
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Iteration of Runge-Kutta methods with block triangular Jacobians

P.J. van der Houwen and B.P. Sommeijer

Department of Numerical Mathematics

NM-R9506 1995

Report NM-R9506
ISSN 0169-0388

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Iteration of Runge-Kutta Methods with
Block Triangular Jacobians

P.J. van der Houwen and B.P. Sommeijer
CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

We shall consider iteration processes for solving the implicit relations associated with implicit Runge-
Kutta (RK) methods applied to stiff initial value problems (IVPs). The conventional approach for solving
the RK equations uses Newton iteration employing the full righthand side Jacobian. For IVPs of large
dimension, this approach is not attractive because of the high costs involved in the LU-decomposition of
the Jacobian of the RK equations. Several proposals have been made to reduce these high costs. The most
well-known remedy is the use of similarity transformations by which the RK Jacobian is transformed to a
block-diagonal matrix whose blocks have the IVP dimension. In this paper we study an alternative
approach which directly replaces the RK Jacobian by a block-diagonal or block-triangular matrix whose
blocks themselves are block-triangular matrices. Such a grossly ‘simplified’ Newton iteration process
allows for a considerable amount of parallelism. However, the important issue is whether this block-
triangular approach does converge. It is the aim of this paper to get insight into the effect on the
convergence of block-triangular Jacobian approximations.

CR Subject Classification (1991): G.1.7
Keywords and Phrases:numerical analysis, Runge-Kutta methods, convergence,

parallelism.

1. Introduction

We shall consider iteration processes for solving the implicit relations associated with implicit Runge-

Kutta (RK) methods applied to the stiff initial value problem (IVP)

(1.1) y'(t) = f(y(t)), y(t0) = y0, y, f ∈ RRd.

Let the (s-stage) RK method be given by

R(Y) = 0, R(Y) := Y − h (A ⊗ I) F(Y) − (e ⊗ I) yn,
(1.2)

yn+1 = (esT ⊗ I) Y ,

2

where h is the integration step, yn and yn+1 represent approximations to the exact solution vector y(t)

at t = tn and t = tn+1, A is the s-by-s RK matrix, ⊗ denotes the Kronecker product, the s-dimensional

vectors e and ei respectively are the vector with unit entries and the ith unit vector, I is the d-by-d

identity matrix (in the following, the identity matrix will always denoted by I and its dimension will

be clear from the context in which it appears). The s components Y i of Y represent intermediate

approximations to the exact solution values and F(Y) contains the derivative values (f(Y i)). The

classical RK methods of this type, like the Radau IIA and Lobatto IIIA methods, are highly accurate

and highly stable, and therefore reliable methods for solving the IVP (1.1).

The conventional approach for solving the system R(Y) = 0 uses Newton iteration which requires the

Jacobian matrix I − A ⊗ hJ of the RK equations (1.2). Here, J denotes the Jacobian ∂f / ∂y of the

righthand side function f. For large d, this approach is not attractive because of the high costs

involved in the LU-decomposition of the sd-by-sd RK Jacobian I − A ⊗ hJ. To be more precise, the

LU costs are given by 2s3d3/3 + O(s2d2) flops. In the following, we shall ignore the last term in this

expression. Several proposals have been made to reduce these high costs. The most well-known

remedy is the use of similarity transformations by which I − A ⊗ hJ is transformed to a block-

diagonal matrix I − D ⊗ hJ whose blocks have dimension d (cf. Butcher [1]). For the classical

implicit RK methods that we want to use, the diagonal entries of D are complex, so that further

modifications are needed involving complex arithmetic (cf. Hairer and Wanner [5]). The resulting

iteration method is highly efficient and forms the basis for the by now famous RADAU5 code given

in [5]. Moreover, this iteration method has intrinsic parallelism, so that it is suitable for

implementation on a parallel system. In fact, by the similarity transformation approach, the sequential

(or effective) LU costs associated with s-stage RK methods can be reduced to 8d3/3.

An alternative approach directly replaces the RK Jacobian I − A ⊗ hJ by a block-diagonal or block-

triangular matrix I − B ⊗ hJ, where B is diagonal or triangular with real diagonal entries Bii . This

approach was analysed in [6] and [7]. The main costs involved in this method consist of the

evaluation of the righthand side Jacobian J, the LU-decompositions of the s matrices I − hBiiJ, ms

forward / backward substitutions, and ms righthand side evaluations. Here, m denotes the number of

iterations. It turns out that, except for the forward / backward substitutions, these costs reduce by a

factor s when a parallel system with s processors is used. We shall be particularly interested in high-

dimensional problems, i.e. d >> 1. Therefore, only O(md2) and O(d3) operations will be taken into

account. Furthermore, we assume that the RK Jacobian needs an up-date at the beginning of each RK

step (which is quite realistic because of the relatively large steps allowed by implicit RK methods).

Denoting the computational complexity per step on p processors by C(p) flops, we have

(1.3) C(p) ≈ p-1c d2 + 23 p-1s d3 + 2 ms d2,

3

where cd2 represents the computational complexity for computing J and x denotes the smallest

integer greater than or equal to x. For large d, the expression (1.3) shows that on one processor, the

costs of the block-triangular approach are s/4 times the costs required by the similarity transformation

approach. However, on s processors, this fraction becomes 1/4, so that for large d the block-

triangular method should become 4 times faster than RADAU5.

In this paper, we want to reduce the computational complexity of the block-triangular method by

tuning the iteration process to the problem at hand. For example, it often happens that the system

(1.1) can be split into weakly coupled subsystems. In such cases, it may be advantageous to adapt the

RK Jacobian to these coupling properties. Suppose that the righthand side Jacobian matrix J is

approximated by a σ-by-σ block-triangular matrix J~ (σ is assumed to be greater than 1) where the

blocks J~ik are di-by-dk matrices with i, k = 1, ... , σ, and let the RK Jacobian be replaced by an s-by-

s block-triangular matrix of which each diagonal block is itself a σ-by-σ block-triangular matrix

whose diagonal blocks are di-by-di matrices. The block-triangular structure of the simplified RK

Jacobian implies that the sd-dimensional linear system falls apart into sσ linear subsystems, s of

which have dimension d1, d2, ... , dσ, respectively. The vector d := (d1, d2, ... , dσ)T characterizes

the partitioning into blocks of the matrix J~ and will therefore be called the partitioning vector. For

large d and σ, the block-triangular approach reduces the computational work considerably, provided

that the number of iterations m~ does not increase excessively. Such an increase of the number of

iterations can be avoided by decreasing the stepsize. Let h and h~ denote the stepsizes taken by the full

Jacobian and block-triangular versions, and let h~ be such that for m~ = m, the block-triangular version

produces the same accuracy as the full Jacobian version. Assuming that the block-triangular version

up-dates its Jacobian and corresponding LU-decomposition with the same frequency as the full

Jacobian version, the sequential computational complexity C~(p) of the block-triangular version over a

step h is given by

(1.4) C~(p) ≈ p-1c~ d2 + 23 p-1σs d
~3 + 2hh~-1ms || d ||2

2,

where || d ||2 denotes the Euclidean norm of d, c~d2 represents the computational complexity for

computing J~, and d
~ is the maximal value of the dimensions di. Furthermore, assuming that

sufficiently many processors are available, the speed-up factor for the block-triangular approach on

p = σs processors is given by

(1.5) S :=
C(σs)

C~(σs)
 ≈

3c + 2σs(d + 3sm)

3c~ + 2σsd-2(d~3 + 3smhh~-1 ||d||2
2)

 .

4

If the righthand side Jacobian J is expensive, i.e. c and c~ are large, then we have speed-up by a factor

S ≈ cc~-1. Consequently, for expensive righthand side Jacobians, it is recommendable to choose J~ as

sparse as possible (e.g. block-diagonal).

In the case of cheap righthand side Jacobians (c and c~ can be ignored), it follows from (1.5) that

(1.6) S ≈
d2

||d||2
2

3sm + d

3smhh~-1 + d~3||d||2
-2

 ,

showing that S = S(m) is a monotonically decreasing function of m satisfying the inequality

(1.7)
d2

hh~-1||d||2
2
 ≤ S(m) ≤

d2

||d||2
2

3s + d

3shh~-1 + d~3||d||2
-2

 .

The important issue is whether the block-triangular iteration method does converge as m → ∞. It is

the aim of this paper to get insight into the effect on the convergence of block-triangular Jacobian

approximations.

2. Iteration of RK methods

Consider the following Newton-type iteration scheme for approximating yn+1:

(I − B ⊗ hJ~) (Y(j) − Y(j-1)) = − R(Y(j-1)) + hΓ(Y(j),Y(j-1)), j = 1, ... , m,
(2.1)

yn+1 = (esT ⊗ I) Y (m),

where I is the sd-by-sd identity matrix, B is diagonal or (lower) triangular with positive diagonal

entries, J~ is an approximation to the true Jacobian J at yn, and where Γ is an appropriately chosen

function based on the structure of J~, to be discussed below. It will be assumed that Γ(U ,U)

vanishes for any U. Hence, if (2.1) converges, then it converges to the solution of R(Y) = 0. We

remark that the case J~ = J and Γ(Y(j),Y(j-1)) = 0 has been analysed in [6] for B diagonal and in [7]

for B triangular.

A consequence of the introduction of the function Γ is that in each iteration in (2.1) the s systems of

dimension d have to be solved sequentially, even if B is diagonal. However, as already observed in

Section 1, if the matrix J~ is a σ-by-σ block-triangular approximation (J~ik) to J where the blocks J~ik

are di-by-dk matrices, then each of the s linear systems in (2.1) falls apart into a sequence of σ linear

subsystems, respectively of dimension d1, d2, ... , dσ. The block-triangular structure of J~ enables us

to ‘up-date’ the components of Γ(Y(j),Y(j-1)) during the computation of the stage value approximation

Yk(j).

5

2.1. The error equation

Let the righthand side Jacobian J be partitioned according to J = (Jik) where the blocks Jik are di-by-

dk matrices, and let J be split according to J = JL + JD + JU, where JL, JD, and JU are (with respect to

the block partitioning Jik) strictly lower triangular, diagonal and strictly upper triangular block

matrices. Furthermore, let us define

(2.2) Γ(Y(j),Y(j-1)) := (L ⊗ I) F(Y(j)) + (C ⊗ I) G(Y(j),Y(j-1)) − ((L + C) ⊗ I) F(Y(j-1)),

where C is diagonal, L is strictly lower triangular, and where for any U the function G satisfies the

relation G(U,U) = F(U). In fact, G(Y(j),Y(j-1)) is an approximation to F(Y) using the most recent

iteration values available.

In this section, we discuss the convergence for the linear case y' = Jy. For this model equation,

G(Y(j),Y(j-1)) can be expressed in the form

G(Y(j),Y(j-1)) = (I ⊗ JL) Y(j) + (I ⊗ (JD + JU)) Y(j-1),

so that

(2.3) hΓ(Y(j),Y(j-1)) = (L ⊗ hJ + C ⊗ hJL) Y(j) + (C ⊗ h(JD + JU) − (L + C) ⊗ hJ) Y(j-1).

The recursion for Y(j) takes the form

(2.4) (I − B ⊗ hJ~) (Y(j) − Y(j-1)) = (e ⊗ I) yn − Y(j-1)

+ ((L ⊗ hJ) + (C ⊗ hJL)) Y(j) + ((C ⊗ h(JD + JU)) + ((A − L − C) ⊗ hJ)) Y(j-1).

For the exact corrector solution we have

(2.5) (I − B ⊗ hJ~) (Y − Y) = (e ⊗ I) yn − Y

+ ((L ⊗ hJ) + (C ⊗ hJL)) Y + ((C ⊗ h(JD + JU)) + ((A − L − C) ⊗ hJ)) Y.

From (2.4) and (2.5) it follows that the error recursion is given by

Y(j) − Y = M (Y(j-1) − Y),
(2.6)

M = h(I − hS)-1 (A ⊗ J − S), S := B ⊗ J~ + L ⊗ J + C ⊗ JL.

6

The error amplification matrix M is completely determined by the RK matrix A and the lower block-

triangular matrix S. In this paper, we shall restrict our analysis to the two special cases

(2.7a) B = C = D, J~ = JD,

(2.7b) B = D, C = O, J~ = JD + JL,

where D denotes a diagonal matrix with nonnegative diagonal entries. The methods generated by

(2.7a) and (2.7b) both lead to the same matrix S:

(2.8) S = T ⊗ J − D ⊗ JU, T := L + D.

Hence, they possess identical error recursions, but will produce different solutions when applied to

nonlinear problems.

A necessary and sufficient condition for convergence of the error recursion (2.6) requires the spectral

radius ρ(M) to be less than 1. In the case J~ = J, L = C = O, analysed in [6], this spectral radius

condition leads to a condition in terms of the eigenvalues of hJ. For the more general family of

methods generated by (2.7), this is not possible and the condition ρ(M) < 1 can only be verified by a

direct numerical computation. However, if all diagonal entries of hS are sufficiently large, then the

condition ρ(M) < 1 can be transformed into a spectrum condition for J-1JU. In the case where not all

diagonal entries are large, it is possible to derive bounds for the amplification factor µ occurring in the

relation

(2.9) || M (a ⊗ v) || = µ || a ⊗ v ||,

where v is in the eigenspace of J and a is in the eigenspace of the matrix

(2.10) Z(z) = z(I − zT)-1 (A − T), z := hλ,

λ denoting the eigenvalue of J corresponding to v. If a ⊗ v happens to be an eigenvector of M, then

the amplification factor µ = µ(h,z) equals the corresponding eigenvalue of M, so that convergence

requires that all µ are less than 1. Hence, µ(h,z) < 1 is a necessary condition for convergence.

The derivation of amplification factor bounds and the convergence condition for the large-diagonal-

entries case will be the subjects of the following two sections.

7

2.2. Derivation of amplification factor bounds

The following theorem holds:

Theorem 2.1. Let S be of the form (2.8), let Z(z) be defined by (2.10), and let v and a be

eigenvectors of J and Z(z) with eigenvalues λ and ζ(z), respectively. If

(2.11a) h <
1

γ || JU ||
 , γ := || D || max

h
 || (I − T ⊗ hJ)-1 ||,

then the amplification factor µ defined in (2.9) satisfies

(2.11b) µ ≤
 | ζ (z)| + γ h || JU ||

1 − γ h || JU | |
 ,

and the corresponding convergence region is given by

(2.11c) Spectrum hJ ∈ CC
�

 := { z: ρ(Z(z)) < 1 − 2γ h || JU ||} .

Proof. From (2.8) it follows that M can be represented in the form

M = (I + Q)-1 (Q + R),

(2.12)

Q = (I − T ⊗ hJ)-1(D ⊗ hJU), R = (I − T ⊗ hJ)-1((A − T) ⊗ hJ).

By means of the conditions of the theorem, it is easily verified that

R (a ⊗ v) = (hλ (I − hλT)-1 (A − T) ⊗ I) (a ⊗ v) = ζ(z) (a ⊗ v)

so that

|| R (a ⊗ v) || ≤ | ζ(z) | || a ⊗ v ||.

Furthermore, assuming that || Q || < 1, we have

|| (I + Q)-1 || ≤
1

1 − || Q ||
 .

8

Hence,

|| M (a ⊗ v) || = ||(I + Q)-1 (Q + R) (a ⊗ v)|| ≤
|| Q || + | ζ(z) |

1 − || Q | |
 || a ⊗ v ||.

Since || Q || ≤ γ h || JU ||, where γ is defined in (2.11a), we obtain the bound (2.11b) and the

convergence region (2.11c). []

The bound (2.11b) on µ is sharp for JU = O, i.e. µ = | ζ(z)|, but will be rather conservative as || JU ||

increases. If the spectrum of J is assumed to cover the whole left halfplane, then the conditions (2.11)

lead to the stepsize condition

(2.13a) h <
1 − max

Rez≤0
 ρ(Z(z))

2γ || JU ||
 .

Similarly, if the spectrum of J is known to be negative, then we obtain

(2.13b) h <
1 − max

z≤0
 ρ(Z(z))

2γ || JU ||
 .

Given the IVP, the two crucial quantities determining the stepsize conditions (2.13) are the values of γ
and max ρ(Z(z)). In [7] matrices T have been constructed such that ρ(Z(z)) is small in the whole left

halfplane. In order to get some idea of the magnitude of the coefficient γ, we consider the case where

J is a normal matrix, so that

γ = || D || max
Rez≤0

 || (I − zT)-1 ||.

The following two examples compute the corresponding stepsize conditions (2.13).

Example 2.1. For the two-point Radau IIA corrector, the Butcher matrix A and the matrix T as

constructed in [7] are given by

 A = 


 
5/12 −1/12

3/4 1/4
 , T = 


 
5/12 0

3/4 2/5
 , ρ(Z(z)) = 

9z

(12 − 5z) (5 − 2z)
  .

9

From this we find γ ≈ 0.71, max
Rez≤0

 ρ(Z(z)) ≈ 0.18, and max
z≤0

 ρ(Z(z)) ≈ 0.09. Hence, the

convergence conditions (2.13) become h < 0.58 ||JU||-1 and h < 0.64 ||JU||-1, respectively. []

Example 2.2. Similarly, the four-point Radau IIA corrector is defined by the Butcher matrix

 A =

 



 

.11299947932316−.04030922072352 .02580237742034 −.0099046765073

.23438399574740 .20689257393536 −�.04785712804854 .01604742280652

.21668178462325 .40612326386737 .18903651817006 −.02418210489983

.22046221117677 .38819346884317 .32884431998006 .06250000000000

for which [7] derived the matrix

 T =

 



 

.1130 0 0 0

.2344 .2905 0 0

.2167 .4834 .3083 0

.2205 .4668 .4414 .1176

 .

Numerically, we found γ ≈ 0.96, max
Rez≤0

 ρ(Z(z)) ≈ 0.51, and max
z≤0

 ρ(Z(z)) ≈ 0.16, so that the

conditions (2.13) become h < 0.25 ||JU||-1 and h < 0.43 ||JU||-1, respectively. []

2.3. Large diagonal entries in the Jacobian

It sometimes happens that hS has large diagonal entries (i.e. hS − I ≈ hS), or equivalently,

(2.14a) min
k

 | Jkk | >> h-1 (min
i

 Dii
)-1, i =1, ... , s, k = 1, ... , d,

where J is assumed to be nonsingular. Outside the transient phase, where usually relatively large

stepsizes h are taken, condition (2.14a) is often satisfied. From (2.14a) it then follows that the error

amplification matrix M can be approximated by

M ≈ I − S-1(A ⊗ J) = I − (T ⊗ I − D ⊗ J-1JU)-1(A ⊗ I).

The eigenvalues of M are given by those of the matrix M~(z) := I − (T ⊗ I − zD ⊗ I)-1(A ⊗ I),where

z runs through the spectrum of J-1JU. Hence, we have convergence if

(2.14b) Spectrum of J-1JU ∈ CC
�

 := {z: ρ(M~(z)) < 1}.

10

Example 2.3. We derive the region of convergence for the two-point and four-point Radau IIA

correctors of the Examples 2.1 and 2.2. The characteristic equation for the eigenvalues µ~(z) of the

matrix M~(z) take the form det (A − T + zD + µ~(z)(T − zD)) = 0. Inspection of the region where µ~(z)

is bounded by 1 reveals that for both correctors the region of convergence for the eigenvalues of J-1JU

contains a disk of radius r which is centered at the origin and an infinite wedge in the left halfplane

with half angle α. For the two-point and four-point Radau IIA correctors, we obtain {r = 0.27,

α = 54o} and {r = 0.11, α = 18o}, respectively. []

Remark 2.1. It often happens that the system of ODEs (1.1) contains nonstiff equations (an

equation yi'(t) = fi(y(t)) is called nonstiff if all derivative values ∂f i(y(t)) / ∂yj, j = 1, ... , d, are of

moderate size, say bounded by 1). Such nonstiff equations do not need implicit treatment. Therefore,

in applying the convergence conditions (2.13) and (2.14), we may delete all rows and all columns in

J and JU which correspond to nonstiff equations. []

2.4. Permutation, transformation and scaling of the ODE system

It is often possible that the ordering of the equations in the system of ODEs (1.1) can be changed in

such a way that entries of large magnitude in J move to the lower left corner of the matrix. This may

help to reduce the norm of the matrix JU in condition (2.13) or to relax the condition (2.14b), so that

an attractive partitioning vector d can be obtained (i.e. d has small entries di). Let us write z(t) =

Py(t) where P is a permutation matrix, which is such that the Jacobian PJPT of the permuted system

z'(t) = Pf(PTz(t)) has a dominant, lower block-triangular structure. We shall define a reordering by

the permutation vector p = (p1, p2, ... , pd)T, where pi denotes the index of the y-component in the

original system (p = (1, ... , d)T implies no reordering). Evidently, the permutation matrix P

associated with p is defined by P := (ep1, ep2, ... , epd)T and the entries of PJPT are given by

J* ij = Jpipj, where Jrk denote the entries of J.

It may happen that the solution vector y possesses components of large and small magnitude. In such

cases, it is not clear when the permuted Jacobian has a ‘dominant, lower block-triangular’ structure,

and it may be useful to scale the ODE system by writing y~(t) = Dy(t), where D = diag (1/y(t0)).
Then, y~'(t) = Df(D-1y~(t)) has the scaled Jacobian DJD-1, and rather than choosing P such that PJPT

is dominant, lower block-triangular, P is chosen such that PDJD-1PT is dominant, lower block-

triangular.

It should be remarked that it is possible to achieve a complete lower block-triangular structure by the

real-Schur-decomposition of J. Writing z(t) = Qy(t) and z'(t) = Qf(QTz(t)), the (orthogonal) matrix Q

can be chosen such that QJQT has a lower block-triangular structure with blocks of at most dimension

2. However, the computation of Q (by the QR-algorithm) is rather expensive and requires 15d3

(Moler) flops (cf. [4, p. 235]).

11

Finally, we remark that in actual computation, the reordering, the real-Schur-decomposition, and the

scaling approach are most effective if the righthand side Jacobian is slowly changing over a large

number of steps and if the transformed righthand sides Pf(PTz(t)) and Qf(QTz(t)) can be provided in

'written out' form (otherwise the many additional matrix vector multiplications will reduce the

efficiency considerably).

3. Numerical experiments

The crucial aspect of the block-triangular Jacobian approximations discussed in this paper, is the

convergence behaviour for σ > 1. In this section, we illustrate the performance and speed-up factors

for a few test problems. Given the partitioning vector d and the iterated RK method {(2.1),(2.2)}, we

shall apply the following three modes (see also (2.7))

(3.1) Full Jacobian: J~ = J, B = D, C = O,

(3.2a) Triangular Jacobian: J~ = JD + JL, B = D, C = O,

(3.2b) Diagonal Jacobian: J~ = JD, B = C = D.

We used the four-stage Radau IIA corrector and we define the matrices A and T = L + D as in

Example 2.2. We shall refer to the methods generated by (3.1), (3.2a) and (3.2b) as the FullJ, the

TrianJ and the DiagJ versions (for a discussion of the FullJ version we refer to [7]).

3.1. Convergence conditions

The TrianJ and DiagJ versions both lead to S = T ⊗ J − D ⊗ JU as defined in (2.8), so that the matrix

S is of the form as presupposed in the conditions (2.13) and (2.14). For the the four-stage Radau IIA

corrector, we have the stepsize condition

(3.3) h < 0.25 || JU ||-1

(see Example 2.2), so that there is no severe stepsize restriction, provided that the partitioning vector

d is such that JU is nonstiff. Alternatively, we may check whether the conditions (2.14) are satisfied.

For the four-stage Radau IIA corrector, these conditions read:

(3.4) min
k

 | Jkk | >> 8.85 h-1, k = 1, ... , d, spectrum J-1JU ∈ CC
�

,

where CC
�

 is specified in Example 2.3.

12

3.2. Test problems

In all experiments, constant stepsizes have been used. If needed, we adapted the initial condition such

that the integration starts outside the transient phase. For a given number of iterations m, the tables of

results present the minimal number of significant digits sd of the components of y at the end point

t = tend of the integration interval (i.e. the absolute errors are written as 10-sd). Furthermore, we

compute the corresponding speed-up factors. Since in all examples, the costs for computing the

Jacobian are negligible, we shall use formula (1.6).

3.2.1. Problem of Davison. In Enright [3], the following 80-dimensional system of ODEs with

a strongly dominant Jacobian matrix is advocated as a test problem for stiff solvers:

(3.5) y'(t) = Ay(t) +
4
π ed ∑

k=0

4

 sin((2k+1)πt)
2k+1 , d = 80, y(0) = 0, tend = 5.

Here, the entries of A = (aij) are 0.01, except for the diagonal entries, the lower and upper off-

diagonal entries that are respectively given by aii = − (1.5)80-i, ai,i-1 = ai,i+1 = 0.1. This problem

originates from Davison [2]. It is an ideal example for applying a fully diagonal approximation to the

Jacobian. Keeping the original ordering p = (1, ... , 80)T, we have || JU || ≈ 0.88, so that condition

(3.3) becomes h < 0.32.

Table 3.1. Davison problem (3.5).

Version h dT m=1 m=2 m=3 m=4 . . . m=10 m=∞

FullJ 0.5 (80) 1.6 2.2 2.1 2.1 . . . 2.0 2.0
DiagJ 0.5 (1,...,1) 1.6 2.2 2.1 2.1 . . . 2.0

FullJ 0.2 (80) 1.9 3.3 4.1 4.2 . . . 4.2 4.2
DiagJ 0.2 (1,...,1) 1.9 3.3 4.1 4.2 . . . 4.2

FullJ 0.1 (80) 2.2 4.0 5.7 7.0 . . . 7.2 7.2
DiagJ 0.1 (1,...,1) 2.2 4.0 5.7 7.0 . . . 7.2

Since (3.5) is linear, the DiagJ and TrianJ modes are identical. We applied the method with

{ σ = 1, d = (80)}, i.e. the FullJ version, and with {σ = 80, d = (1,...,1)T}, where d is the

partitioning vector. Table 3.1 presents the sd-values obtained. Not surprisingly, the accuracies are the

same for hh~-1 = 1, so that (1.7) shows that the speed-up factor is at least S = 80. Note that

convergence is also obtained for h > 0.32, indicating that the convergence condition (3.3) is rather

conservative.

13

3.2. HIRES problem of Schäfer

A second example is provided by the HIRES problem given in [5, p.157] which originates from

Schäfer [8] for explaining the 'High Irradiance Responses' of photomorphogenesis:

y1' = − 1.71y1 + 0.43y2 + 8.32y3 + 0.0007, y1(5) = 0.316516757046 10-1,

y2' = + 1.71y1 − 8.75y2, y2(5) = 0.648154953106 10-2,

y3' = − 10.03y3 + 0.43y4 + 0.035y5, y3(5) = 0.458345106475 10-2,

y4' = + 8.32y2 + 1.71y3 − 1.12y4, y4(5) = 0.897432327352 10-1,

(3.6) y5' = − 1.745y5 + 0.43y7 + 0.43y6, y5(5) = 0.162451453753,

y6' = − 280y6y8 + 0.69y4 + 1.71y5 − 0.43y6 + 0.69y7, y6(5) = 0.685043896144,

y7' = + 280y6y8 − 1.81y7, y7(5) = 0.564670034192 10-2,

y8' = − 280y6y8 + 1.81y7, y8(5) = 0.532996580805 10-4,

with tend = 305. Only the last three equations of the system (3.7) are relatively stiff, so that we can

keep the original ordering. It is easily seen that setting σ = 2 and d = (4,4)T yields a matrix JU that

contains only one non-zero entry, i.e. (JU)3,5 = 0.035. Hence, in view of condition (3.3), we may

expect amplification factors less than 1 without severe restrictions on the stepsize h.

Table 3.2. HIRES problem (3.6) of Schäfer.

Version N dT m=1 m=2 m=3 m=4 . . . m=10 m=∞

FullJ 15 (8) 3.1 4.0 3.9 4.1 . . . 5.6 7.9
DiagJ 15 (4,4) 2.2 3.8 4.0 4.1 . . . 5.6

FullJ 7.5 (8) 3.3 4.4 4.7 5.3 . . . 7.0 9.0
DiagJ 7.5 (4,4) 2.5 4.5 4.8 5.5 . . . 7.0

The DiagJ and TrianJ modes produce almost the same results. Therefore, we listed results only for

the DiagJ mode. The figures in Table 3.2 show that from the second iteration on, the FullJ and DiagJ

version yield comparable accuracies for hh~-1 = 1. The speed-up factor is given by S ≈ 2 + m-1.

3.3. NUCREAC problem of Strehmel-Weiner

In Strehmel and Weiner [9, p. 310], we find a simplified model of a nuclear reactor:

y1' = − 1
3
 (500y2 − 374280)y1 + 1

3
 ∑
i=3

8

 β i y i ,

(3.7) y2' = − 1
1.67

 (330y2 − 136000y1 − 9900),

yi' = − γi (yi − y1) 3 ≤ i ≤ 8,
where

14

 y(0.5) =

 





 





1.7457940256021

749.47802922195

1.5793163555562

1.3218653740997

1.1041863341400

1.0402569019400

1.0112850912753

1.0046088058686

 , β= (β i) =

 



 



30.2

 82.8

 284.4

 141.1

 157.7

 23.8

 , γ= (γi) =

 



 



3

 1.13

 0.301

 0.111

 0.0305

 0.0124

 .

Only the first two equations are stiff, so that in the DiagJ and TrianJ modes we may set

d = (2,2,2,2)T with σ = 4. Since the stiff subsystem is iterated with a full Jacobian, convergence is

expected without stepsize restriction (see Remark 2.1). The results at tend = 15 listed in Table 3.3

show that the FullJ and DiagJ versions produce comparable accuracies for m > 1 and hh~-1 = 1 (again,

the TrianJ and DiagJ modes yield almost identical results). The speed-up factor (1.6) is

S ≈ 4 + 2.5m-1.

Table 3.3. NUCREAC problem (3.7) of Strehmel-Weiner.

Version N dT m=1 m=2 m=3 m=4 . . . m=10 m=∞

FullJ 2 (8) 1.5 2.5 3.3 3.5 . . . 3.5 3.5
DiagJ 2 (2,2,2,2) 1.0 2.0 2.9 3.5 . . . 3.5

FullJ 5 (8) 1.9 3.2 4.2 5.2 . . . 8.1 8.1
DiagJ 5 (2,2,2,2) 1.6 2.9 4.1 5.2 . . . 8.1

FullJ 10 (8) 2.2 3.8 5.0 6.2 . . . 10.1 10.1
DiagJ 10 (2,2,2,2) 2.0 3.6 5.0 6.2 . . . 10.1

3.4. ATMOS20 problem of Verwer

The ATMOS20 problem is a stiff, nonlinear system of 20 ODEs originating from an air pollution

model (see Verwer [10], we note that this paper contains a misprint, i.e. the third reaction rate should

read 0.123 105 instead of 0.120 105). We solved the corrected system in the integration interval

[5,60]. Table 3.4 lists results for the following four cases:

I: σ = 1, d = (20), p = (1, ... , 20)T;

II: σ = 3, d = (7, 5, 8)T, p = (1, ... , 20)T;

III: σ = 8, d = (3,3,3,3,2,2,3,1)T,

p = (16,17,18,5,6,8,9,10,11,12,13,14,15,7,19,20,3,1,4,2)T;

IV: σ = 20, d = (1, ... , 1)T, p = (1, ... , 20)T.

15

The DiagJ and TrianJ modes produced almost the same accuracies. For hh~-1 = 2 and hh~-1 = 4, the

cases II and III lead to a satisfactory speed-up factor S ≈ 1.45 + 2.2m-1 and S ≈ 1.85 + 3.1m-1,

respectively. The extremely cheap, but over-optimistic case IV leads to a rather poor convergence

behaviour.

Table 3.4. ATMOS20 problem of Verwer [10].

Version N Case m=1 m=2 m=3 m=4 . . . m=10 m=∞

FullJ 5 I 3.4 4.9 7.0 6.8 . . . 8.7 11.0
TrianJ 5 II 3.4 5.1 5.2 6.1 . . . 8.2

III 2.5 3.3 4.0 4.7 . . . 7.7
IV 2.2 2.8 3.4 4.1 . . . 4.1

FullJ 10 I 3.7 5.5 7.6 8.3 . . . 11.5 12.3
TrianJ 10 II 3.8 5.7 6.0 7.2 . . . 10.3

III 2.8 3.8 4.6 5.4 . . . 9.5
IV 2.4 3.2 4.1 4.7 . . . 4.5

FullJ 20 I 4.0 6.2 8.2 10.0 . . . 12.1 12.1
TrianJ 20 II 4.1 6.4 6.7 7.7 . . . 11.9

III 3.0 4.3 5.3 6.1 . . . 11.0
IV 2.7 3.7 4.7 5.1 . . . 4.9

References

[1] Butcher, J.C. (1976): On the implementation of implicit Runge-Kutta methods, BIT 16, 237-

240.

[2] Davison, E.J. (1973): An algorithm for the computer simulation of very large dynamical

systems, Automatica 9, 665-675.

[3] Enright, W.H. (1978): Improving the efficiency of matrix operations in the numerical solution

of stiff ordinary differential equations, ACM Trans. Math. Software 4, 127-136.

[4] Golub, G.H. and Van Loan, C.F. (1989): Matrix Computations, John Hopkins University

Press, Baltimore, MD, 2nd ed.

[5] Hairer, E. and Wanner, G. (1991): Solving Ordinary Differential Equations II; Stiff and

Differential-Algebraic Problems, Spinger Series in Comput. Math., Vol 14, Springer-Verlag,

Berlin.

[6] Houwen, P.J. van der and Sommeijer, B.P. (1991): Iterated Runge-Kutta methods on parallel

computers, SIAM J. Sci. Stat. Comput. 12, 1000-1028.

[7] Houwen, P.J. van der and Swart, J.J.B. de (1995): Triangularly implicit iteration methods for

ODE-IVP solvers, CWI Report NM-R95XX, in preparation.

16

[8] Schäfer, E. (1975): A new approach to explain the ‘High Irradiance Responses’ of

photomorphogenesis on the basis of phytochrome, J. of Math. Biology 2, 41-56.

[9] Strehmel, K. and Weiner, R. (1995): Numerik gewöhnlicher Differentialgleichungen, Teubner

Studienbücher: Mathematik, Teubner, Stuttgart.

[10] Verwer, J.G. (1994): Gauss-Seidel iteration for stiff ODEs from chemical kinetics, SIAM J.

Sci. Comput. 15, 1243-1250.

