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ABSTRACT

We study the Jacobi-Davidson method for the solution of large generalized eigenproblems as they arise in

MagnetoHydroDynamics. We have combined Jacobi-Davidson (using standard Ritz values) with a shift and

invert technique. We apply a complete LU decomposition in which reordering strategies based on a combination

of block cyclic reduction and domain decomposition result in a well-parallelizable algorithm. Moreover, we

describe a variant of Jacobi-Davidson in which harmonic Ritz values are used. In this variant the same parallel

LU decomposition is used, but this time as a preconditioner to solve the `correction` equation.

The size of the relatively small projected eigenproblems which have to be solved in the Jacobi-Davidson

method is controlled by several parameters. The inuence of these parameters on both the parallel performance

and convergence behaviour will be studied. Numerical results of Jacobi-Davidson obtained with standard and

harmonic Ritz values will be shown. Executions have been performed on a Cray T3E.

1991 Mathematics Subject Classi�cation: Primary: 65-04, 65F10, 65F15, 65F50, 65N25. Secondary: 65Y05,

65Y20.
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1. Introduction

Consider the generalized eigenvalue problem

Ax = �Bx; A;B 2 CNt�Nt ; (1.1)

in which A and B are complex block tridiagonal Nt-by-Nt matrices and B is Hermitian positive

de�nite. The number of diagonal blocks is denoted by N and the blocks are n-by-n, so Nt = N � n.

In close cooperation with the FOM Institute for Plasma Physics \Rijnhuizen" in Nieuwegein, where

one is interested in such generalized eigenvalue problems, we have developed a parallel code to solve

(1.1). In particular, the physicists like to have accurate approximations of certain interior eigenvalues,

called the Alfv�en spectrum. A promising method for computing these eigenvalues is the Jacobi-

Davidson (JD) method [3, 4]. With this method it is possible to �nd several interior eigenvalues in

the neighbourhood of a given target � and their associated eigenvectors.

In general, the subblocks of A are dense, those of B are rather sparse (� 20% nonzero elements) and

Nt can be very large (realistic values are N = 500 and n = 800), so computer storage demands are
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very high. Therefore, we study the feasibility of parallel computers with a large distributed memory

for solving (1.1).

In [2], Jacobi-Davidson has been combined with a parallel method to compute the action of the

inverse of the block tridiagonal matrix A � �B. In this approach, called DDCR, a block-reordering

based on a combination of Domain Decomposition and Cyclic Reduction is combined with a complete

block LU decomposition of A� �B. Due to the special construction of L and U , the solution process

parallelizes well.

In this paper we describe two Jacobi-Davidson variants, one using standard Ritz values and one

harmonic Ritz values. The �rst variant uses DDCR to transform the generalized eigenvalue problem

into a standard eigenvalue problem. In the second one DDCR has been applied as a preconditioner

to solve approximately the 'correction' equation. This approach results also into a projected stan-

dard eigenvalue problem with eigenvalues in the dominant part of the spectrum. In Section 2 both

approaches are described. To avoid that the projected system becomes too large, we make use of a

restarting technique. Numerical results, based on this technique, are analyzed in Section 3. We end

up with some conclusions and remarks in Section 4.

2. Parallel Jacobi-Davidson

2.1 Standard Ritz values

The availability of a complete LU decomposition of the matrix A � �B gives us the opportunity to

apply Jacobi-Davidson to a standard eigenvalue problem instead of a generalized eigenvalue problem.

To that end, we rewrite (1.1) as

(A� �B)x = (�� �)Bx: (2.1)

If we de�ne Q := (A� �B)
�1
B then (2.1) can be written as

Qx = �x; with � =
1

�� �
, � = � +

1

�
: (2.2)

The eigenvalues we are interested in form the dominant part of the spectrum of Q, which makes them

relatively easy to �nd. The action of the operator Q consists of a matrix-vector multiplication with

B, a perfectly scalable parallel operation, combined with two triangular solves with L and U .

At the k-th step of Jacobi-Davidson, an eigenvector x is approximated by a linear combination of

k search vectors vj , j = 1; 2; � � � ; k, where k is very small compared with Nt. Consider the Nt-by-k

matrix Vk, whose columns are given by vj . The approximation to the eigenvector can be written as

Vks, for some k-vector s. The search directions vj are made orthonormal to each other, using Modi�ed

Gram-Schmidt (MGS), hence V �k Vk = I .

Let � denote an approximation of an eigenvalue associated with the Ritz vector u = Vks. The

vector s and the scalar � are constructed in such a way that the residual vector r = QVks � �Vks is

orthogonal to the k search directions. From this Rayleigh-Ritz requirement it follows that

V
�

k QVks = �V
�

k Vks() V
�

k QVks = �s: (2.3)

The size of the matrix V
�

k QVk is k. By using a proper restart technique k stays so small that this

'projected' eigenvalue problem can be solved by a sequential method.

In order to obtain a new search direction, Jacobi-Davidson requires the solution of a system of

linear equations, called the `correction equation'. Numerical experiments show that fast convergence

to selected eigenvalues can be obtained by solving the correction equation to some modest accuracy

only, by some steps of an inner iterative method, e.g. GMRES.

Below we show the Jacobi-Davidson steps used for computing several eigenpairs of (2.2) using

standard Ritz values.
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step 0: initialize

Choose an initial vector v1 with kv1k2 = 1; set V1 = [v1];

W1 = [Qv1]; k = 1; it = 1; nev = 0

step 1: update the projected system

Compute the last column and row of Hk := V �kWk

step 2: solve and choose approximate eigensolution of projected system

Compute the eigenvalues �1; � � � ; �k of Hk and choose � := �j with j�j j maximal

and �j 6= �i, for i = 1; � � � ; nev ; compute associated eigenvector s with ksk2 = 1

step 3: compute Ritz vector and check accuracy

Let u be the Ritz vector Vks; compute the residual vector r := Wks� �u;

if krk2 < tolsJD:j�j then

nev := nev + 1; �nev := �; if nev = Nev stop; goto 2

else if it = iter stop

end if

step 4: solve correction equation approximately with itSOL steps of GMRES

Determine an approximate solution ~z of z in

(I � uu�)(Q� �I)(I � uu�)z = �r ^ u�z = 0

step 5: restart if projected system has reached its maximum order

if k = m then

5a: Set k = kmin + nev . Construct C 2 Cm�k � Hm;

Orthonormalize columns of C; compute Hk := C�HmC

5b: Compute Vk := VmC; Wk := WmC

end if

step 6: add new search direction

k := k + 1; it := it+ 1; call MGS [Vk�1; ~z]; set Vk = [Vk�1; ~z]; Wk = [Wk�1; Q~z];

goto 1

Steps 2 and 5a deal with the small projected system (2.3). Those sequential steps are performed by

all processors in order to avoid communication. The basic ingredients of the other steps are matrix-

vector products, vector updates and inner products. Since, for our applications, Nt is much larger

than the number of processors, those steps parallelize well.

2.2 Harmonic Ritz values

For the introduction of harmonic Ritz values we return to the original generalized eigenvalue problem

(1.1). Assume (�; Vks) approximates an eigenpair (�; x), then the residual vector r is given by

r = AVks� �BVks:

In case of standard Ritz values, the correction vector r has to be orthogonal to Vk ; the harmonic Ritz

values approach asks for vectors r to be orthogonal to (A� �B)Vk . Let Wk denote (A��B)Vk , then

we have

r = AVks� �BVks

= (A� �B)Vks� (� � �)B(A � �B)�1(A� �B)Vks

= Wks� (� � �)B(A � �B)�1
Wks:

(2.4)

Obviously, � = 1
(���)

is a Ritz value of the matrix B(A � �B)�1 with respect to Wk. To obtain

eigenvalues in the neighborhood of �, � must lie in the dominant spectrum of B(A � �B)�1. The

orthogonalization requirement leads to

�Wk
�

Wks =Wk
�

BVks: (2.5)
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To obtain a standard eigenvalue problem we requireWk
�

Wk = I . By introducing C := (A��B)�(A�
�B) this requirement gives

Wk
�

Wk = Vk
�(A� �B)�(A� �B)Vk = Vk

�

CVk = I (2.6)

and we call Vk a C-orthonormal matrix.

The new search direction ~vk must be C-orthonormal to Vk�1, which implies that

Vk�1
�

vk = 0 and ~vk =
vk

kvkkC
=

vk

kwkk2
; (2.7)

where wk = (A� �B)vk .

To move from standard to harmonic Ritz values, the adjustments in the algorithm are not radical.

In comparison to the original implementation, the harmonic case requires two extra matrix-vector

multiplications and in addition extra memory to store an Nt-by-k matrix. The main di�erence is that

the LU decomposition of A� �B is used as a preconditioner and not as a shift and invert technique.

3. Numerical results

In this section, we show some results obtained on both an 80 processor Cray T3E situated at the

HP�C centre in Delft, The Netherlands and a 512 processor Cray T3E at Cray Research, Eagan, MN,

USA. The local memory per processor is at least 128 Mbytes. On these machines, the best results

were obtained by a MESSAGE PASSING implementation using Cray intrinsic SHMEM routines for data

transfer and communication. For more details, we refer to [2].

3.1 Problems

We have timed �ve MHD problems of the form (1.1). The Alfv�en spectra of Problems 1, 2 and 3, on

the one hand, and Problems 4 and 5, on the other hand, do not correspond because di�erent MHD

equilibria have been used. For more details we refer to CASTOR [1]. The choices of the acceptance

criteria will be explained in the next section.

1 A small problem of N = 64 diagonal blocks of size n = 48. We look for eigenvalues in the

neighbourhood of � = (�0:08; 0:60), and stop after 10 eigenpairs have been found with tolsJD =

10�8 and tolhJD = 10�6. The experiments have been performed on p = 8 processors.

2 The size of this problem is four times as big as that of the previous problem; N = 128 and

n = 96. Again, we look for eigenvalues in the neighbourhood of � = (�0:08; 0:60), and stop

after 10 eigenpairs have been found with tolsJD = 10�8 and tolhJD = 10�6. The experiments

have been performed on p = 8 processors.

3 The same as Problem 2, but performed on p = 32 processors.

4 The size of this large problem is: N = 256 and n = 256. We took � = (�0:15; :15) and look

for Nev = 12 eigenpairs with tolsJD = 10�8 and tolhJD = 10�5. The experiments have been

performed on p = 128 processors.

5 The size of this very large problem is: N = 4096 and n = 64, we took � = (�0:10; :23) leading to
another branch in the Alfv�en spectrum. Now, we look forNev = 20 eigenpairs with tolsJD = 10�8

and ~tolhJD = 10�5. For this problem a slightly di�erent acceptance criterion has been applied:

krk2 < ~tolhJD :j� +
1

�
j:kuk2: (3.1)

For the harmonic case, the 2-norm of u can be very large, about 106, so the results can be

compared with tolhJD = 10�6. At present, we prefer to control the residue as described in

Section 3.2. Figure 1 shows the distribution of 20 eigenvalues in the neighborhood of � =

(�0:10; :23).
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Figure 1: The eigenvalue distribution of problem 5

3.2 Acceptance criterion

For the standard approach we accept an eigenpair (� + 1
�
; u) if the residual vector satis�es:

krk2 = k(Q� �I)uk2 < tolsJD :j�j; with kuk2 = 1 (3.2)

and for the harmonic approach we require:

krk2 = k(A� (� +
1

�
)B)uk2 < tolhJD:j� +

1

�
j; with kukC = 1: (3.3)

To compare both eigenvalue solvers it is not advisable to choose the tolerance parameters tolsJD equal

to tolhJD in (3.2) and (3.3), respectively. There are two reasons to take di�erent values: �rstly, within

the same number of iterations the standard approach will result into more eigenpair solutions that

satisfy (3.2) than into solutions that satisfy (3.3). Secondly, if we compute for each accepted eigenpair

(�; u) the true normalized residue  de�ned by

 :=
k(A� �B)uk2

j�j:kuk2
; (3.4)

then we see that the harmonic approach leads to much smaller  values.

In Figure 2, the convergence behaviour of both the standard and harmonic approach is displayed,

with and without restarts. A � indicates that the eigenpair satis�es (3.2) or (3.3), a � denotes the

 value. We observe that the accuracy for the eigenpairs achieved by means of harmonic Ritz values

is better than suggested by tolhJD. On the other hand, tolsJD seems to be too optimistic about the

accuracy compared to the  values shown in Figure 2. In our experiments we took tolsJD = 10�8

and tolhJD = 10�6 and tolhJD = 10�5. It is not yet clear to us how these parameters depend on the

problem size or the choice of the target.

3.3 Restarting strategy

The algorithm has two parameters that control the size of the projected system: kmin and m. Dur-

ing each restart, the kmin eigenvalues with maximal norm and not included in the set of accepted

eigenvalues, that correspond to the kmin most promising search directions are maintained. Moreover,

since an implicit deation technique is applied in our implementation, the nev eigenpairs found so

far are kept in the system too. The maximum size m should be larger than kmin +Nev , where Nev

denotes the number of eigenvalues we are looking for. The inuence of several (kmin;m) parameter

combinations on both the parallel performance and convergence behaviour is studied.
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Figure 2: The two upper plots result on problem 4 using standard Ritz values, the lower two on the

same problem but using harmonic Ritz values. The �rst and third one show the convergence behaviour

of Jacobi-Davidson restarting each time when the size of the projected system reaches m = 37, where

kmin = 25 and kmin = 20, respectively. The second and fourth plots demonstrate the convergence in

case of no restarts. The process ended when Nev = 12 eigenvalues were found. It may happen that

two eigenvalues are found within the same iteration step.

3.4 Timing results of (kmin;m) parameter combinations

For each experiment we take m constant and for kmin we choose the values 5; 10; � � � ;m � Nev. In

Figures 4, 5, 6 and 7, the results of a single m value have been connected by a dashed or dotted

line. Experiments with several m values have been performed. In the plots we only show the most

interesting m values; m reaches its maximum if Nev eigenpairs were found without using a restart. In

the pictures this is indicated by a solid horizontal line, which is of course independent of kmin. If the

number of iterations equals 80 and besides less than Nev eigenpairs have been found, we consider the

result as negative. This implies that, although the execution time is low, this experiment cannot be

a candidate for the best (kmin;m) combination.

Before we describe the experiments illustrated by Figures 4, 5, 6 and 7 we make some general

remarks:

� We observed that if a (kmin;m) parameter combination is optimal on p processors, it is optimal

on q processors too, with p 6= q.

� For kmin small, for instance kmin = 5 or 10, probably too much information is thrown away,

leading to a considerable increase of iteration steps.

� For kmin large the number of restarts will be large at the end of the process; suppose that in

the extreme case, kmin = m � Nev , already Nev � 1 eigenpairs have been found, then after a

restart k becomes kmin +Nev � 1 = m� 1. In other words, each step will require a restart. In

Figure 3, the number of restarts is displayed corresponding to the results of Problem 2 obtained

with harmonic Ritz values.
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Figure 3: The number of restarts needed to computeNev eigenvalues of Problem 2. Results are shown

for di�erent m values: m = 20 (5� � � ), m = 25 (+� � line), m = 30 (��� line), m = 35 (� � � � line),
m = 40 (�� � line), m = 45 (2�� line).

� The number of iterations is almost independent of the number of processors involved; it may

happen that an increase of the number of processors causes a decrease by one or two iterations

under the same conditions, because the LU decomposition becomes more accurate if the number

of cyclic reduction steps increases at the cost of the domain decomposition part.

The �rst example (Figure 4) explicitly shows that the restarting technique can help to reduce the

wall clock time for both the standard and harmonic method. The minimum number of iterations to

compute 10 eigenvalues in the neighborhood of � is achieved in case of no restarts, viz, 53 for the

standard case, 51 for the harmonic case. The least time to compute 10 eigenvalues is attained for

kmin = 15 and m = 30; 35, but also for kmin = 10 and m = 30; 35 and m = 40 and kmin = 15; 20; 25

leads to a reduction in wall clock time of about 15 %. The harmonic approach leads to comparable

results: for (kmin;m) = (15; 30 : 35), but also (kmin;m) = (10; 30 : 35) and (kmin;m) = (15 : 25; 40)

a reasonable reduction in time is achieved. The score for kmin = 5 in combination with m = 35 is

striking, the unexpected small number of iterations in combination with a small kmin results into a

fast time.

The plots in Figure 5 with the timing results for the Jacobi-Davidson process for Problem 2 give a

totally di�erent view. There is no doubt of bene�t from restarting, although the numbers of iterations

pretty well correspond with those of Problem 1. This can be explained as follows: the size of the

projected system k is proportionally much smaller compared to Nt=p than in case of Problem 1; both

the block size and the number of diagonal blocks is twice as big. For Problem 1 the sequential part

amounts 45% and 36% of the total wall clock time, respectively, for the standard and harmonic Ritz

values. For Problem 2 these values are 10.5% and 8%, respectively. These percentages hold for the

most expensive sequential case of no restarts. The increase of JD iterations due to several restarts

can not be compensated by a reduction of serial time by keeping the projected system small.

When we increase the number of active processors by a factor 4, as is done in Problem 3 (see

Figure 6), we observe that again a reduction in wall clock time can be achieved by using a well-chosen

(kmin;m) combination. The number of iterations slightly di�er from those given in Figure 5, but the

pictures with the Jacobi-Davidson times look similar to those in Figure 5. If we should have enlarged

N by a factor of 4 and left the block size unchanged, we may expect execution times as in Figure 4.

For Problem 4, the limit of 80 iterations seems to be very critical. The right-hand plots of Figure 7

demonstrate that the number of iterations does not decrease monotonously when kmin increases for a

�xed value m as holds for the previous problems. Moreover, it may happen that for some (kmin;m)

combination, the limit of JD iterations is too strictly, while for both a smaller and larger kmin value

the desired Nev eigenpairs were easily found. In the left-hand plots only those results are included,

which generate 12 eigenvalues within 80 iterations. Apparently, for the standard case with m = 57
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Figure 4: The upper pictures result on problem 1 using standard Ritz values. The lower pictures

result on the same problem with harmonic Ritz values. Results are shown for di�erent m values:

m = 20 (5� � � ), m = 25 (+ � � line), m = 30 (� � � line), m = 35 (� � � � line), m = 40 (� � � line),
m = 45 (2�� line), m = 50 (4� � line). The solid lines give the value for no restart.

and 30 � kmin � 45, even less iterations are required than in case of no restarts. Of course, this

will lead to a time which is far better than for the no-restart case. For the harmonic approach the

behavior of the number of JD steps is less obvious, but also here the monotonicity is lost. Execution

times become unpredictable and the conclusion must be that it is better not to restart.

3.5 Parallel execution timing results

Table 1 shows the execution times of several parts of the Jacobi-Davidson algorithm on the Cray T3E;

the numbers in parentheses show the Gop-rates. We took

Nev = 20; tolsJD = 10�8; tolhJD = 10�5; kmin = 10; m = 30 +Nev ; itSOL = 0:

The number of eigenvalues found slightly depends on the number of processors involved: about 11 for

the standard and 13 for the harmonic approach within 80 iterations.

p Preprocessing Time Time Triangular

standard JD harmonic JD solves

32 7.90 (6.75) 64.59 88.61 25.56 (2.08)

64 4.08 (13.21) 31.70 43.78 13.28 (4.02)

128 2.19 (24.78) 15.07 21.33 7.28 (7.36)

256 1.27 (42.69) 8.55 11.48 4.36 (12.29)

512 0.84 (64.65) 5.64 7.02 3.01 (17.81)

Table 1: Wall clock times in seconds for the standard and harmonic Ritz approach. N = 4096, n = 64.
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Figure 5: The upper pictures result on problem 2 using standard Ritz values. The lower pictures

result on the same problem with harmonic Ritz values. Results are shown for di�erent m values:

m = 20 (5� � � ), m = 25 (+ � � line), m = 30 (� � � line), m = 35 (� � � � line), m = 40 (� � � line),
m = 45 (2�� line). The solid lines give the value for no restart.
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Figure 6: The left pictures results on problem 3 using standard Ritz values. The right pictures

result on the same problem with harmonic Ritz values. Results are shown for di�erent m values:

m = 20 (5� � � ), m = 25 (+ � � line), m = 30 (� � � line), m = 35 (� � � � line), m = 40 (� � � line),
m = 45 (2�� line). The solid lines give the value for no restart.
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Figure 7: The upper pictures result on problem 4 using standard Ritz values. The lower pictures

result on the same Problem with harmonic Ritz values. Results are shown for di�erent m values:

m = 37 (� � � � line), m = 42 (��� line), m = 47 (2�� line), m = 52 (5�� line), m = 57 (+�� line),
m = 62 (� � � line). The solid lines give the value for no restart.

The construction of L and U is a very time-consuming part of the algorithm. However, with a well-

chosen target � ten up to twenty eigenvalues can be found within 80 iterations. Hence, the life-time of

a (L;U) pair is about 80 iterations. On account of the cyclic reduction part of the LU factorization,

a process that starts on all processors, while at each step half of the active processors becomes idle,

we may not expect linear speed-up. The fact that the parallel performance of DDCR is quite good is

caused by the domain decomposition part of the LU. For more details we refer to [2, 5].

About 40% of the execution time is spent by the computation of the LU factorization (in Table 1

`Preprocessing`), which does not depend on the number of processors. The storage demands for

Problem 5 are so large that at least the memories of 32 processors are necessary. DDCR is an order

O(Nn
3) process performed by Level 3 BLAS and it needs less communication: only sub- and super

diagonal blocks of size n-by-n must be transfered. As a consequence, for the construction of L and

U , the communication time can be neglected also due to the fast communication between processors

on the Cray T3E. The Gop-rates attained for the construction of the LU are impressively high just

like its parallel speed-up.

The application of L and U , consisting of two triangular solves, is the most expensive component of

the JD process after preprocessing. It parallelizes well, but its speed is much lower, because it is built

up of Level 2 BLAS operations. The wall clock times for standard and harmonic JD are given including

the time spent on the triangular solves. Obviously, a harmonic iteration step is more expensive than

a standard step, but the overhead becomes less when more processors are used, because the extra

operations parallelize very well.

4. Conclusions

We have examined the convergence behaviour of two Jacobi-Davidson variants, one using standard

Ritz values, the other one harmonic Ritz values. For the kind of eigenvalue problems we are interested
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in, arising from MagnetoHydroDynamics, both methods converge very fast and parallelize pretty

well. With tolsJD = 10�8 and tolhJD = 10�5 in the acceptance criteria (3.2) and (3.3), respectively,

both variants give about the same amount of eigenpairs. The harmonic variant is about 20% more

expensive, but results into more accurate eigenpairs. With a well-chosen target ten up to twenty

eigenvalues can be found. Even for very large problems, Nt = 65; 536 and Nt = 262; 144, we obtain

more than 10 su�cient accurate eigenpairs in a few seconds.

Special attention has been paid to a restarting technique. The (kmin;m) parameter combination

prescribes the amount of information that remains in the system after a restart and the maximum

size of the projected system. In this paper we have demonstrated that kmin may not be too small,

because then too much information gets lost. On the other hand, too large kmin values lead to many

restarts and become expensive in execution time. In general, the number of iterations decreases when

m increases. It depends on the Nt=p value, as we have shown, whether restarts lead to a reduction in

the wall clock time for the Jacobi-Davidson process.
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