
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

A Parallel Jacobi-Davidson Method for Solving Generalized
Eigenvalue Problems in Linear Magnetohydrodynamics

M. Nool, A. van der Ploeg

Modelling, Analysis and Simulation (MAS)

MAS-R9733 November 30, 1997

Report MAS-R9733
ISSN 1386-3703

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

A Parallel Jacobi-Davidson Method for Solving Generalized Eigenvalue
Problems in Linear Magnetohydrodynamics

Margreet Nool and Auke van der Ploeg

<greta@cwi.nl>;<aukevdp@cwi.nl>

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

We study the solution of generalized eigenproblems generated by a model which is used for stability investigation

of tokamak plasmas. The eigenvalue problems are of the form Ax = �Bx, in which the complex matrices A

and B are block tridiagonal, and B is Hermitian positive de�nite. The Jacobi-Davidson method appears to

be an excellent method for parallel computation of a few selected eigenvalues, because the basic ingredients

are matrix-vector products, vector updates and inner products. The method is based on solving projected

eigenproblems of order typically less than 30.

The computation of an approximate solution of a large system of linear equations is usually the most expensive

step in the algorithm. By using a suitable preconditioner, only a moderate number of steps of an inner iteration

is required in order to retain fast convergence for the JD process. Several preconditioning techniques are

discussed. It is shown, that for our application, a proper preconditioner is a complete block LU decomposition,

which can be used for the computation of several eigenpairs. Reordering strategies based on a combination

of block cyclic reduction and domain decomposition result in a well-parallelizable preconditioning technique.

Results obtained on 64 processing elements of both a Cray T3D and a T3E will be shown.

1991 Mathematics Subject Classi�cation: Primary: 65-04, 65F10, 65F15, 65F50, 65N25. Secondary: 65Y05,

65Y20.

1991 Computing Reviews Classi�cation System: G.1.3

Keywords and Phrases: generalized eigenvalue problems, Krylov subspace methods, block tridiagonal systems,

parallelization, preconditioning, restarting.

Note: Research carried out under project MAS2.3 { \Plasma physics simulation", and sponsored partly by the

Cray Research Grants Program (project CRG 96.14) of NCF (Dutch National Computing Facilities Foundation)

and by the Priority Program \Massaal Parallel Rekenen" (project 95MPR04) of NWO.

1. Introduction

Consider the generalized eigenvalue problem

Ax = �Bx; A;B 2 CNt�Nt ; (1.1)

where A and B are complex block tridiagonal Nt-by-Nt matrices and B is Hermitian positive de�nite.
The number of diagonal blocks is denoted by N and the blocks are n-by-n, so Nt = N � n.
Eigenvalue problems arise in many applications. We are particularly interested in generalized eigen-

value problems as they occur in magnetohydrodynamics (MHD). Such problems are generated by a
�nite-element spectral code called CASTOR. This code is applied intensively at the FOM Institute
for Plasma Physics \Rijnhuizen" in Nieuwegein (near Utrecht) for the stability investigation of toka-
mak plasmas [9]. The physicists are particularly interested in accurate approximations of certain
interior eigenvalues, called the Alfv�en spectrum and their associated eigenvectors. Figure 1 shows the
complete and the Alfv�en spectrum of (1.1) for a small test problem with N = 50 and n = 32. In
general, the subblocks of A are dense and Nt can be very large (realistic values are N = 500 and
n = 800), so computer storage demands are very high. Till now, powerful shared memory machines

2

−30 −20 −10 0 10

−1500

−1000

−500

0

500

1000

1500

real axis

im
ag

in
ar

y
ax

is

−0.4 −0.2 0
0.1

0.2

0.3

0.4

0.5

0.6

real axis

im
ag

in
ar

y
ax

is

Figure 1: Entire(left) and Alfv�en(right) spectrum of a small test problem: N = 50, n = 32.

with a huge amount of memory are used for this purpose. In this paper, we study an alternative
possibility, namely, the feasibility of parallel computers with a large distributed memory for solving
large generalized eigenvalue problems.
A promising method for computing selected eigenvalues of (1.1) is the Jacobi-Davidson (JD) al-

gorithm [12, 2, 3, 4, 11]. The most time-consuming parts of this algorithm are matrix-vector and
vector-vector operations, which are perfectly applicable to parallel execution. In Section 2 we brie
y
describe the JD algorithm.
At each step of the JD algorithm a system of linear equations, called the `correction equation',

has to be solved. Numerical experiments show that fast convergence to selected eigenvalues can be
obtained by solving the correction equation to some modest accuracy only, by some steps of an inner
iterative method, e.g. GMRES. For the MHD problems it is required to precondition the correction
equation. This is discussed in Section 3. We have investigated a parallel preconditioner of Grote and
Huckle [7], which is based on sparse approximate inverses. For our application, this method is not
very successful because the inverse of A� �B (for some given �xed �) cannot be approximated by a
sparse matrix. We also have tried to exploit the sparsity of A and B by using the ILUT preconditioner
of Saad [10], but this method is very hard to parallelize. A third approach, recently developed by one
of us on the Cray T3D [13], is based on a parallelizable, direct method for solving block tridiagonal
linear systems. In this approach, a block-reordering based on a combination of domain decomposition
and cyclic reduction is combined with a complete LU decomposition (DDCR). This method appears
to be very convenient for the kind of problems we are studying here.
In Section 4 it is shown that the availability of a complete LU decomposition gives us the opportu-

nity to apply the Jacobi-Davidson method to a standard eigenvalue problem instead of a generalized

eigenvalue problem. In this way, the eigenvalues that have to be computed form the dominant part
of the spectrum, which makes them 'relatively easy'. Moreover, we can save a signi�cant amount of
memory.
As a basis for the development of the parallel code, we have taken a sequential FORTRAN code for

the JD algorithm, which was developed by the late Albert Booten at CWI [2, 3, 4]. We started
this project on the Cray T3D in Eagan, MN, USA; later on, we moved to the Cray T3E at HP�C,
Delft. For comparison purposes, we used the Cray C90 at SARA, Amsterdam. The data structure
for storing the matrices was modi�ed in such a way that we could use optimized BLAS routines, as
much as possible. Furthermore, the e�ciency of reading the matrices A and B from �le was improved
considerably. This is described in Section 5.
In Section 6 we describe the parallel implementation of some important ingredients of the JD

algorithm on the Cray T3D and T3E, and show some scaling results. In particular, we discuss the
bene�ts of the private data versus data sharing programming styles on the T3D(E), and apply this

2. The Jacobi-Davidson Algorithm 3

to the matrix-vector multiplication operation (the main operation in the JD algorithm) and to the
preconditioner (DDCR) which we have chosen.
In Section 7 numerical results of the complete algorithm on 1 up to 64 processing elements of the

Cray T3E are presented and analyzed. Comparisons are made with the performance of the sequential
version on one CPU of the Cray C90. Conclusions are drawn in Section 8.

2. The Jacobi-Davidson Algorithm

For ease of presentation, we �rst describe brie
y the Jacobi-Davidson algorithm for the standard
eigenvalue problem in which B = I . This is followed by a description of the JD algorithm for the
generalized eigenvalue problem. We assume that a target � is given in the neighbourhood of which
we want to �nd several eigenvalues with corresponding eigenvectors.

2.1 The standard eigenvalue problem

An eigenvector x is approximated by a linear combination of k search vectors vj , j = 1; 2; � � � ; k, where
k is very small compared with Nt. If the Nt � k matrix whose columns are given by vj is denoted
by Vk, the approximation to the eigenvector can be written as Vks, for some k-vector s. The search
directions vj are made orthonormal to each other, hence V �k Vk = I .
Suppose that an approximation to an eigenvalue is denoted by �. The vector s and the scalar �

are constructed in such a way that the residual vector r = AVks� �Vks is orthogonal to the k search
directions. From this Rayleigh-Ritz requirement it follows that

V �k AVks = �V �k Vks() V �k AVks = �s:

In this way one obtains a 'projected' eigenvalue problem, in which the size of the matrix V �k AVk is k.
By using a proper restart technique one makes sure that k stays so small that this problem can be
solved by a dense method. The eigenvalue of the projected system that is closest to a preset value �,
is chosen as the approximate eigenvalue �. In the context of our speci�c application, � is chosen in
the neighbourhood of the Alfv�en spectrum.
At each step of the algorithm, a new search direction is constructed. Suppose that we have obtained

an approximation u = Vks of the true eigenvector x associated with some eigenvalue �. We assume
that kuk = 1, hence � = u�Au is an approximation of �. Let us de�ne P = uu� being the orthogonal
projector onto the subspace spanned by fug. Then I � P is the projector onto the orthogonal com-
plement of spanfug, which is denoted by u?. Any vector x 2 Cn can be written as x = x1 + x2 with
x1 2 spanfug and x2 2 u?. We can scale x such that x = u+ z with z ? u. In the JD algorithm a
correction vector z 2 u? is constructed. The restriction of A to u? is given by

AP = (I � P)A(I � P): (2.1)

If we rewrite (2.1) and substitute the resulting expression for A into Ax = �x, we obtain, using
Au� �u = r, z ? u, Pu = u and Pz = 0:

(AP � �I)z = �r + (�� � � u�Az)u: (2.2)

Since also r is orthogonal to u, premultiplication of (2.2) with u� yields � = �+ u�Az. Note that � is
unknown and its best approximation will be �. In this way, we obtain as the correction equation for
z:

(I � P)(A� �I)(I � P)z = �r; u�z = 0: (2.3)

It is su�cient to solve (2.3) only approximately. This can be done by some steps of an iterative
method, for example, GMRES. The speed of this iterative method can often be improved by using
a preconditioning technique. When an approximate solution ~z of (2.3) has been constructed, it is
made orthogonal to the previous search directions, and the new search direction vk+1 is taken equal

4

to ~z=k~zk. Then k is increased by one, and the new matrix V �k AVk is constructed by expanding the
'old' matrix by one new row and one new column.
As mentioned before, one has to make sure that the number of search directions k does not become

too large. Therefore, if k has reached some value m, only the kmin most promising search directions
are kept in memory. The values m and kmin are parameters which have to be chosen in advance.

2.2 The generalized eigenvalue problem

In [4, 11] a Jacobi-Davidson method for computing an eigensolution of (1.1) has been presented for
B 6= I , where B is Hermitian positive de�nite. The approach is slightly di�erent from the standard
eigenvalue problem with B = I . Instead of looking for a correction z 2 u?, one looks for z in the
B-orthogonal complement 1 of spanfug, denoted by u?B .
We assume the approximate eigenvector u to be normalized such that jjujjB = 1. The search

directions are made B-orthonormal to each other, hence V �k BVk = I . The residual vector r =
Au� �Bu, with u = Vks, is required to be orthogonal to the search directions, hence for the projected
eigenvalue problem we obtain

V �k AVks = �s:

The new search direction is determined in a similar way as for the case B = I , leading to the correction
equation

(APB � �B)z = �r; u�Bz = 0 (2.4)

in which APB = (I � PB)A(I � PB), where PB is the B-orthogonal projector given by PBu = uu�B,
and the residual vector r is given by (A� �B)u. Equation (2.4) can be rewritten as

(I � PB)(A� �B)(I � PB)z = �r; u�Bz = 0: (2.5)

Algorithm 1 shows how the JD method for the solution of several eigenvalues can be implemented.
Remarks on the algorithm:

� The algorithm is applied to the generalized eigenvalue problem (A � �B)x = �Bx, in which �
is de�ned as � � �. Since we want eigenvalues � in the neighbourhood of �, we are looking for
� with j�j minimal. An approximation for � is denoted by �, and its corresponding eigenvector
by u.

� The number of iteration steps that has been performed is denoted by it. The maximum allowed
number of iterations is equal to iter.

� The value nev indicates the number of eigenvalues found so far that satisfy the acceptance
criterion, and the parameter Nev is the number of eigenvalues that we are looking for. The
approximate eigenvalues � that satisfy the acceptance criterion

k(A� (� + �)B)uk2 � tolJD:j� + �j

are referred to as �i, for i = 1; � � � ; nev . The algorithm stops when nev is equal to Nev, or when
it equals iter.

� In the actual implementation of the algorithm, precautions have to be taken in step 2: the-
oretically, it is possible that all eigensolutions of the projected system satisfy the acceptance
criterion. If that would happen, in step 2 no new � and corresponding approximate eigenvector
u can be found. In that case, a vector ~z is chosen that is not in the subspace spanned by Vk,
and the algorithm proceeds at step 5.

1For a Hermitian positive de�nite matrix B the B-norm of a vector v is de�ned as kvkB =
p
(v�Bv). Two vectors

v and w are said to be B-orthogonal if w�Bv = 0.

3. Preconditioners 5

� In exact arithmetic, the vector r, which is computed in step 3 by r :=WA��B
k s� �WB

k s, equals
(A� (� + �)B)u.

� The subspace spanned by Vk contains the eigenvectors corresponding to the eigenvalues found
before, together with some search directions. In this way, implicit de
ation is incorporated
automatically. This de
ation technique di�ers from the de
ation technique described in [5] which
uses explicit de
ation. The latter technique can be more stable but requires more operations.

� Each time when the size k of the projected system has reached m, k is reduced to kmin + nev.
The kmin search directions that are maintained during each restart, correspond with the kmin

most promising eigenvalues of the projected system.

� We use Modi�ed Gram-Schmidt [6] to orthonormalize vectors; 'call MGSB [Vk�1; ~z]' means that
~z is made B-orthonormal to the columns of Vk�1. If the 2-norm of ~z is much smaller after
orthogonalization than before, one step of re-orthogonalization is used in order to reduce the
e�ect of rounding errors. We use MGS instead of Classical Gram-Schmidt (CGS) although in the
latter all inner products and vector updates can be computed independently, whereas this is not
possible in MGS. However, MGS is more stable than CGS, and in our parallel implementation
each separate inner product and vector update can be parallelized.

� As mentioned before, an existing code for the JD algorithm was taken as a basis for this project.
As a consequence, the algorithm described here does not yet use Harmonic Ritz values [5, 12].
Harmonic Ritz values can give a better convergence behaviour, especially if restarts are used.

3. Preconditioners

A relative expensive part of the JD algorithm is the computation of an approximate solution of the
correction equation (2.5). This equation is solved by an iterative method which requires a good
preconditioner to achieve fast convergence. If M is some approximation of A� �B then the projected
matrix

Mp := (I � PB)M(I � PB)

can be considered as an approximation of (I � PB)(A � �B)(I � PB). In [12] it is shown how, given
the application of M�1, the linear system Mpy = d can be solved for some given d B-orthogonal to
the Ritz vector u, such that y is B-orthogonal to u.
The matrix M should have the following properties:

1. It should be a proper approximation of A � �B, so that M�1(A � �B) resembles the identity
matrix.

2. It should be cheap to compute, and its application, viz. the solution of the system My = d
for some given d, should not require signi�cantly more operations than the computation of
(A� �B)d.

3. It should not require a large amount of storage.

4. Both its construction and application should be parallelizable.

As has been stated in Section 2 we choose a target value � in the neighbourhood of the Alfv�en
spectrum and we want to compute several eigenvalues in the neighbourhood of �. The value � in (2.5)
is an approximation of a true eigenvalue and probably close to �. That is why some approximation
of A � �B in stead of A � �B can be used as matrix M . This choice enables to compute a part of
the Alfv�en spectrum using the same M for several eigenvalues. The convergence behaviour indicates
when a new target � has to be chosen.

6

Algorithm 1. Jacobi-Davidson for (A � �B)x = �Bx, B Hermitian, positive de�nite.

Parameters: iter;Nev; tolJD; kmin;m (m � kmin +Nev), itGMRES.

0: initialize

Choose an initial vector v1 with kv1kB = 1; set V1 = [v1];
WA��B

1 = [(A � �B)v1]; W
B
1 = [Bv1]; k = 1; it = 1; nev = 0.

1: update and solve projected system

Compute the last column and row of Hk := V �k W
A��B
k ;

compute the eigenvalues �1; � � � ; �k of Hk.
2: choose approximate eigensolution

Choose � := �j with j�j j minimal and �j 6= �i, for i = 1; � � � ; nev ; compute a
corresponding eigenvector s; scale s such that kVkskB = 1; let u be the Ritz vector Vks.

3: check accuracy

Compute the residual vector r :=WA��B
k s� �WB

k s;
if krk2 < tolJD:j� + �j then
nev := nev + 1; �nev := �; if nev = Nev stop;
goto 2

else if it = iter stop
end if

4: solve correction equation approximately with itGMRES steps of GMRES

Compute an approximate solution ~z of
(I � uu�B)(A � (� + �)B)(I � uu�B)z = �r and u�Bz = 0.

5: restart if projected system has reached its maximum order

if k = m then

Set k = kmin + nev . Construct C 2 Cm�k with as its columns eigenvectors of Hm

which correspond to the nev eigenvalues accepted before and the kmin 'smallest'
eigenvalues of Hm which have not been accepted. Orthonormalize columns of C;
compute Vk := VmC; W

A��B
k :=WA��B

m C; WB
k :=WB

mC; Hk := C�HmC
end if

6: add new search direction

k := k + 1; it := it+ 1; call MGSB [Vk�1; ~z];
set Vk = [Vk�1; ~z]; W

A��B
k = [WA��B

k�1 ; (A� �B)~z]; WB
k = [WB

k�1; B~z]; goto 1

In the next sections we discuss four di�erent preconditioners. In realistic problems, the order of
A � �B is very large, so it is too expensive to compute the inverse. The �rst approach tries to
approximate the inverse by a sparse matrix. The matrices A and B in (1.1) are both block tridiagonal
and therefore A � �B has the same block structure. The second preconditioning technique tries to
exploit this structure by constructing an LU decomposition. Because � is close to an eigenvalue,
A � �B can be ill-conditioned. Therefore, in the third preconditioning technique, a complete block
LU decomposition is combined with a pivoting strategy. The last preconditioning technique which
will be discussed has better possibilities for parallelization.

3.1 SParse Approximate Inverse (SPAI)

In Grote and Huckle [7] a fully parallel algorithm for computing a sparse approximate inverse M of
a matrix is described. If we use such a matrix as a preconditioner, then its application consists of a
matrix-vector multiplication with M, which is well-parallelizable. An approximate inverseM can be
computed by solving a minimization problem of the form

min k(A� �B)M� Ik (3.1)

3. Preconditioners 7

for a given sparsity pattern of M. If (3.1) is minimized in the Frobenius norm we obtain

min k(A� �B)M� Ik
2
F = min

NtX
k=1

k(A� �B)mk � ekk
2
2; (3.2)

where mk and ek are the k-th column ofM and the identity matrix, respectively. The right-hand side
sum is minimal if each term is minimal, which implies that all columns can be computed independently.
The method starts with some prescribed sparsity pattern, e.g.,M = I and at each step the number of
nonzeros in the vector mk; k = 1; � � � ; Nt is extended. This is done by choosing a set of new promising
indices which leads to a smaller l2-norm of the residual rcolk = (A � �B)mk � ek, which requires the
solution of a small least-squares problem. It is proved in [7] that there will always be such an index
set which reduces krcolk k2. Numerical experiments show that it is e�cient to add a small number of
nonzero entries to mk per step. Following the suggestion in [7], we have chosen this number to be
equal to 5. The process ends when krcolk k2 � a preset value �, or when a prescribed number pdrop of
nonzeros in a column is reached. For a detailed description of this algorithm we refer to [7]. The sparse
approximate inverse of the matrix will not have a regular shape; it can have any sparsity pattern.
Hence we cannot exploit the fact that A� �B is block tridiagonal.
We have done experiments with a small sparse block tridiagonal matrix A��B of order 96: N = 6,

n = 16. We used Booten's sequential code to �nd one eigenpair of this matrix. As an acceptance
criterion for the Jacobi-Davidson method we demanded the residual norm of the eigenpair to be less
than 10�8. The target value we choose for this example is � = �0:35+ 0:6i. The correction equation
was solved approximately with 20 steps of preconditioned GMRES. Table 1 shows the number of
iteration steps of the JD method required to �nd one eigenvalue for di�erent pdrop and � values. The
last column shows the ratio of nonzeros in M and N2

t . We see that a reasonable speed of converge

pdrop � k(A� �B)M� IkF # JD steps nnz(M)/N2

t

32 .01 5.3 no convergence 0.26
48 .01 4.7 no convergence 0.36
64 .01 4.2 no convergence 0.44
96 .01 0.51 10 0.51
96 .001 0.46 11 0.59

Table 1: Results of SPAI preconditioning. N = 6, n = 16.

can only be reached when the approximate inverse matrix is almost dense. We observe that for the
last two experiments with pdrop = Nt some columns have reached the � criterion before the maximum
number per column was reached. We conclude that for our applications, the SPAI approach is not
very successful because we do not succeed in approximating the inverse of A��B by a sparse matrix.

3.2 ILUT

In [4], the ILUT preconditioner of Saad[10] is used. In this approach, a lower-triangular matrix L and
an upper-triangular matrix U are constructed in such a way that LU � A � �B. An approximation
of the action of (A��B)�1 consists of two triangular solves with the factors L and U . Since pivoting
is not used, the matrix L+U cannot have �ll-in outside the block tridiagonal structure of A��B. In
order to exploit the sparsity pattern within the separate blocks, only the entries in L and U that are
not zero are stored. Hence operations with these factors require indirect addressing. The incomplete
LU decomposition has two threshold parameters pdrop and � . The parameter pdrop restricts the
number of nonzero entries per row and per column in L and U ; all elements smaller than � are
dropped during the incomplete factorization process.
In order to demonstrate this technique, we take a test problem from CASTOR that is used frequently

in many reports [4, 11, 5, 13], in which N = 26 and n = 16. Again we use Booten's sequential code to

8

�nd one eigenpair of this matrix, and as an acceptance criterion we require the residual norm of the
eigenpair to be less than 10�8. Again the correction equation is solved with 20 steps of preconditioned
GMRES. As target value we choose again � = �0:35+0:6i. Table 2 shows the number of steps of the
JD method for di�erent pdrop and � values. For our applications, more than 50% of the entries of
the blocks on the diagonal and the sub- and super diagonal of A� �B are not zero. The last column
shows the ratio of nonzeros of the factorization compared with the original matrix. If this ratio is
larger than 1, the blocks in L and U cannot be called sparse. While �rst keeping � �xed to the value

pdrop � # JD steps nnz(L+U)/nnz(A��B)
25 .0001 14 1.51
20 .0001 13 1.45
15 .0001 no convergence 1.25
25 .001 60 1.30
25 .01 no convergence 1.00

Table 2: Results of ILUT(pdrop,�) preconditioning. N = 26, n = 16.

used in [4], pdrop is reduced as shown in Table 2. Next, pdrop is kept equal to 25, and we let � grow.
Choosing a larger value for pdrop is not very useful, because the LU decomposition is almost complete
already. We may conclude that in our situation, fast convergence can only be obtained by choosing
pdrop and � such that the factorization is almost complete. Therefore, from now on we focus on a
block LU decomposition of A � �B, in which all elements of the blocks are stored, including those
which are zero.

3.3 Standard LU approach

If a complete LU factorization is constructed, the total number of nonzero entries in L + U is at
most twice as high. In that case, the linear system with A � �B as coe�cient matrix can be solved
by two triangular solves only. However, in the JD algorithm we have to solve systems with A � �B
as coe�cient matrix, in which � is close to �. The complete LU decomposition of A � �B can be
used to precondition these linear systems. For a large number of diagonal blocks, the total number of
multiplications required for the construction of L and U is approximately 7

3
Nn3, and the number of

multiplications required for performing the triangular solves with both L and U once is approximately
3Nn2. In the sequel of this paper, this approach is indicated as the standard LU approach.
The decomposition is performed on a block level. This enables us to use partial pivoting, which

makes the preconditioner much more robust. In order not to disturb the block tridiagonal structure,
the search for pivot elements is restricted to the blocks on the main diagonal. Another advantage is
that indirect addressing is not required: both in the construction and application of the preconditioner
we can use optimized BLAS routines. A drawback of the standard LU approach is that there are not
many possibilities for parallelization.

3.4 The DDCR method

This approach has been introduced in [13]. For completeness and to introduce notation, we give a
short description of this method. To improve parallelization possibilities, we use a reordering based
on a combination of domain decomposition (DD) and cyclic reduction (CR). Let p be the number
of processors that is actually used, and suppose that the integer Np = dN

p
e 2 represents the number

of diagonal blocks to be treated on each processor (except possibly the last processor, on which the
number of diagonal blocks can be less). The sub-, super- and diagonal block of block row (j�1)Np+ i
are stored on the j-th processor, for j = 1; � � � ; p and i = 1; � � � ; Np. The �rst step of the DDCR
method is to perform a block-reordering of both rows and columns based on a domain decomposition
strategy with p non-overlapping subdomains.

2By dxe we denote the smallest integer � x and by bxc the largest integer � x

3. Preconditioners 9

First all diagonal blocks of A � �B are numbered, except the diagonal blocks Np + 1, 2Np + 1,
etc. Those blocks are numbered last. The matrix of the resulting system of linear equations can be
partitioned as2

666664

A1 0 � � � 0 A1;p+1

0 A2 � � � 0 A2;p+1

...
...

...
...

...
0 � � � 0 Ap Ap;p+1

Ap+1;1 Ap+1;2 � � � Ap+1;p Ap+1

3
777775
; (3.3)

in which the matrices Aj are block tridiagonal with Np diagonal blocks for j = 1 and with Np � 1
diagonal blocks for j = 2; � � � ; p�1. The number of diagonal blocks in Ap is equal to N�1�(p�1)Np.
Note that Ap+1 is block diagonal with p� 1 blocks on the main diagonal. The corresponding system
of equations is written as�

C1 C12

C21 Ap+1

��
y1
y2

�
=

�
b1
b2

�
; (3.4)

where C1 is a block diagonal matrix which has the block tridiagonal matrices Aj , j = 1; � � � ; p on the
main diagonal.
The second step of the DDCR method is to construct a block lower-triangular factor L and a block

upper-triangular factor U in such a way that A� �B = LU and all blocks on the main diagonal of U
are identity matrices. After copying the block lower- and upper-triangular part of A � �B to L and
U respectively, L+ (U � I) has the block structure

L+ (U � I) =

2
666664

L1 0 � � � 0 U1;p+1

0 L2 � � � 0 U2;p+1

...
...

...
...

...
0 � � � 0 Lp Up;p+1

Lp+1;1 Lp+1;2 � � � Lp+1;p Lp+1 + (Up+1 � I)

3
777775
: (3.5)

Fill-in blocks can only be generated in Lp+1 and in Up+1, and in Lp+1;j and Uj;p+1 for 1 < j � p. In
[13] it is shown that after the construction of the LU decomposition, the matrix Lp+1 + (Up+1 � I)
is block tridiagonal with p � 1 main diagonal blocks, and the block sparsity pattern in Lp+1;j and
Uj;p+1 for 1 � j � p is regular. The number of extra �ll-in blocks is approximately (2p � 2)=(3p)
times the number of blocks in A � �B. Such �ll-in blocks are not present in the sequential standard
LU approach: we have to pay this price for the possibilities for parallelization.
If we eliminate y1 from (3.4), we obtain a system of linear equations

(Ap+1 � C21C
�1
1 C12)y2 = b2 � C21C

�1
1 b1 (3.6)

in which the so-called Schur complement Ap+1�C21C
�1
1 C12 is equal to Lp+1Up+1. This block tridiag-

onal system is solved with block cyclic reduction. For completeness, and to introduce some notation
used later, we give a short description of this approach. A more detailed description can be found in
[8].
Suppose that the block tridiagonal linear system is given by

ejxj�1 + djxj + fjxj+1 = bj j = 1; � � � ; N; (3.7)

in which e1 and fN are zero. Another block tridiagonal system, approximately twice as small, can be
obtained by multiplying equation 2j � 1 by �e2jd

�1
2j�1, equation 2j + 1 by �f2jd

�1
2j+1 and adding the

results to equation 2j. The new system of equations can be represented by

�e2j~e2j�1x2j�2 + dnew2j x2j � f2j ~f2j+1x2j+2 = bnew2j ; j = 1; � � � ; bN
2
c:

10

Herein

~e2j�1 = d�12j�1e2j�1; (3.8)

~f2j+1 = d�12j+1f2j+1; (3.9)

dnew2j = d2j � e2jd
�1
2j�1f2j�1 � f2jd

�1
2j+1e2j+1; (3.10)

bnew2j = b2j � e2jd
�1
2j�1b2j�1 � f2jd

�1
2j+1b2j+1: (3.11)

This strategy can be repeated until only one block equation with one unknown vector of length n is
left. Once x2j�2 and x2j are computed, they may be substituted in equation 2j�1 to compute x2j�1.
To show which parts can be performed concurrently, we illustrate the preprocessing process in

Table 3. Communication to left and right neighbouring processors is done concurrently, minimizing
the number of barriers. At the beginning of the process all processors are involved, and at the end
just one is busy. The cyclic reduction process is the last part of the block LU decomposition. If we
would apply pure domain decomposition the complete last part is performed by just one processor.
ForNp large, the construction of a block LU decomposition of A1 costs about

7
3
n3Np multiplications.

In [13] it is shown that the rest of the block LU decomposition of (3.3) costs about 19
3
n3(N � Np)

multiplications. Hence the total number of multiplications required for the construction of L and U
is approximately

(7
3
Np +

19
3
(N �Np))n

3: (3.12)

In the same way it can be shown that for largeNp the number of multiplications required for performing
the triangular solves with both L and U once is approximately

(3Np + 5(N �Np))n
2: (3.13)

0 20 40 60
0

0.5

1

1.5

2

2.5

3

processors

R
at

io

construction of L and U

0 20 40 60
0

0.5

1

1.5

2

2.5

3

processors

triangular solves

Figure 2: The ratio of number of
ops required for the DDCR method and for the standard LU
approach.

In Appendix I, Tables 12 and 13 give a review of the number of block matrix operations required for
preprocessing and the solution process as function of Np and p. In Figure 2 the increase of the number
of
oating point operations of the parallel DDCR method compared with the sequential standard LU
approach is shown, both for the construction of L and U (denoted by DDCR), which varies from 1.8
up to 2.6, as well as for the triangular solves (referred to as SOLDDCR), going from 1.3 up to 1.6. The
extra work required to deal with the �ll-in blocks has to be compensated by using several processors.

3. Preconditioners 11

p0 p1 p2 p3 p4 p5 p6 p7
d = LU d = LU d = LU d = LU

e = d�1e e = d�1e e = d�1e

f = d�1f f = d�1f f = d�1f f = d�1f

Send e to the left (e(pi) = eR(pi�1)) and send f to the right (f(pi) = fL(pi+1)).

BARRIER

e0 := eR e0 := eR e0 := eR e0 := eR e0 := eR e0 := eR e0 := eR

f0 := fL f0 := fL f0 := fL f0 := fL f0 := fL f0 := fL f0 := fL

d = d� f:eR x = �eR:e d = d� f:eR x = �eR:e d = d� f:eR x = �eR:e
d = d� e:fL y = �fL:f d = d� e:fL y = �fL:f d = d� e:fL y = �fL:f d = d� e:fL

Send x to the right (x(pi) = xL(pi+1)) and send y to the left (y(pi) = yR(pi�1)).

BARRIER

e := xL e := xL e := xL

f := yR f := yR f := yR

End of the �rst step of the cyclic reduction process.

d = LU d = LU

e = d�1e

f = d�1f f = d�1f

Send e over 2 PEs to the left (e(pi) = eR(pi�2)) and send f over 2 PEs to the right (f(pi) = fL(pi+2)).

BARRIER

e0 := eR e0 := eR e0 := eR

f0 := fL f0 := fL f0 := fL

d = d� f:eR x = �eR:e
d = d� e:fL y = �fL:f d = d� e:fL

Send x over 2 PEs to the right (x(pi) = xL(pi+2)) and send y over 2 PEs to the left (y(pi) = yR(pi�2)).

BARRIER

f := yR e := xL

End of the second step of the cyclic reduction process.

d = LU

f = d�1f

Send e0 over 4 PEs to the left (e(pi) = eR(pi�4)) and send f0 over 4 PEs to the right (f(pi) = fL(pi+4)).

BARRIER

e0 := eR f0 := fL

d = d� e:fL

End of the third step of the cyclic reduction process.

d = LU

Table 3: The construction of L and U for p=N=8, which corresponds to block cyclic reduction. On
the j-th processor, d, e and f correspond to dj , ej and fj in (3.7), respectively. e0 and f0 are extra

�ll-in blocks which correspond to ~e2j�1 and ~f2j+1 in (3.8) and (3.9). x and y are auxiliary arrays
used for data transfer. The superscripts L and R denote whether the matrix is received from a left
or right processor, respectively.

12

4. Going from a generalized eigenvalue problem to a standard eigenvalue problem

Writing (1.1) as (A� �B)x = (�� �)Bx we have

x = (�� �)(A � �B)�1Bx:

We construct a complete LU decomposition of A��B. Hence if rounding errors in this decomposition
can be neglected, (A � �B)�1 = (LU)�1. The matrix-vector multiplication with (A � �B)�1 then
consists of two triangular solves and we can replace the generalized eigenvalue problem by a standard
eigenvalue problem. If we de�ne Q as (LU)

�1
B we obtain the standard eigenvalue problem

Qx = �x; with � =
1

�� �
, � = � +

1

�
: (4.1)

By applying the JD algorithm to (4.1) instead of to the generalized problem, we can save a signi�cant
amount of memory. Moreover, the eigenvalues we are interested in form the dominant part of the
spectrum, which makes them 'relatively easy'.
Algorithm 2 shows how the JD method for the solution of several eigenvalues can be implemented.

The parameters have a similar meaning as in Algorithm 1. The di�erence with Algorithm 1 is that
the matrix WB

k does not have to be stored, and the 2-norm instead of the B-norm is used. MGS is
an abbreviation for the orthogonalization by Modi�ed Gram-Schmidt [6]. 'Call MGS[Vk�1; ~z]' means
that ~z is made orthonormal to the columns of Vk�1. Note that the matrix-vector multiplication with
Q consists of the matrix-vector multiplication with B combined with two triangular solves with L and
U .

4.1 What if (LU)�1 equals (A� �B)�1 only approximately?

In practice, one has to be careful because small pivot elements can be generated during the decompo-
sition of A� �B, especially when � is very close to an eigenvalue. In that case, taking Q = (LU)�1B
in (4.1) may in
uence the computed spectrum, and we therefore have to use a more accurate matrix-
vector multiplication with Q. Suppose that for some vector d the computed solution of

(A� �B)x = d (4.2)

is not accurate enough. One possible remedy is to perform one step of iterative re�nement in order
to obtain a correction vector. If this does not give a solution that is accurate enough, one can solve
(4.2) by using some steps of GMRES which uses the LU decomposition as a preconditioner. However,
if several steps of GMRES are required, it is probably more e�cient not to reformulate Ax = �Bx
as a standard eigenvalue problem. In that case, it is better to apply Algorithm 1 to the generalized
eigenvalue problem.
Note that in the inner iteration to solve the correction equation, the accurate matrix-vector multi-

plication with Q is not needed. Since an approximate solution of the correction equation is su�cient,
within the inner iteration the cheaper matrix-vector multiplication with (LU)�1B can be used.

5. Data Organization

In Section 5.1 we discuss which storage schemes are to be preferred for CASTOR's MHD matrices A
and B in (1.1). For large problems with a lot of data, the I/O is often very expensive. Therefore, it is
important to read data �les e�ciently. In Section 5.2 we describe how this can be organized such that
data �les become independent of the number of processors that will be used. For information about
the distribution of arrays over the processors and the way communication is performed, we refer to
Section 6.1.

5.1 Data Format: CRS format versus dense block tridiagonal format

The Compressed Row Storage (CRS) format puts the subsequent nonzeros of the matrix rows in
contiguous memory locations. To describe a sparse matrix A, we need 3 vectors: one for complex

5. Data Organization 13

Algorithm 2: Jacobi-Davidson for Qx = �x.
Parameters: iter;Nev; tolJD; kmin;m (m � kmin +Nev), itGMRES.

0: initialize

Choose an initial vector v1 with kv1k2 = 1; set V1 = [v1];
W1 = [Qv1]; k = 1; it = 1; nev = 0.

1: update and solve projected system

Compute the last column and row of Hk := V �k Wk;
compute the eigenvalues �1; � � � ; �k of Hk.

2: choose approximate eigensolution

Choose � := �j with j�j j maximal and �j 6= �i, for i = 1; � � � ; nev ; compute a
corresponding eigenvector s with ksk = 1; let u be the Ritz vector Vks.

3: check accuracy

Compute the residual vector r :=Wks� �u;
if krk2 < tolJD:j�j then
nev := nev + 1; �nev := �; if nev = Nev stop;
goto 2

else if it = iter stop
end if

4: solve correction equation approximately with itGMRES steps of GMRES

Compute an approximate solution ~z of
(I � uu�)(Q� �I)(I � uu�)z = �r and u�z = 0.

5: restart if projected system has reached its maximum order

if k = m then

Set k = kmin + nev . Construct C 2 Cm�k with as its columns eigenvectors of Hm

which correspond to the nev eigenvalues accepted before and the kmin 'largest'
eigenvalues of Hm which have not been accepted. Orthonormalize columns of C;
compute Vk := VmC; Wk :=WmC; Hk := C�HmC

end if

6: add new search direction

k := k + 1; it := it+ 1; call MGS [Vk�1; ~z];
set Vk = [Vk�1; ~z]; Wk = [Wk�1; Q~z]; goto 1

oating point numbers (mat A), and two for integers (colind A, rowptr A). The mat A vector stores
the values of the nonzero elements of matrix A, as they are traversed in a row-wise fashion. The
colind A vector stores the column indices of the elements in mat A. The rowptr A vector stores the
locations in the mat A vector that start a row. For more details and examples, we refer to [1].
CRS format has the advantage that it can be used to store general sparse matrices. However, the

DDCR preconditioner is completely based on the block tridiagonal form of A��B. This implies that,
for our applications, CRS format can only be advantageous if the blocks of A and B are sparse enough.
Table 4 shows the execution times for di�erent matrix-vector multiplications on a single processor of
both a Cray C90 and a Cray T3D for matrices A and B generated by the CASTOR code. These
results indicate that these platforms require di�erent approaches. For the Cray C90 the matrix-vector
multiplication applied to B (sparsity of the sub-, super-, and diagonal blocks � 20%) stored in CRS
format (CRS(B)) takes more time than those in which all entries of these blocks are considered nonzero
(DENSE). A third approach has been timed on the Cray C90, i.e., the Jagged Diagonal Storage (JDS)
format [1]. It is well-known that for true sparse matrices this storage format is e�cient on vector
machines and the results of Table 4 show that for small block sizes this is the fastest solution.
On the Cray T3E, which is not a vector computer, CRS format is to be preferred for both A and

B. We note that when Algorithm 2 is applied without the more precise matrix-vector multiplication

14

Execution times in �-seconds on a Cray C90, N = 40.
MATVEC n = 16 n = 32 n = 48 n = 64 n = 80
DENSE 638 1423 2777 4675 7074
CRS(B) 1547 3315 5263 7385 10208
JDS(B) 274 1493 2573 6456 7425
Execution times in �-seconds on a Cray T3E, N = 40.

MATVEC n = 16 n = 32 n = 48 n = 64 n = 80
DENSE 4490 14577 32055 54666 93924
CRS(B) 1421 4979 10806 15814 24374
CRS(A) 2469 9874 22518 33733 52861

Number of nonzeros in A and B, N=40.
n = 16 n = 32 n = 48 n = 64 n = 80

nnz(B) 5934 22778 50532 89196 138770
nnz(A) 11392 47906 109542 196300 308180

Table 4: Times for the matrix-vector multiplication on a single processor of both a Cray C90 and a
Cray T3E. Results for the block tridiagonal form (dense blocks) are denoted by DENSE. Results for
CRS format are denoted by CRS(A) and CRS(B) for A and B respectively. Results for B stored in
JDS format are denoted by JDS(B). The integers nnz(A) and nnz(B) denote the number of nonzeros.

with Q (see Section 4.1), the matrix A only occurs in the LU factorization of A � �B. This implies
that A can be overwritten by A � �B, and next by its LU decomposition. Since the blocks in the
decomposition are not sparse, dense block tridiagonal storage is used for A.
Otherwise, when the more accurate Q is used, the multiplication with A � �B is a part of the

multiplication with Q. CRS format is to be preferred on the Cray T3E, although the gain is less
obvious than for the more sparse matrix B.

5.2 Reading data from �les

Our FORTRAN implementation reads the data �les

rowptr A; colind A; mat A; rowptr B; colind B and mat B;

which must contain unformatted CRS data for both matrices A and B. Unformatted READ appears to
be much faster than formatted READ. Moreover, unformatted �les need less disk storage than formatted
�les. Data for a single block row(i.e., three blocks of dimension n) must appear row-wise in a single
record. This enables to keep data �les independent of the number of processors the program should
run on. Currently, the matrices are read from �le sequentially (in the near future we hope to use
parallel I/O): the �rst PE reads its part(s) from �le, then the second PE reads its corresponding part
and so on. This approach enables to distribute data communication free. We remark that it is not
necessary that the nonzero entries are equally distributed along the block rows and, as a consequence,
along the processors. Therefore, an upper bound must be given for the maximum number of nonzeros
per processor. In our experiments we took the number of nonzeros of a matrix divided by the number
of processors, multiplied by a factor 1.2.
In our experiments, a well-chosen target can deliver 10 up to 20 eigenvalues. Of course, this number

strongly depends on the parameters kmin and m in Algorithm 1 and 2. For a restart with another
target �0, there are two possibilities:

� Make a fresh start with a new target. Reread data from �les.

� Calculate A� �0B = (A� �B)� (�0 � �)B, if A� �B is available.

As described in Section 5.1, the matrix A may sometimes be overwritten by the factors L and U . A
choice between the �rst and second possibility, is then a choice between execution time versus memory

6. The parallel implementation 15

usage. Since reading the �les takes just a few percent of the total execution time, and the amount of
memory still appears to be the largest bottleneck (cf. Section 7) a fresh restart will often be the best
choice.

6. The parallel implementation

We started this project with the parallelization of the original code [2, 3, 4] on a Cray T3D in Eagan,
MN, USA. The last part of the development has been done on a Cray T3E in Delft. An important
reason for switching form Eagan to Delft, was the response time of the Cray T3D, which was very
slow, especially in the afternoon.
There are some important di�erences between both machines, which are listed in Table 5. On the

Cray T3D Cray T3E
processors 128 80 (72 in parallel)
Clock period 6.67 ns clock 3.33 ns clock
Peak Performance / processor 150 M
op/s 600 M
op/s
Total Peak Performance 19.2 G
op/s 33.6 G
op/s
Local Memory / processor 64 Mbytes 128 Mbytes
Compiling System Cray CF77 Cray CF90
CRAFT (for SHARED programming) supported not supported
GiGaRing channels not available available
Situated at Eagan HP�C, Delft

Table 5: Main di�erences between Cray T3D and T3E

Cray T3D we used a programming technique involving so-called CRAFT directives, which are not yet
supported on the Cray T3E. The moment we switched from T3D to T3E, we already had decided
to continue with the MESSAGE PASSING approach, because that appeared to be more e�cient for our
application, as is pointed out in Section 6.1. In the sequel, we show results from both machines, but
a systematic comparison has not been made.

6.1 Data distribution and communication: Data Sharing versus Private Data

One can roughly distinguish two di�erent programming styles on the Cray T3D(E). The �rst one,
based on data sharing, is comparable with the virtual shared memory model HPF (High Performance
Fortran), the second one is closely related to MESSAGE PASSING (cf. PVM and MPI). Both methods have
been well-tuned for the Cray T3D(E) and are expected to be faster than using HPF, PVM or MPI.
The programming styles di�er in the distribution of arrays:

� DATA SHARING and CRAFT directives:

The Cray T3D(E) can be considered as a distributed shared memory machine. By this we mean
that all arrays can be distributed over the processors in a user's prescribed way. Every processor
has access to all array elements even when they are stored on other PEs. Below, we give a simple
example of a SAXPY operation on SHARED data. In this example, the array length N should be a
multiple of the number of processors.

PARAMETER (N = 512, ALPHA = 2.0)

REAL X(N), Y(N)

CDIR$ GEOMETRY G(:BLOCK)

CDIR$ SHARED (G):: X, Y

*

CDIR$ DOSHARED(I) ON Y(I)

DO I = INX, N

Y(I) = Y(I) + ALPHA * X(I-INX+1)

END DO

16

The arrays X and Y are equally distributed. If this program is executed on p =N$PES processors
(N$PES is a special run time constant to �nd out how many processors are running the program),
then due to geometry G, the �rst processor will have the �rst N=p elements of the arrays X and
Y, the second processor the next N=p elements and so on. In case p > 1 & 1 < INX < N=p,
communication is needed implicitly. The compiler calculates where desired elements can be
found, but that causes a certain delay. On each processor, except the �rst one, the DO loop
requires INX-1 elements of X which are present on a previous (neighboring) processor (located in
the last INX-1 positions of X over there). We speak about remote data, when data is not present
on the same processor on which the computations are performed. Operating on remote data
is much slower than on local data, because processors have to communicate. Communication
is invisible, except that the performance becomes much lower. We remark that in the above
example, a calculation is performed on the processor which stores element Y(I), I=INX,N. In the
sequel, we use the term SHARED if we refer to this programming technique. An advantage of this
technique is that it leads to portable code: work and data are distributed over the processors
by using directives. On other machines, for example on work stations, these directives are
just comment lines. Hence the code that parallelizes on the CRAY T3D runs without any
modi�cation on other machines.

We have improved the performance of our code by copying remote data into an auxiliary array,
which is local to the processor. Then we can use BLAS routines which increase the computational
speed.

The dimensions of SHARED arrays have to be declared as a power of two. The matrices A and
B have a block tridiagonal structure on which the DDCR preconditioner is based. Therefore, it
is desirable to consider a block as the smallest computational unit. However, typical block sizes
for MHD problems are nf � 16, where the number of Fourier modes nf may not be a power
of two. The block dimension should then be extended to a power of two. Moreover, both the
number of diagonal blocks and the number of PEs must be a power of two. This can lead to
large unwanted memory extensions, especially for multi-dimensional arrays.

� MESSAGE PASSING and PRIVATE DATA:

In a second approach, dealing with PRIVATE or local data, the user takes care of the communica-
tion: all data is stored locally on a processor and arrays are called PRIVATE. All communication
between PEs must be done explicitly by calling communication routines.

Below, we give a MESSAGE PASSING implementation of the SAXPY operation above, using the
transfer routine SHMEM PUT.

INTEGER I, INX, MY_PE, NL

PARAMETER (N = 512, NL = N/N$PES, ALPHA = 2.0)

REAL X(NL), Y(NL), AUX(INX-1)

INTRINSIC MY_PE

*

COMMON / COM / X, Y, AUX

*

IF(MY_PE().LT.N$PES-1)THEN

*

* The last INX-1 elements of X are sent to the next processor and

* copied into array AUX.

*

IPUT = SHMEM_PUT(AUX, X(NL-INX+2), INX-1, MY_PE()+1)

*

END IF

*

* Next, those elements of Y are updated which need no communication.

6. The parallel implementation 17

* Data transfer and computation of Y can (partly) be done simultaneously.

*

DO I = INX, NL

Y(I) = ALPHA * X(I-INX+1) + Y(I)

END DO

*

* A barrier is needed to be sure that all data sent by SHMEM_PUT has arrived.

*

CALL BARRIER()

*

IF(MY_PE().GT.0)THEN

*

* The first INX-1 elements of Y can now be updated without communication

*

DO I = 1, INX-1

Y(I) = ALPHA * AUX(I) + Y(I)

END DO

END IF

In this example, data is private to the processor and communication routines like SHMEM GET

and SHMEM PUT can be used to send data from one processor to another. The local arrays X and
Y are both of dimension NL, which is equal to the original N divided by p. The commonblock
COM is used to prescribe the order in which the arrays X, Y and AUX are stored; in this way, the
bases addresses of the arrays are the same on each PE. This is necessary if processors write in
other processors' memories. Again, if INX > 1 & p > 1 communication is required, but in this
MESSAGE PASSING case it must be done explicitly. The use of the transferring routines SHMEM GET

and SHMEM PUT is slightly di�erent: SHMEM GET is called by the receiving processor and it returns
when all desired data has been transferred. SHMEM PUT is called by the sending processor. It can
return before data has arrived on the receiving PE. It appears that by changing the order of
operations, e.g., by sending data at the moment it has been calculated rather than to wait until
it is needed by other processors, idle time can be reduced, because in that case data transfer is
approximately for free. However, one must take care to operate on the right data. Barriers can
be used to synchronize the process: when a barrier is reached by some processor, it has to wait
until the other processors involved in that barrier have arrived and all data transfer has been
completed. A surplus of barriers will slow down the computational process.

By using PRIVATE data instead of SHARED data we can avoid large unwanted memory extensions.
From the timing results for the matrix-vector multiplications presented in Section 6.2 it will be clear
that not only for matrices, but also for vectors PRIVATE data is to be preferred.
In Figure 3, we show for di�erent block sizes the communication times (in micro seconds). For both

the SHMEM GET and the SHARED copy, two complex vectors, each of length n, have to be transferred
from one processor to another. The communication time does not increase when p becomes larger
than 4, because only nearest neighbor communication is needed. We observe that for these short
vectors, communication on private data is much faster than on shared data, especially for larger block
sizes. These results correspond with experiences of Van der Steen [14], who shows that many virtual
shared memory models are less e�cient than their MESSAGE PASSING counter parts.

6.2 Matrix-vector multiplication

For the matrix-vector multiplication we have made four di�erent implementations for the Cray T3D:

� For the matrices, both dense block tridiagonal format and CRS format are used. They will always
be PRIVATE: each PE has its own part. In Section 5.1 storage formats have been discussed.

� The vectors can be both SHARED and PRIVATE.

18

0

100.

200.

300.

1 2 4 p>4

T
im

e
x

1.
0e

-6
 s

ec
on

ds

processors

SHARED

n = 80
n = 72
n = 48
n = 32
n = 16

0

100.

200.

300.

1 2 4 p>4

T
im

e
x

1.
0e

-6
 s

ec
on

ds

processors

PRIVATE, shmem_put

n = 80
n = 72
n = 48
n = 32
n = 16

Figure 3: Comparison of communication times on the Cray T3D for SHARED data versus PRIVATE

data for the complex matrix-vector multiplication with a block tridiagonal matrix of order n. The
communication times are independent of the number of diagonal blocks per PE.

For the dense block matrix-vector multiplication, we use for each block row the e�cient BLAS

routine ZGEMV. In Figure 4 M
op-rates for the four di�erent implementations described above are
given. The highest values are achieved when n = 80, associated with the largest number of
oating
point operations (
ops).
The matrix used in the CRS matrix-vector multiplication of Figure 4 has a block tridiagonal struc-

ture, where each block contains only entries on its main diagonal. This matrix has been constructed
only for testing purposes. In this project we started with MHD problems of which the blocks of matrix
B of (1.1) contain about 5% nonzeros. For this matrix in CRS format much lower performance results
are obtained due to indirect addressing and the small number of nonzeros per row (only 3) compared
with the dense block implementation.
The in
uence of communication in combination with data distribution becomes most visible for the

matrices stored in CRS format. However, also in this case, communication is minimal, since there are
no nonzero entries outside the tridiagonal blocks, and therefore, on each processor only a small part
of the vector must be available. Clearly, the number of
ops is small compared with the amount of
data transfer. We also observe that going from 32 to 64 PEs the performance growth is less impressive
than going from 16 to 32 PEs due to data transfer. For the dense case this e�ect is much smaller,
because the time needed for
ops dominates the communication time.
From Table 6, we may also conclude that the matrix-vector multiplication on the Cray T3D is

perfectly scalable. Here, the number of diagonal blocks is always twice the number of processors. So,
if the problem size and the number of PEs are doubled, we may expect the execution time to remain
unchanged. Again the same test matrix as described above is used.

Dense Matrix Storage Dense Matrix Storage CRS Matrix storage CRS Matrix storage

Shared Vector Local Vector Shared Vector Local Vector

p 16 32 64 16 32 64 16 32 64 16 32 64

n

16 424 415 422 272 274 273 181 174 176 113 110 116

32 1136 1136 1154 801 803 799 284 282 282 186 185 199

48 3797 3675 3691 2847 2845 2845 465 465 465 331 327 353

Table 6: Execution times in �-seconds on a Cray T3D for di�erent complex matrix-vector imple-
mentations. N = 2p. For the CRS format the blocks have 3 nonzero entries per row, for the dense
matrix-vector product this number is 3� n.

6. The parallel implementation 19

250

500

750

1000

1 2 4 8 16 32 64

M
fl

op
/s

processors

CRS-format, SHARED vector

n = 16
n = 32
n = 48
n = 64
n = 80

250

500

750

1000

1 2 4 8 16 32 64

M
fl

op
/s

processors

CRS-format, PRIVATE vector

n = 16
n = 32
n = 48
n = 64
n = 80

500
1000
1500
2000
2500
3000
3500

1 2 4 8 16 32 64

M
fl

op
/s

processors

DENSE format, SHARED vector

n = 16
n = 32
n = 48
n = 64
n = 80

500
1000
1500
2000
2500
3000
3500

1 2 4 8 16 32 64

M
fl

op
/s

processors

DENSE format, PRIVATE vector

n = 16
n = 32
n = 48
n = 64
n = 80

Figure 4: M
op-rates for four di�erent implementations of a matrix-vector multiplication with block
tridiagonal matrices on the Cray T3D. Only the main diagonal elements of the sub-, super- and
diagonal blocks are not zero. N=64.

6.3 Timing results of the preprocessing routine DDCR and the solution process routine SOLDDCR

To demonstrate the parallel performance of the DDCR method, Figure 5 shows the wall clock time in
seconds on a Cray T3D, both for the construction (denoted by DDCR) and the application of L and
U (denoted by SOLDDCR). We used CRAFT directives for the distribution of work and data over
the processors (shared data). The number of processors p increases from 2 to 64, and the number
of diagonal blocks N is equal to 16p. Hence for a perfectly scalable algorithm, the time would be
constant.
From the results it appears that the wall clock time does not increase strongly with the number of

processors, hence the parallel performance is quite good. By using more processors, we can increase
the dimension of the problem with a factor 32, whereas the wall clock time increases by a factor less
than 2. If 64 processors are used, the M
op-rate for the construction of L and U is approximately
3600.
We have tested three di�erent implementations. The �rst one is the data sharing code. As we have

argued in Section 6.1, we prefer to use private data, in which case we have to transfer data explicitly
from one PE to another. The second and third implementation both using MESSAGE PASSING, di�er
in the way data is transferred: one calls SHMEM GET, the other calls SHMEM PUT. For more details on
these routines, we refer to Section 6.1.
Figure 6, giving the speed-ups of three di�erent implementations of the DDCR method compared

with the fastest standard LU approach on a single processor, shows that the SHMEM PUT version is to

20

20 40 60
0

1

2

3

4

5

6

p

S
ec

on
ds

DDCR.

20 40 60
0

0.02

0.04

0.06

0.08

0.1

0.12

p

S
ec

on
ds

SOLDDCR.

Figure 5: Wall clock times in seconds on the Cray T3D required for construction (left) and application
(right) of the DDCR preconditioner, n = 64, N = 16p, p = 2; 4; 8; 16; 32 and 64. Results of the data
sharing implementation.

0

2

4

6

8

1 2 4 8 16 32 64

Sp
ee

d-
up

processors

DDCR (n=N=64)

shmem_get
shmem_put

shared

0

2

4

6

8

1 2 4 8 16 32 64

Sp
ee

d-
up

processors

SOLDDCR (n=N=64)

shmem_get
shmem_put

shared

Figure 6: Speed-up for DDCR and SOLDDCR on the Cray T3D. Results of PRIVATE data implemen-
tation (SHMEM GET and SHMEM PUT) and SHARED data implementation.

be preferred, partly because the latency of the SHMEM PUT is less than of SHMEM GET, partly because
data communication and
oating point operations are performed concurrently. This can be realized
by sending data at the moment it has been calculated rather than to wait until it is needed by other
processors. To give an example, we have rewritten the �rst step of the cyclic reduction process as
shown in Table 3. The third and fourth rule have been changed (cf. Table 7) and matrix e0 is sent to
its left neighbor, before matrix f is calculated. Consequently, data communication and
oating point
operations can be performed in parallel.
Figure 7 gives the speed-up of the preprocessing routine DDCR and the solution process routine

SOLDDCR on the Cray T3D of the SHMEM PUT implementation. Note, that for N = p = 64, pure
cyclic reduction is applied and not the combination with domain decomposition, because each domain
consists exactly of one block row. Note, that for the same block size, i.e., 48, the highest speed-up
is achieved for the largest problem size. Analogously, for a �xed Np, the number of diagonal blocks
per processor (see Figure 8), the highest performance (> 1.2 G
op/s) is achieved for the largest block
size. For large problems, this is a very promising result.

7. Numerical Results of Algorithm 2

We have done experiments with Algorithm 2 on a Cray T3E in Delft, and used up to 64 processors.
These experiments give us insight in the speed-up to be expected if we would use a machine with

7. Numerical Results of Algorithm 2 21

p0 p1 p2 p3 p4 p5 p6 p7
d = LU d = LU d = LU d = LU

e = d�1e e = d�1e e = d�1e

Send e to the left (e(pi) = eR(pi�1)).

f = d�1f f = d�1f f = d�1f f = d�1f

Send f to the right (f(pi) = fL(pi+1)).

BARRIER

d = d� f:eR x = �eR:e d = d� f:eR x = �eR:e d = d� f:eR x = �eR:e

Send x to the right (x(pi) = xL(pi+1)).

d = d� e:fL y = �fL:f d = d� e:fL y = �fL:f d = d� e:fL y = �fL:f d = d� e:fL

Send y to the left (y(pi) = yR(pi�1)).

e0 := eR e0 := eR e0 := eR e0 := eR e0 := eR e0 := eR e0 := eR

f0 := fL f0 := fL f0 := fL f0 := fL f0 := fL f0 := fL f0 := fL

BARRIER

e := xL e := xL e := xL

f := yR f := yR f := yR

End of the �rst step of the cyclic reduction process.

Table 7: The improved version of the �rst cyclic reduction step for p=N=8. On the j-th processor,
d, e and f correspond to dj , ej and fj in (3.7), respectively. e0 and f0 are extra �ll-in blocks which

correspond to ~e2j�1 and ~f2j+1 in (3.8) and (3.9). x and y are auxiliary arrays used for data transfer.
The superscripts L and R denote whether the matrix is received from a left or right processor,
respectively.

0

2

4

6

8

10

1 2 4 8 16 32 64

Sp
ee

d-
up

processors

DDCR (shmem_put, n = 48)

N=128
N=64

0

2

4

6

8

10

1 2 4 8 16 32 64

Sp
ee

d-
up

processors

SOLDDCR (shmem_put, n = 48)

N=128
N=64

Figure 7: Speed-up for the SHMEM PUT implementations of DDCR and SOLDDCR on the Cray T3D.

more processors.
Suppose that the maximum allowed value of the Krylov subspace m is much smaller than the size of

the matrices A and B. If A��B can be overwritten by its LU decomposition, the amount of memory
required for the current sequential implementation is approximately 24nnz(A) + 16Nn(4+ 3(n+m))
bytes, in which nnz(A) is the number of nonzero entries in the matrix A. If we use the parallel DDCR
preconditioner, the additional amount of memory is approximately 32n2(N+3p)+0:2nnz(A) bytes. If
A��B cannot be overwritten by its LU decomposition, an extra 48Nn2 bytes of memory is required.
Each processor of the machine in Delft contains 128 Mbytes of memory. Hence for the larger test
cases, we have to use several processors. In order to study the obtained speed-ups, in Section 7.1
results for some smaller test cases are shown. In Section 7.2 we compare the performance obtained
for a larger test case (N = 320 and n = 128) on a single (vector) processor of the Cray C90 with that
on several processors of the Cray T3E.
In all experiments, at step 4 of Algorithm 2 we take itGMRES equal to zero which implies that

~z = r. With this special choice, the JD algorithm is closely related to the Arnoldi method. From

22

0

200

400

600

800

1000

1200

1 2 4 8 16 32 64

M
fl

op
/s

processors

DDCR (shmem_put, N=64)

n = 16
n = 32
n = 48
n = 64
n = 80

0

200

400

600

800

1000

1200

1 2 4 8 16 32 64

M
fl

op
/s

processors

SOLDDCR (shmem_put, N=64)

n = 16
n = 32
n = 48
n = 64
n = 80

Figure 8: M
op/s achieved on a Cray T3D for DDCR and SOLDDCR.

numerical experiments this appears to be the best choice for minimizing the total wall clock time. If
we use some steps of GMRES, we can reduce the total number of steps of the JD method, but for our
examples, this does not compensate for the extra work required for GMRES. The other parameters in
Algorithm 2 were chosen as follows: iter = 60; Nev = 20; tolJD = 10�6; kmin = 10; m = 30. Unless
mentioned otherwise, no steps of iterative re�nement (as explained in Section 4) are used.

7.1 Speed-ups on the Cray T3E

Table 8 shows the results for a small test problem generated by CASTOR, in which n = 64 and
N = 40. After 60 iteration steps, we obtain 15 eigenpairs that satisfy the acceptance criterion. The
second column shows the wall clock time measured in seconds required for the construction of the
complete LU decomposition. The numbers in parentheses show estimates for the M
op-rates. These
numbers have been calculated by using the estimate (3.12) for the number of multiplications. 3 For
small p we obtain a reasonable fraction of the theoretical peak performance, which is due to the
level-3 BLAS routines that perform most of the work in the preprocessing phase. When the number of
processors increases from one to two, the wall clock time increases. This is due to the computation
of the extra �ll-in blocks in L and U which are generated when the reordering technique for parallel
processing is performed. Increasing the number of processors again with a factor two, approximately
halves the wall clock time. Even for this small problem, the wall clock time for constructing L and U
can be reduced by a factor of four by parallel processing. The third column shows the wall clock time
required for the JD iteration without the time required for preprocessing. Since part of the algorithm
is not performed in parallel (solution of the projected eigenvalue problem), again we cannot expect
linear speed-up. However, we see a reduction of a factor of �ve in wall clock time. The fourth column
shows the total time spent in performing the triangular solves. Again the numbers in parentheses
show estimates for the M
op-rates. These numbers have been calculated by using the estimate (3.13)
for the number of multiplications. These M
op-rates are signi�cantly lower than the M
op-rates
obtained for the construction of L and U . The level-2 BLAS routines used for the triangular solves
are signi�cantly slower than the level-3 BLAS routines used for the construction of L and U , because
the ratio of computations and memory-to-processor data transfer is much more favourable for level-3
BLAS than for level-2 BLAS.
We also performed similar calculations for a larger test problem in which n = 64 and N = 160. This

problem is too large to run on one processor. The results are shown in Table 9. Again the estimated
M
op-rate is shown in parentheses. For small p the performance per processor is signi�cantly smaller

3Suppose that one
oating point operation (
op) denotes either a multiplication, a division, a subtraction, or an

addition of two real variables. Since we use complex arithmetic, and since both in the preprocessing and in the

solution process almost every multiplication can be combined with a subtraction or an addition, the number of
ops is

approximately equal to the number of multiplications multiplied by 8.

7. Numerical Results of Algorithm 2 23

p Preprocessing Time JD without time Total time
for preprocessing triangular solves

1 0.87 (224) 6.57 2.30 (90)
2 1.10 (330) 4.04 1.75 (155)
4 0.57 (783) 2.30 0.93 (331)
8 0.32 (1541) 1.52 0.56 (578)
10 0.29 (1700) 1.49 0.55 (582)
20 0.22 (2350) 1.29 0.50 (672)

Table 8: Wall clock times in seconds on the Cray T3E for N = 40 and n = 64. The number of nonzero
entries in the CASTOR matrices A and B is 196300 and 89196, respectively.

p Preprocessing Time JD without time Total time
for preprocessing triangular solves

2 5.72 (254) 26.86 11.68 (108)
4 2.88 (620) 12.24 5.91 (240)
8 1.49 (1316) 6.05 3.11 (481)
10 1.25 (1597) 5.34 2.66 (567)
16 0.82 (2488) 3.52 1.79 (859)
20 0.72 (2852) 3.11 1.57 (963)
32 0.51 (4055) 2.44 1.20 (1289)

Table 9: Wall clock times in seconds on the Cray T3E for N = 160 and n = 64. The number of
nonzero entries in the CASTOR matrices A and B is 798632 and 363228, respectively.

than that obtained for the test problem mentioned above. However, this improves if p increases,
because then the same amount of data is distributed over more processors. This is probably a cache
e�ect.

7.1.1 Analysis of the speed-ups In the following, we will see how well the results of Tables 8 and 9
agree with what we may expect for such relatively small test problems. The computations in the JD
algorithm can be divided into three parts: the solution of the (small) projected eigenvalue problems,
the triangular solves with L and U , and a part consisting of matrix-vector multiplications with B,
inner products and vector updates. Suppose that the CPU times for execution on one processor for
these parts are denoted by tseq , tLU , and tlinpar , respectively. If we increase the order of A and B,
tseq hardly changes, since we keep the size of the projected systems �xed. However, both tLU and
tlinpar increase with the order of the eigenvalue problem. Hence for large eigenproblems, tseq is very
small compared with tLU and tlinpar. If we assume that the time for communication can be neglected
and the inner products scale linearly, the expected speed-up SJD when performing the JD algorithm
on p processors instead of on one processor, is

SJD =
tseq + tLU + tlinpar

tseq +
tLU
SLU

+
tlinpar

p

; (7.1)

in which SLU is the expected speed-up for the triangular solves. In the following, we will show that
an approximation of SLU is given by

SLU =
3pN

(5� 2
p
)(N + 1� p) + 5p(2log p� 1)

: (7.2)

24

On just one processor, the standard LU approach is applied and in that case the number of multipli-
cations in the triangular solves is approximately 3Nn2. Almost every multiplication can be combined
with an addition, hence the wall clock time required on one processor is approximately 3Nn2tmul, in
which tmul is the time required for performing a complex multiplication combined with an addition.
On p processors, the parallel DDCR preconditioner is used. The �rst part of the triangular solves
that corresponds with the elimination of y1 from (3.4) scales linearly. The number of multiplications
in this part is approximately 3(N � p + 1)n2!, in which ! is the number of multiplications in the
DDCR approach divided by the number of multiplications in the standard LU approach. From (3.13)
it follows that ! � (5� 2

p
)=3. Hence the wall clock time required for this �rst part based on domain

decomposition is approximately (3!(N � p+1)n2tmul)=p. The second part of the triangular solves is
the solution of (3.6) with cyclic reduction. The wall clock time required for this part is approximately
5n2tmul multiplied by the number of steps in cyclic reduction (approximately 2 log p � 1). Equation
(7.2) is obtained by dividing the approximate wall clock time on one processor by the sum of the wall
clock times required for the �rst and second part of the triangular solves on p processors.
Figure 9 shows both the predicted speed-up by (7.1) forN = 40 and the measured speed-up obtained

from Table 8. From the results it appears that the predicted speed-up corresponds quite well with
the measured speed-up, although it is a little too high for p = 20. This is caused by the fact that the
simple prediction model assumes that the inner products scale linearly, which is not quite true.

0 5 10 15 20
0

2

4

6

8

p

S
pe

ed
−

up

 Speed−up triangular solves

0 5 10 15 20
0

2

4

6

8

p

S
pe

ed
−

up
 Speed−up Jacobi−Davidson

Figure 9: The predicted (straight line) and measured speed-up ('�') of the JD algorithm for N = 40
and n = 64 on a Cray T3E. Measured speed-up is shown for p=1, 2, 4, 8, 10, and 20.

0 10 20 30
0

5

10

15

20

p

S
pe

ed
−

up

 Speed−up triangular solves

0 10 20 30
0

5

10

15

20

p

S
pe

ed
−

up

 Speed−up Jacobi−Davidson

Figure 10: The predicted (straight line) and measured speed-up ('�') of the JD algorithm for N = 160
and n = 64 on a Cray T3E. Measured speed-up is shown for p=2, 4, 8, 10, 16, 20, and 32.

7. Numerical Results of Algorithm 2 25

Figure 10 again shows both the predicted and measured speed-up for the test case in which n = 64
and N = 160. It appears that the measured speed-up is higher than what the simple model predicts.
As mentioned before, this is caused by the fact that when the amount of data per processor decreases,
the performance per processor can increase (probably due to cache e�ects). Our simple prediction
model does not account for this e�ect.

7.2 One processor of the C90 compared with several processors of the T3E

In this section, we do experiments with a larger test case in which N = 320 and n = 128. First, we
show the results obtained on one processor of the C90. Figure 11 shows the convergence behaviour of

−0.1 −0.05 0
0.55

0.6

0.65
Some e.v., N=320, n=128

real axis

Im
ag

in
ar

y
ax

is

−0.1 −0.05 0
0.55

0.6

0.65

real axis

Im
ag

in
ar

y
ax

is

order eigenvalues appear

12

3

4

5

6

7

8

9

10

11

12

20 40 60
10

−8

10
−6

10
−4

10
−2

10
0

matrix vector multiplications

R
el

at
iv

e
2−

no
rm

0 10 20 30
10

−8

10
−6

10
−4

10
−2

10
0

Wall clock time in seconds

R
el

at
iv

e
2−

no
rm

Figure 11: Numerical results of Algorithm 2 applied to (4.1) obtained on one processor of the C90.
N = 320, n = 128.

Algorithm 2 applied to (4.1). Because we use only one processor, the sequential standard LU approach
is used instead of the DDCR method. The matrix B is stored in Jagged Diagonal Storage format,
which exploits the sparsity pattern and gives vectorizable code in the matrix-vector multiplication.
After 60 iteration steps, we �nd 12 eigenvalues. In the upper-left corner of Figure 11, some of the
eigenvalues are shown, and the picture in the upper-right corner shows the sequence in which they
appear when the target � is chosen as is indicated by a '�' in the �gure. The eigenvalues appear in the
order that corresponds with the lowest distance to the target. The lower-left corner shows the relative
2-norm of the residual, viz. kQx� �xk2=j�j, against the number of matrix-vector multiplications with
the matrix Q = (LU)�1B. Each '�' indicates a converged eigenvalue. It can happen that at a certain
step of the JD method, more than one new eigenvalue is found that satis�es the acceptance criterion.
In this example, � is very close to an eigenvalue. The algorithm convergences very quickly to this
eigenvalue. From the results it appears that the �rst 8 eigenpairs are found quickly, but for the last 4
eigenpairs more iteration steps are required. Hence for this example, it may be a good idea to adapt
the target after 30 JD steps have been performed. The picture in the lower-right corner shows the
same relative 2-norm against the wall clock time required on one processor of the C90. This time does

26

not include the 17.5 seconds required for the construction of L and U .
The wall clock times for preprocessing, for the 60 iteration steps of Algorithm 2, and for the

triangular solves are shown in Table 10. Again the numbers in parentheses show the estimated M
op-
rates. The �rst line shows the results obtained without iterative re�nement as explained in Section 4,
the second line shows the results obtained with one step of iterative re�nement. This does not change
the computed eigenvalues signi�cantly: the relative di�erence is smaller than 10�6. We notice that

iterative Preprocessing Time JD without time Total time
re�nement? for preprocessing triangular solves

No 17.5 (716) 30.3 11.5 (656)
Yes 17.5 (716) 50.0 23.0 (656)

Table 10: Wall clock times in seconds on one processor of the Cray C90. N = 320, n = 128. The
number of nonzero entries in A and B is 6491568 and 2886552, respectively.

the obtained M
op-rates are not far from the theoretical peak performance of 960 M
op/sec. Our
implementation of Algorithm 2 vectorizes very well thanks to the use of BLAS routines whenever
possible. Moreover, the use of complex arithmetic gives a better ratio of
oating point operations
and data transfer than real arithmetic. In order to reduce the e�ect of memory bank con
icts during
the construction of L and U , it is very important that the leading dimension of the arrays that are
passed as arguments in the BLAS routines do not contain high powers of two. Therefore, the leading
dimension of such arrays has been increased by one, resulting in a reduction of the time required for
the construction of L and U from 54 seconds to 17.5 seconds.
On the Cray T3E in Delft Algorithm 2 is applied in combination with the parallel DDCR pre-

conditioner. We used the same test problem and the same parameters for Algorithm 2 as described
above. Due to the limited amount of memory per processor at least 10 PEs are required to solve this
problem. Of course, we �nd the same eigenvalues as on one processor of the C90. The di�erence with
the eigenvalues found on the C90 is approximately 10�6, which is in agreement with the acceptance
criterion. The convergence behaviour depends slightly on the number of processors. This is illustrated
by Figure 12, which shows the relative 2-norm of the residual against the wall clock time measured
on 10, 20, 32, and 64 processors.
The wall clock times for the preprocessing, the 60 iteration steps of Algorithm 2, and for the

triangular solves are shown in Table 11. Again the numbers in parentheses show estimates for the
M
op-rates. From the results it appears that for this test case the code parallelizes well. The wall

p Preprocessing Time JD without time Total time
for preprocessing triangular solves

10 20.61 (1546) 32.62 19.2 (628)
16 14.15 (2308) 19.92 12.5 (978)
20 11.17 (2949) 16.95 10.8 (1144)
32 7.85 (4249) 10.9 7.4 (1682)
64 4.68 (7180) 7.1 5.1 (2454)

Table 11: Wall clock times in seconds on the Cray T3E. N = 320, n = 128.

clock times on 10 processors of the T3E are comparable with the wall clock time on one processor of
the C90.

8. Conclusions 27

0 10 20 30

10
−8

10
−6

10
−4

10
−2

10
0

Wall clock time in seconds. p=10

R
el

at
iv

e
2−

no
rm

0 5 10 15

10
−8

10
−6

10
−4

10
−2

10
0

Wall clock time in seconds. p=20

R
el

at
iv

e
2−

no
rm

0 5 10

10
−8

10
−6

10
−4

10
−2

10
0

Wall clock time in seconds. p=32

R
el

at
iv

e
2−

no
rm

0 2 4 6

10
−8

10
−6

10
−4

10
−2

10
0

Wall clock time in seconds. p=64

R
el

at
iv

e
2−

no
rm

Figure 12: Numerical results of Algorithm 2 applied to (4.1) obtained on p processors of the Cray
T3E. The pictures show the relative 2-norm of the residual against the wall clock time measured in
seconds. N = 320, n = 128.

8. Conclusions

We have studied the Jacobi-Davidson method for the parallel computation of a few selected eigenvalues
of large generalized eigenvalue problems arising in the stability investigation of tokamak plasmas.
The JD method has been combined with several preconditioning techniques. For our applications,
the SPAI preconditioner of Grote and Huckle was not very successful because we did not succeed in
approximating the inverse of A � �B by a sparse matrix. The ILUT preconditioner of Saad is not
suited for our applications either, since the subblocks in the factors L and U are not sparse enough to
take pro�t from it. A complete block LU decomposition like the standard LU approach appears to be a
proper preconditioner. This approach is much more robust than a point-wise ILU-type preconditioner
because pivoting is used. However, in order not to disturb the block structure of the matrix, the
search for pivot elements is restricted to the blocks on the main diagonal. The numerical experiments
performed on one processor of the C90 demonstrate that this method is well-vectorizable.
In order to improve possibilities for parallelization, the block rows and block columns of A � �B

are reordered simultaneously before the LU decomposition of A��B is performed. The reordering is
based on a combination of domain decomposition and cyclic reduction. Numerical results performed
on a Cray T3D and a Cray T3E demonstrate that the resulting DDCR preconditioner parallelizes
well: both the time for the construction of L and U and for performing the triangular solves hardly
increase when the number of processors increases with the same factor as the number of diagonal
blocks.
Most other ingredients in the Jacobi-Davidson method like the matrix-vector multiplications, vector

updates and inner products parallelize very well. Only the construction and solution of the small
projected eigenvalue problems in the Jacobi-Davidson method does not parallelize. However, the size
of these systems is kept small and is independent of the problem size. Hence for large applications, the
total time spent in solving the projected systems is negligible (less than 0.5 seconds for the numerical

28 References

experiments described in Section 7), so that our implementation of Algorithm 2 parallelizes well, which
is demonstrated by the results shown in Section 7.
If we consider only the wall clock times required for computing several eigenvalues, we conclude that

10 processors of the Cray T3E give approximately the same computational power as one processor
of the C90. As a consequence, the Cray T3E can solve the eigenvalue problems faster than the Cray
C90, if a su�cient number of processors is used.
The main reason to study implementations on distributed memory machines like the T3E is the

memory bound of shared memory machines. The amount of memory required for the current parallel
implementation of Algorithm 2 for large n and N (n � m and N � p) is approximately 180Nn2

bytes. The current sequential implementation requires approximately 130Nn2 bytes. The amount
of memory per processor on the Cray T3E at HP�C, Delft is 128 Mbytes and the total amount of
memory of the 80-processors machine is approximately 10 Gbytes. This is only slightly larger than
the 8 Gbytes of main memory of the C90 at SARA, Amsterdam. Hence with the current Delft's
con�guration, we cannot solve larger problems than on the C90. However, processors of the T3E can
have up to 2 Gbytes of memory. Moreover, the number of processors can be extended to 2048, so the
total amount of memory can be as large as 4 Tbytes. This makes the machine perfectly suitable for
solving large eigenvalue problems like those coming from CASTOR. On such machines with 4 Tbytes
of memory, we could calculate the Alfv�en spectrum for eigenvalue problems with N = 8000 diagonal
blocks of size n = 1600. For such a large application, a rough estimate of the total wall clock time
required for performing the preprocessing and 60 iteration steps of Algorithm 2, like we did in our
experiments, is �ve hours. About 90% of this time would be required for the construction of the
factors L and U . This estimate is based on the numerical results and performance model described
in Section 7.

Acknowledgements

The authors wish to thank Herman te Riele for many stimulating discussions and numerous suggestions
for improving the presentation of the paper. They also thank Gerard Sleijpen and Henk van der Vorst
for carefully reading the paper and suggesting several improvements. Further they like to thank
Ronald van Pelt of Cray Research, The Netherlands, for his programming advices for both the Cray
T3D and Cray T3E, and HP�C (Delft) and SARA (Amsterdam) for their technical support. They
gratefully acknowledge Cray Research for a sponsored account on the Cray T3D, and the Dutch
National Computing Facilities Foundation NCF for the provision of computer time on the Cray C90
and the Cray T3E.

References

1. Richard Barrett, Michael Berry, Tony Chan, James Demmel, June Donato, Jack Dongarra,
Victor Eijkhout, Roldan Pozo, Charles Romine, and Henk van der Vorst. Templates for the

solution of linear systems: Building Blocks for Iterative Methods. SIAM, Philadelphia, 1994.
http://www.netlib.org/templates/.

2. Albert Booten and Henk van der Vorst. Cracking Large-Scale Eigenvalue Computations, Part I:
Algorithms. Computers in Physics, 10(3):239{242, 1996.

3. Albert Booten and Henk van der Vorst. Cracking Large-Scale Eigenvalue Computations, Part II:
Implementations. Computers in Physics, 10(4):331{334, 1996.

4. J.G.C. Booten, D. Fokkema, G.L.G. Sleijpen, and H.A. van der Vorst. Jacobi-Davidson methods
for generalized MHD-eigenvalue problems. Zeitschrift f�ur angewandte Mathemathik und Mechanik

76, Supplement 1, pages 131{134, 1996.

5. Diederik R. Fokkema, Gerard L.G. Sleijpen, and H.A. van der Vorst. Jacobi-Davidson style QR and
QZ algorithms for the partial reduction of matrix pencils. Technical Report nr. 941, Department
of Mathematics, University Utrecht, January 1996. revised: 1997 (to appear in SISC).

References 29

6. Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins University
Press, Baltimore and London, third edition, 1996.

7. M.J. Grote and T. Huckle. Parallel Preconditioning with Sparse Approximate Inverses. SIAM J.

Sci. Comput., 18(3):838{853, 1997.

8. D. Heller. Some aspects of the cyclic reduction algorithm for block tridiagonal linear systems.
SIAM J. Numer. Anal., 13:484{496, 1978.

9. W. Kerner, S. Poedts, J.P. Goedbloed, G.T.A. Huysmans, B. Keegan, and E. Schwartz. In
P. Bachman and D.C. Robinson, editors, Proceedings of 18th Conference on Controlled Fusion

and Plasma Physics. EPS: Berlin, 1991. IV.89-IV.92.

10. Y. Saad. ILUT: a dual threshold incomplete LU factorization. Num. Lin. Alg. Appl., 1:387{402,
1994.

11. G.L.G. Sleijpen, J.G.L. Booten, D.R. Fokkema, and H.A. van der Vorst. Jacobi-Davidson Type
Methods for Generalized Eigenproblems and Polynomial Eigenproblems. BIT, 36:595{633, 1996.

12. G.L.G Sleijpen and H.A. van der Vorst. A Jacobi-Davidson iteration method for linear eigenvalue
problems. SIAM J. Matrix Anal. Appl., 17(2):401{425, april 1996.

13. A. van der Ploeg. Reordering Strategies and LU-decomposition of Block Tridiagonal Matrices for
Parallel Processing. Technical Report NM-R9618, CWI, Amsterdam, October 1996.

14. Aad J. van der Steen. Benchmarking of High Performance Computers for scienti�c and technical

computation. PhD thesis, Utrecht University, 1997.

30 References

A. Appendix

In Table 12 the number of matrix-matrix multiplications (MM), complete LU decompositions (LU)
on n-by-n-blocks, systems solutions after LU factorizations (TR), and n-by-n-block updates (BU)
are listed. The counts MM and TR are split into a domain decomposition part (DD) and a cyclic
reduction part (CR). In this table p denotes the number of processing elements and Np is the number
of main diagonal blocks per processor. For simplicity we have taken N = Np�p. Analogous functions
for the solution process which consists of matrix-vector multiplications (MV), n-vector updates (VU)
and the solution of two triangular equations (SOLVE) are listed in Table 13.

MM(DD) =

�
Np � 1 = N � 1 if p = 1
(Np � 1)(4p� 3)� 2 otherwise

MM(CR) =

8>>><
>>>:

0 if p = 1; 2

2
P2log p

i=1 (d p
2i
e � 1) + 4

P2log p
i=3 (d p

2i
e � 1) p � 4

P2log p
i=1 d

p
2i
e+ 3

P2log p�1
i=1 (d p

2i
e � 1) N = p

LU = p�Np = N

TR(DD) = (Np � 1)(2p� 1) + 1

TR(CR) =

8><
>:

2
P2log p

i=1 (d p
2i�1

e � 1) if N > p

2
P2log p

i=1 d
p
2i
e+

P2log p�1
i=1 (d p

2i
e � 1) otherwise

BU =

�
0 if Np = 1
p� 1 otherwise

Table 12: Number of block operations performed by BLAS and LAPACK routines in DDCR.

MV(DD) = (Np � 1)(4p� 2)

MV(CR) =

8><
>:

4
P2log p

i=2 (d p
2i�1

e � 1) N > p

2
P2log p

i=1 d
p
2i
e+ 2

P2log p�1
i=1 (d p

2i
e � 1) N = p

SOLVE = p�Np = N

VU =

�
0 if Np = 1
p� 1 otherwise

Table 13: Number of block operations performed by BLAS and LAPACK routines. N is the number
of main diagonal blocks; Np the number of main diagonal blocks per processor and p the number of
processors.

