f3 fo a3 f3
L ag as f1 fa f3 a4 |

Herein a; denotes a block of size n that is already present in (2.4), and f; denotes a block of
size n that can contain fill-in. A fat block corresponds with the interaction of two domains.
The indices denote on which processor a block is stored. This small example also illustrates
that the fill-in pattern in the blocks L, 1 ; and Uj 1 is very regular, and that the fill-in
pattern in Ly + (Upy1 — I) is block tridiagonal.

Since no fill-in blocks are generated on processor 1, it pays to make the first domain larger,
e.g. to store more blocks on processor 1, in order to improve the load-balancing. However,
when the number of processors p is large, this will only have a minor effect on the wall-
clock time, and for ease of presentation, we will assume that the blocks are distributed as
is illustrated by the example shown in (2.5). When both p and N, are large, the number
of fill-in blocks is approximately % times the number of blocks that is already present. In
that case, the calculation of one characteristic block-column of the factor L requires two
matrix-matrix multiplications with two subblocks, and the construction of a complete LU-
decomposition of a subblock on the main diagonal. The calculation of one characteristic block-
row of U requires three matrix-matrix multiplications with two subblocks. The interaction
of one such a block-column of L and block-row of U generates a contribution to the main
diagonal of the Schur-complement. The calculation of this contribution requires another
matrix-matrix multiplication with two subblocks. Hence the number of multiplications for
the preprocessing is approximately %n‘?‘N , and the number of multiplications for the solution
process is approximately 5n?N.

2.1 Speed-up when communication does not dominate

Suppose that N, > 2 and the system with the Schur-complement is solved by a direct LU-
approach, e.g. by constructing a complete block LU-decomposition of the block tridiagonal
matrix. The part of the matrix that corresponds with the interior of the domains has N —p+1
diagonal blocks. Only in the part that corresponds with the interior of domains 2, ..., p fill-in
blocks are generated. The construction of an LU-decomposition of the Schur-complement,
which contains p — 1 diagonal blocks, is a sequential process. Hence the speed-up that can
be obtained compared to the direct LU-approach is approximately equal to

N

N—p+1—%+loss%
lossxp +p— 1

(2.6)

where [oss is equal to the CPU-time required for the direct LU-approach performed on one
processor divided by the CPU-time of the domain decomposition method also performed on
one processor. The multiplier loss expresses the overhead caused by the extra fill-in blocks,
which are not present in a complete block LU-decomposition of the coefficient matrix in the

original ordering. For the preprocessing, loss =~ %, and for the solution process, loss = %

When the number of processors is sufficiently large, the speed-up is approximately

N

N—p+1 .
lossxp +p- 1

(2.7)

When N is large compared to p, it follows from (2.7) that the speed-up compared to the
direct LU-approach is approximately loss X p. The ideal number of processors is in the

neighbourhood of]l\i; ‘;1, leading to a speed-up of approximately
N
Nt1 1
2 loss — loss

Of course, for large N this may not be realistic. The best choice for p is the minimum of
N+1

loss

and the number of available processors.

When p is of the same order as IV, it makes sense to use the same domain decomposition
approach for the system with the Schur-complement. The approach described in Section 3
can be regarded as a special case of a recursive domain decomposition approach.

2.2 Communication costs for the preprocessing

Suppose that the subblocks are divided over the processors as illustrated by the example
shown in (2.5). Computation of an LU-decomposition of the block tridiagonal matrices L,
in (2.4) and of the fill-in in L,y ; and Ujpyq for j = 1,...,p can be done in parallel and
requires no communication. One also needs the product Lp+1,ij_1Uj,p+1 since this is a part
of the Schur-complement S. Most contributions of Lp+1,jL;1Uj,p+1 to S are located on the
proper processor. Only the contributions to the diagonal blocks of S coming from the fat
blocks in (2.5) have to be transported to neighbouring processors. This can be combined with

the calculation of the block LU-decomposition of the block tridiagonal matrix S. This last
part cannot be performed in parallel. The number of subblocks that has to be transported
from one processor to another is equal to p — 1.

2.8 Communication costs for the solution process
The solution of Mz = LUz = b for given right-hand side vector b can be done in two steps:
first solve z from Lz = b, and then solve Uz = z. Consider the solution of Lz = b:

L1 0 e 0 0 z1 b1
0 L2 e 0 0 z9 b2
: : : : : : = : (2.8)
0 . 0 L, 0 2p by
Lptin Lptrz o Lptip Lptr] L 21 bp+1

Note that in a practical implementation the right-hand side vector b can be overwritten by the
solution z. Assume that the vectors z; are located on processor j, for j =1,...,p, and zp41
is distributed over the processors according to the way in which L, is distributed over the
processors (as is illustrated by the example shown in (2.5)). The lower-triangular system (2.8)
can be solved in three steps: The solution of 21,...,2, can be done in parallel and requires
no communication. Next, the vectors Ly 121,...,Lpt1p2p have to be calculated.Again this
can be done in parallel and requires no communication. Finally, the vector z,,; has to be
calculated. This step cannot be performed in parallel and requires communication: parts
of the vectors Lypy1.121,...,Lpt1p2 have to be transported to neighbouring processors. To
illustrate this, consider the system Lz = b where L is the matrix corresponding with (2.5)

a 21,1 bl,l
a a 21,2 b1,2
a a 21,3 b1,3
a a 21,4 b1 4
a 299 by 2
a a 22’3 b2,3
a a 22,4 b2,4
a z32 | _ | D32
a a 233 b33
a a 23,4 b3,4
a 24,2 b2
a a 24,3 b4,3
a a 244 ba,a
ay a f f a 29,1 ba 1
az a f f f2 a 23,1 b3,1
L ag a f f f3 a | | 24,1 | L b4,1 i

The first index of the vectors z and b indicates the processor on which it is stored. To solve, for
example, the subvector 231, the matrix-vector product of the subblock az and the subvector

29,4 is added to the matrix-vector product faz7 1. Next, the resulting vector is transported
from processor 2 to processor 3, and the vector 237 can be calculated on processor 3.

The number of subvectors of length n that has to be transported from one processor to
another is equal to p — 1. The costs for solving Uz = z are the same. Hence the total number
of vectors that has to be transported is 2p — 2.

A drawback of the approach described in this section is that the steps requiring communica-
tion cannot be performed in parallel. Hence the domain decomposition approach seems only
interesting when large systems of equations have to be solved, in which N is large compared
to p. In that case, the sequential part, which is also the part that requires communication,
is small compared to the total amount of work.

3. CYCLIC REDUCTION
This is the approach described in [4]. For completeness, we include a short description of
block cyclic reduction. Suppose that the block tridiagonal linear system is given by

$jTj—1 +dj-7"j +tjzj = bj j=1,...,N,
in which s; and £y are zero. Another block tridiagonal system, approximately twice as small,

can be obtained by multiplying equation 25 — 1 by —szjd;jl_l, equation 25 4+ 1 by —tgjd;jﬂ_l
and adding the results to equation 2j. The new system of equations can be represented by

~ 7 re 7 N N

S9jT9j—2 + do;Ta; +tajTaj o = byj i=1,..., LEJ (3.1)
Herein

§2j = —ngdZ_jl_lszjfl, (32)

tyy = —tyjdyiitajia, (3.3)

dy; = doj — 32jd2_j1_1t2j71 - t2jd2_j1+152j+1; (3.4)

This strategy can be repeated until only one block equation with one unknown vector of
length n is left. Once z3;_» and z3; are computed, they may be substituted in equation
25 — 1 to compute xg; 1.

Block cyclic reduction can also be described by a complete block LU-decomposition: sup-
pose that the blocks are ordered in a sequence based on cyclic reduction. First number the
odd multiples of 2°, then the odd multiples of 2!, the odd multiples of 22, etc. This appears
to be the one-dimensional equivalent of the reordering used in NGILU [2], [9]. For example,
if V = 14, the blocks are numbered in the order

1 8 2 12 3 9 4 14 5 10 6 13 7 11.

10

After calculating the LU-decomposition, the sparsity pattern of L 4+ U can be represented by

- .)
a a a
a a a
a a a
a a a
a a a
a a a
a a a fi
a a a fi 1
a a a fi fi
a a fi
a a fi f1 a p)
a a i f a fo
I a a i fi fo fa a |

Herein a represents a subblock already present in the original matrix, and f; represents a
block that can contain fill-in. In the first step of cyclic reduction, the fill-in blocks denoted
by fi1 are generated. In the second step of cyclic reduction, the fill-in blocks denoted by
fo are generated. The fact that there are no fill-in blocks in the neighbourhood of the
main diagonal enables an efficient implementation of both the preprocessing and the solution
process on supercomputers.

We construct a complete LU-decomposition in such a way that the upper-triangular factor
U has unity subblocks on the main diagonal. The blocks dz_jl_lszj,l and d2_j1+1t2j+1 are
stored in U. Note that these blocks can be calculated using level 3 BLAS-routines and that
the inverses of dy;_; and dy;41 do not have to be constructed: only a complete decomposition
of the blocks on the main diagonal is required.

When N is large, the number of fill-in blocks of size n is again approximately % times the
number of blocks that is already present. Hence the storage requirements are approximately
the same as for the method described in Section 2. The calculation of the new coefficient
matrices (3.2)-(3.4) requires the calculation of d;jlflszj_l and d2_j1+1t2j_|_1, 4 matrix-matrix
multiplications with two subblocks, and the construction of a complete LU-decomposition of
the subblock on the main diagonal. Hence the total number of multiplications required for
the preprocessing is approximately

12log N

%n3N(%+%+...+5):%n3N(1—1/N)z%n3N.

The number of multiplications required for the solution process is approximately 5n2N.

3.1 Speed-up when communication does not dominate

Eliminating the unknowns belonging to odd blocks can be done in parallel. Both the pre-
processing and the solution process parallelise. Suppose that IV is larger than p and both N
and p are large. At the first step of cyclic reduction p processors can be used to eliminate %

11

block equations. Hence the time required for the first step is proportional to %. At the first

2log N— 2log p steps p processors can be used. Hence the time for the first 2log N— 2logp
steps of cyclic reduction is proportional to

|2

%log N— Zlog
(G+i+...+3 BT)

After these log N— %log p steps have been performed, approximately 2log p additional steps
of cyclic reduction are required to solve the system of linear equations. Those remaining steps
are performed on less than p processors: at step k& the number of processors is approximately
N x 27%. Hence it follows that the speed-up compared to the direct LU-approach that can
be obtained with cyclic reduction is approximately

p
loss— = loss , 3.6
N2 2logp 1+ % (%logp —1) G0
where loss is defined in a similar way as in (2.6). Equation (3.6) expresses that when N is
large compared to p, the speed-up is almost linear.

3.2 Communication costs for the preprocessing

Suppose that the blocks s1,..., sy, are located on processor one, sy, 11, .-, 82N, are located
on processor two etc, and the same holds for the blocks ¢;, d, d;jl_thjH, and dgjl_lst_l.
The preprocessing consists of 2log N steps. At step k the unknowns belonging to blocks
with numbers equal to an odd multiple of 2! are eliminated, which requires the following
operations.

e The computation of a complete LU-decomposition of the blocks on the main diagonal.
This requires no communication.

e The computation of the blocks d27]-1+1t2j+1, and d;jlflsgj_l. This requires no communi-
cation.

e The computation of the new coefficient blocks 55; and fzj. This only requires commu-
nication when the blocks with numbers 25 — 1, 25, and 2j + 1 are not located on the
same processor. When k < 2log N— 2log p this happens p — 1 times, and the number
of blocks that has to be transported from one processor to a neighbouring processor is
p—1. When k > %log N— 2log p, the subblocks are divided over less than p processors:
the number of processors py, is approximately N x 2% and the number of blocks to be
transported is approximately py — 1.

e The computation of the new diagonal blocks. The number of subblocks to be trans-
ported is approximately p — 1 when k > ?log N— 2log p, and p;, — 1 otherwise.

Summarising, the total number of subblocks that has to be transported from one processor
to another is approximately

2o
2(p — 1)(210gN— 2logp) +2p(% + % +...+% gp) -2 2logp

12
=2(p —1)(*log N — Zlogp) +2(p — 1) — 2 Zlogp
=2(p—1)(1+ %log N — 2logp) — 2 %log p.

3.3 Communication costs for the solution process

The solution process consists of two parts: first the right-hand side vectors I~)zj (3.5) have to
be calculated, and the vectors z; have to be calculated in a back-substitution process. The
calculation of ?)2]- only requires communication when the blocks with numbers 25, 2j — 1 and
27 + 1 are not located on the same processor. Using the same arguments as above, it can be
shown that the number of vectors of length n that has to be transported for the calculation
of the new right-hand side vectors is approximately

(p —1)(1 + *log N — *logp) — *logp.

The back-substitution process requires the same amount of data transport. Hence the total
number of vectors that has to be transported is approximately twice this amount.

The estimates for the amount of data transport mentioned in this section are much higher
than the communication costs required in the domain decomposition approach. However,
most of the work including communication can be performed in parallel.

4. A COMBINED APPROACH

A drawback of the domain decomposition strategy is that the smaller system with the Schur-
complement is solved by the direct LU-approach which does not parallelise. Hence when p
exceeds a critical value, performance degrades. Block cyclic reduction has the disadvantage
that it requires more data transport. A winning strategy might be a combination of both:
first reduce the size of the system of linear equations with the domain decomposition strategy,
and solve the resulting system with the Schur-complement (which is again block tridiagonal
and has p — 1 diagonal blocks) with block cyclic reduction.

4.1 Speed-up when communication does not dominate

When p is a power of two, 2log p — 1 steps of cyclic reduction are required in order to reduce
the system with the Schur-complement to only one block-equation. Hence when, in addition,
both p and N are large and communication does not dominate (for example, on shared
memory computers) the approximate speed-up of the combined approach compared to the
direct LU-approach can be expressed as

N] P
= loss ,
+ 2logp —1 1+%+%(2logp—2)

(4.1)

loss N—pTT
Iz

where again loss is defined in a similar way as in (2.6). For large p, this is approximately the
same as the speed-up that can be obtained with cyclic reduction (3.6). However, the amount
of data transport required for the combined approach is considerably less than in the cyclic
reduction approach.

13

4.2 Communication costs for the preprocessing

The calculation of the block tridiagonal Schur-complement with p — 1 diagonal blocks again
requires the transportation of p — 1 subblocks from one processor to another. The calculation
of a complete block LU-decomposition using the cyclic reduction approach requires approxi-
mately 2(p — 1) — 2 2log p subblocks to be transported. Hence the total number of subblocks
to be transported is approximately

3(p—1) — 2 Ylog p.

4.8 Communication costs for the solution process
Using the same arguments as in Section 2 and 3, it can be shown that the number of subvectors
of length n that has to be transported is approximately

20p—1) +2(p — 1) — 2 Zlogp = 4(p — 1) — 2 Zlog p.

5. NUMERICAL EXPERIMENTS

In this section, we present the CPU-times measured in seconds necessary for both the pre-
processing and the solution process using a complete block LU-decomposition combined with
three ordering strategies: no reordering of the blocks (NR), block cyclic reduction (CR), and
domain decomposition (DD(N,)). We will also present results of the combined method on
a CRAY T3D. The times for the solution process are the times for applying the triangular
solves with the factors L and U once. Hence no iterative refinement is used.

5.1 Results on a workstation

First we present the results of some numerical experiments performed on a Silicon Graphics
workstation working on 100 Mhz with a MIPS R4010 floating point chip. We consider the
example coming from CASTOR also used in Section 1. Table 2 shows the results of the meth-
ods that exploit the sparsity pattern of the subblocks by using the compressed row storage
(CRS-)format [1], and Table 3 shows the methods in which all elements of the subblocks were
stored, including entries that are zero. In the latter method we use BLAS-routines as much
as possible. The results in Tables 2 and 3 show that even on a scalar machine it pays (for

Table 2: CPU-seconds on a workstation. Subblocks are stored in CRS-format.

NR | CR | DD(7)

preprocessing | 0.30 | 0.45 | 0.44
solution 0.01 | 0.02 | 0.02

the matrices coming from CASTOR) to store all elements of the subblocks, and to get rid of
the indirect addressing necessary to exploit the non-zero pattern.

5.2 Results on a CRAY C90
We are interested in a parallel implementation of the algorithms, but on many computer
architectures it is also important that the implementations vectorise per processor. Therefore,

14

Table 3: CPU-seconds on a workstation. Sparsity pattern of subblocks not exploited.

NR | CR | DD(7)
preprocessing | 0.11 | 0.23 | 0.20
solution 0.01 | 0.01 | o0.01

we performed some tests on one processor of a CRAY C90, which has a theoretical peak
performance of 952 Mflop/sec.

In order to be able to experiment easily with the number of diagonal blocks and the size
of these blocks, we performed some numerical experiments with a system of linear equations
that can easily be generated, with a coefficient matrix that has the same block structure
as the matrices coming from CASTOR, and with subblocks which are relatively full. The
diagonal blocks of this block tridiagonal system are chosen to be equal to

0 0 0 2n
0 0 2n 0
: 5
0 2n O 0
2n 0 0 0

and all entries of the sub- and super-diagonal blocks are equal to -1. In the numerical
experiments we did of course not exploit the fact that all entries of the sub- and super-
diagonal blocks are equal. Note that after performing some steps of a complete block LU-
decomposition, the blocks on the main diagonal loose their sparsity. Since the resulting block
tridiagonal matrix has, apart from a factor one or minus one, the same determinant as a
weakly diagonally dominant M-matrix, it follows that it is non-singular. The right-hand side
vector was chosen in such a way that the exact solution is known, and the accuracy of the
calculated solution could be checked. In the first numerical experiments, we obtained a speed
of approximately 200 Mflop/sec. which is not very good. It appears that when the block size
is a multiple of a power of 2, the implementation suffers from memory bank conflicts. One
way to overcome this difficulty is to extend each subblock with a dummy row and a dummy
column. Tables 4 and 5 show the CPU-times of the methods that construct a complete block
LU-decomposition combined with several ordering strategies. The speed in Mflop/sec. is
shown in brackets.

Table 4: CPU-seconds and Megaflop rates on one processor of C90 for preprocessing.

NR CR DD(7)

N =100, n = 65 | 0.79 (640) | 1.80 (760) | 1.66 (760)
N =200, n =65 | 1.58 (650) | 3.69 (750) | 3.37 (750)
N =100, n = 129 | 5.68 (700) | 14.25 (760) | 13.05 (760)

15

Table 5: CPU-seconds and Megaflop rates on one processor of C90 for solution process.

NR CR DD(7)

N =100, n = 65 | 0.020 (500) | 0.028 (600) | 0.027 (590)
N =200, n = 65 | 0.041 (490) | 0.057 (590) | 0.055 (580)
N =100, n = 129 | 0.059 (670) | 0.090 (730) | 0.085 (730)

The results show that the CPU-times scale linearly with /N and that the implementations
vectorise very well, which is due to the use of highly optimised BLAS-routines. When n
doubles, the CPU-times for the solution process increase with a factor smaller than 4. This
is due to the fact that increasing the size of the subblocks is favourable for vectorisation.

5.3 Results on a CRAY T3D

The CRAY T3D (Torus 3 Dimensional interconnecting topology) is a massively parallel ma-
chine with physically distributed but logically shared memory. It can contain a maximum
of 2048 processor elements (PEs). Each PE consists of a DEC 21064 processor, associated
logic, and a connection to the interprocessor communication network. The processors have a
theoretical peak performance of 150 Mflop/sec. The local memory of each PE can be accessed
by all other PEs across the communication network which has a high bandwidth: the data
transfer rate is 300 Mbyte/sec. in each of the 6 directions.

We performed tests on a configuration in Eagan (MN, USA) with 16 PEs. We have imple-
mented the methods described in the previous section by using the data and work sharing
programming style. This implies distribution of data and loops that contain the computations
on data using directives. We also used the following directives for optimisation:

1. PE_LRESIDENT. Ensures the compiler that data access is local.

2. NO BARRIER inserted where allowed after DOSHARED loops. The compiler places
an implicit barrier after each DOSHARED loop.

This programming style results in portable code since all changes needed are implemented
through directives. Of course the parallelisability is not portable to other architectures with-
out replacing the machine-specific directives.

In order to study the speed-up obtained when using several PEs compared to the direct
LU-approach using one PE, we consider two examples which are so small that all data can be
stored on one processor: the system of linear equations described in Section 5.2 with N = 64
and N = 128, and n = 64. The timings were obtained with the rtc intrinsic function which
returns real-time clock values. With the direct LU-approach implemented on one PE, the
CPU-times required for the preprocessing and the solution process are shown in Table 6.
Again the speed in Mflop/sec. is shown in brackets. The high Megaflop rates are due to the
use of optimised BLAS-routines.

Figures 2 and 3 show both the speed-up predicted by (2.7), (3.6), and (4.1) (solid line),
and the measured speed-up using 2,4,8, and 16 PEs (’0’). The speed-ups compared to the

16

Table 6: CPU-seconds and Megaflop rates on one processor of the T3D for the direct LU-
approach.

preprocessing | solution process
N=n=64 3.80 (81) 0.088 (70)
N =128, n =64 7.65 (81) 0.18 (69)

direct LU-approach using one PE are shown. When two PEs are used this can be less than
one, since the methods described in Section 2-4 have some overhead: there are fill-in blocks
that are not present in the direct LU-approach. This overhead is expressed in the factor
loss in (2.7), (3.6), and (4.1). Note that the equations giving the predicted speed-up are
based on the assumption that communication does not dominate. Hence one would expect
that the actually measured speed-up is less than the predicted speed-up. However, when the
same amount of data is distributed over more processors, the performance per processor can
increase by cache effects.

From the results it appears that for the domain decomposition strategy the predicted speed-
up corresponds quite well with the actually measured speed-up. Since the smaller system with
the Schur-complement is solved with the direct LU-approach, this part of the computations
cannot be parallelised. When p increases, the size of the last Schur-complement increases also.
Hence when the number of PEs exceeds the critical value]l\; Jsrsl, performance degrades. In
the combined method, the system with the Schur-complement is solved with cyclic reduction.
Hence this method has better parallelisation aspects, especially for increasing number of PEs.
The actually measured speed-up is quite close to the predicted speed-up, which indicates that
the time is not dominated by communication. When cyclic reduction is used for the whole
system, the predicted speed-up is slightly smaller than for the combined method. Moreover,
with the combined method, the amount of data transport is significantly smaller than with
cyclic reduction. Therefore, the measured speed-up using cyclic reduction is less than the
measured speed-up obtained by the combined method. When % increases, the effects of data
transport become less important, and the predicted speed-up becomes more accurate.

6. CONCLUSIONS

The block tridiagonal systems of linear equations generated by CASTOR can efficiently be
solved by a complete block LU-decomposition. Since the subblocks are relatively full, it is
not advisable to try to exploit the sparsity pattern of the subblocks. To achieve good perfor-
mance, it is better to store all elements of the subblocks, and to use BLAS-routines for the
construction of the factors L and U and for the triangular solves. In order to obtain more pos-
sibilities for parallelism, the decomposition can be combined with a reordering technique. In
this paper, we have considered reordering strategies based on block cyclic reduction, domain
decomposition with non-overlapping subdomains, and a combination of these two methods.
When communication times do not dominate, and when p is small compared to N, these
reordering techniques give approximately the same speed-up compared to the direct LU-
approach. However, in many cases the communication can certainly not be neglected. We
have given estimates of the amount of data transport, both for the preprocessing and the

17

(b) Domain decomposition, solution

(a) Domain decomposition, preprocessing
8 8
6 !
Q. [oX
7 7
D 4 D4
() (0]
o o
n n
2 10 20 30 2 10 20 30
Number of PEs Number of PEs
(c) Cyclic reduction, preprocessing (d) Cyclic reduction, solution
8 8
6
Q.
7
D 4
()
o
n
2
2 10 20 30 2 10 20 30
Number of PEs

Number of PEs
(f) Combined method, solution

(e) Combined method, preprocessing
8
6
o
7
D4
[}
o
n
2
2 10 20 30 2 10 20 30
Number of PEs

Number of PEs

Figure 2: Predicted (solid line) and measured (’0’) speed-up compared to the direct LU-
approach on a CRAY T3D. n = 64 and N = 64. Measured speed-ups are shown for p = 2, 4,

8, and 16.

18

(a) Domain decomposition, preprocessing (b) Domain decomposition, solution

107

| ol
| o
| Al
//ﬁ\ l

2 10 20 30 2 10 20 30
Number of PEs Number of PEs

10

Speed-up
Speed-up

N b~ OO

(c) Cyclic reduction, preprocessing (d) Cyclic reduction, solution

10

Speed-up

Speed-up
N NN 2] (0]

2 10 20 30

2 10 20 30
Number of PEs

Number of PEs

(e) Combined method, preprocessing (f) Combined method, solution

10

Speed-up

Speed-up
N EAN (¢ [ee]

2 10 20 30 2 10 20 30
Number of PEs Number of PEs

Figure 3: Predicted (solid line) and measured (’0’) speed-up compared to the direct LU-
approach on a CRAY T3D. n = 64 and N = 128. Measured speed-ups are shown for p =2,

4, 8, and 16.

19

solution process. For the cyclic reduction approach these estimates are significantly higher
than for the domain decomposition approach. However, with the cyclic reduction approach
most of the work including communication can be performed in parallel, whereas in the do-
main decomposition approach all work requiring communication is sequential in nature. A
winning strategy is the combination of both: first reduce the size of the system of linear
equations with the domain decomposition strategy, and solve the resulting system with the
Schur-complement with block cyclic reduction. Table 7 gives an estimate of the time required
for communication, both for the preprocessing and the solution process. Herein mats; and

Table 7: Communication times approximately.

Cyeclic reduction | Domain decomp. | Combined approach.
Preproc. | 2mat, 2log N (p — 1) mats (1+ 2 Zogp) mat,
Solution | 2vect, %log N 2(p — 1) vects 2(1+ Zlog p) vect,

vects are the times required to transport a single subblock of size n and a single vector of size
n respectively, and mat, and vect, are the times required to transport at most p — 1 blocks
and p — 1 vectors, respectively, in parallel. The choice of the method depends of course on
the ratio between vect, and vecty; and between mat, and mat;.

The results on the CRAY T3D confirm that the combined method is the most promising
method. The actually measured speed-up is quite close to the predicted speed-up (4.1), which
indicates that communication does not dominate.

Acknowledgements

The author wishes to thank drs. M. Nool and dr.ir. H.J.J. te Riele for many stimulating
discussions and numerous suggestions for improving the presentation of the paper. He also
thanks dr. M.A. Botchev and dr. G.L.G. Sleijpen for carefully reading the paper and sug-
gesting several improvements. He gratefully acknowledges the Dutch National Computing
Facilities Foundation NCF for the provision of computer time on the CRAY C90 and CRAY
T3D.

REFERENCES

1. R. Barrett, M. Berry, T.F. Chan, J. Demmel, , J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. van der Vorst. Templates for the solution of linear systems:
builing blocks for iterative methods. http://www.netlib.org/templates/.

2. E.F.F. Botta and A. van der Ploeg. Preconditioning techniques for matrices with ar-
bitrary sparsity patterns. In Proceedings of the IX International Conference on Finite
Elements in Fluids, pages 989-998. Universita di Padova, October 1995. Venice. Editors:
M.M Cechhi, K. Morgan, J. Periaux, and B.A. Schreffer.

3. J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and R.C. Whaley. A proposal
for a set of parallel basic linear agebra subprograms. LAPACK working note 100.

20

4.

10.

11.

D. Heller. Some aspects of the cyclic reduction algorithm for block tridiagonal linear
systems. SIAM J. Numer. Anal., 13:484-496, 1978.

W. Kerner, S. Poedts, J.P. Goedbloed, G.T.A. Huysmans, B. Keegan, and E. Schwartz. -.
In P. Bachman and D.C. Robinson, editors, Proceedings of 18th Conference on Controlled
Fusion and Plasma Physics. EPS: Berlin, 1991. IV.89-IV.92.

Y. Saad and M.H. Schultz. A generalized minimal residual algorithm for solving non-
symmetric linear systems. SIAM J. Sci. Statist. Comput., 7:856-869, 1986.

G.L.G. Sleijpen and H.A. van der Vorst. A Jacobi-Davidson iteration method for linear
eigenvalue problems. SIAM Journal on Matriz Analysis and Applications, 17(2), April
1996.

H.S. Stone. An efficient parallel algorithm for the solution of a tridiagonal linear system
of equations. JACM, 20:27-38, 1973.

A. van der Ploeg, E.F.F. Botta, and F.W. Wubs. Nested grids ILU-decompostion
(NGILU). Journal of Comp. and Appl. Math., 66:515-526, January 1996. Proceedings
of the Sixth International Congress on Computational and Applied Mathematics.

H.A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 13(2):631—
644, 1992.

H.H. Wang. A parallel method for tridiagonal equations. ACM Trans. Math. Softw.,
pages 170-183, 1981.

