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Iteration of Runge-Kutta Methods with
Block Triangular Jacobians

P.J. van der Houwen and B.P. Sommeijer

CWwiI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

We shall consider iteration processes for solving the implicit relations associated with implicit Runge-
Kutta (RK) methods applied to stiff initial value problems (IVPs). The conventional approach for solving
the RK equations uses Newton iteration employing the full righthand side Jacobian. For IVPs of large
dimension, this approach is not attractive because of the high costs involved in the LU-decomposition of
the Jacobian of the RK equations. Several proposals have been made to reduce these high costs. The most
well-known remedy is the use of similarity transformations by which the RK Jacobian is transformed to a
block-diagonal matrix whose blocks have the IVP dimension. In this paper we study an alternative
approach which directly replaces the RK Jacobian by a block-diagonal or block-triangular matrix whose
blocks themselves are block-triangular matrices. Such a grossly ‘simplified’ Newton iteration process
allows for a considerable amount of parallelism. However, the important issue is whether this block-
triangular approach does converge. It is the aim of this paper to get insight into the effect on the
convergence of block-triangular Jacobian approximations.

CR Subject Classification (199X}.1.7
Keywords and Phrases:numerical analysis, Runge-Kutta methods, convergence,
parallelism.

1. Introduction
We shall consider iteration processes for solving the implicit relations associated with implicit Rungt
Kutta (RK) methods applied to the stiff initial value problem (IVP)

(1.1) y'(®) =f(y(®), y(to) =yo, y,fORI
Let the (s-stage) RK method be given by
R(Y)=0, RY):=Y-h(AOI)FY)-(eOl)yn,

(1.2)
Yn+1 = (eST O |) Y,
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where h is the integration stgp, andyn+1 represent approximations to the exact solution vegtpr
att=tandt =§+1, Ais the s-by-s RK matrix,] denotes the Kronecker product, the s-dimensional
vectorse ande; respectively are the vector with unit entries and the ith unit vector, | is the d-by-d
identity matrix (in the following, the identity matrix will always denoted by | and its dimension will
be clear from the context in which it appears). The s compoiNgmEY represent intermediate
approximations to the exact solution values &) contains the derivative vaIu(t(Yi)). The
classical RK methods of this type, like the Radau IIA and Lobatto IlIA methods, are highly accurat
and highly stable, and therefore reliable methods for solving the IVP (1.1).

The conventional approach for solving the system)R{0 uses Newton iteration which requires the
Jacobian matrix + A OO hJ of the RK equations (1.2). Here, J denotes the Jacdbialy of the
righthand side functioi. For large d, this approach is not attractive because of the high cost:
involved in the LU-decomposition of the sd-by-sd RK Jacobia@Il hJ. To be more precise, the
LU costs are given by 2d3/3 + O(2d?) flops. In the following, we shall ignore the last term in this
expression. Several proposals have been made to reduce these high costs. The most well-kn
remedy is the use of similarity transformations by whichA [0 hJ is transformed to a block-
diagonal matrix I- D [0 hJ whose blocks have dimension d (cf. Butcher [1]). For the classical
implicit RK methods that we want to use, the diagonal entries of D are complex, so that furthe
modifications are needed involving complex arithmetic (cf. Hairer and Wanner [5]). The resulting
iteration method is highly efficient and forms the basis for the by now famous RADAUS code givel
in [5]. Moreover, this iteration method has intrinsic parallelism, so that it is suitable for
implementation on a parallel system. In fact, by the similarity transformation approach, the sequent
(or effective) LU costs associated with s-stage RK methods can be reducé@to 8d

An alternative approach directly replaces the RK Jacobtaf [1 hJ by a block-diagonal or block-
triangular matrix - B O hJ, where B is diagonal or triangular wregmal diagonal entries @ This
approach was analysed in [6] and [7]. The main costs involved in this method consist of tr
evaluation of the righthand side Jacobian J, the LU-decompositions of the s matritBgll ms
forward/ backward substitutions, and ms righthand side evaluations. Here, m denotes the number
iterations. It turns out that, except for the forwdrdckward substitutions, these costs reduce by a
factor s when a parallel system with s processors is used. We shall be particularly interested in hi
dimensional problems, i.e. d >> 1. Therefore, only Gnashd O(&) operations will be taken into
account. Furthermore, we assume that the RK Jacobian needs an up-date at the beginning of eacl
step (which is quite realistic because of the relatively large steps allowed by implicit RK methods
Denoting the computational complexity per step on p processors by C(p) flops, we have

(1.3) Cp)=pled? + 2 OprlsidB + 2 mal2,



where cd represents the computational complexity for computing JZandenotes the smallest
integer greater than or equal to x. For large d, the expression (1.3) shows that on one processor
costs of the block-triangular approach are s/4 times the costs required by the similarity transformati
approach. However, on s processors, this fraction becomes 1/4, so that for large d the blor
triangular method should become 4 times faster than RADAUS.

In this paper, we want to reduce the computational complexity of the block-triangular method b
tuning the iteration process to the problem at hand. For example, it often happens that the sysi
(1.1) can be split into weakly coupled subsystems. In such cases, it may be advantageous to adap
RK Jacobian to these coupling properties. Suppose that the righthand side Jacobian matrix .
approximated by a-by-o block-triangular matrix (o is assumed to be greater than 1) where the
blocks Jii are G-by-d¢ matrices with i, k = 1, ...g, and let the RK Jacobian be replaced by an s-by-
s block-triangular matrix of which each diagonal block is itsedflay-o block-triangular matrix
whose diagonal blocks arg-loly-dj matrices. The block-triangular structure of the simplified RK
Jacobian implies that the sd-dimensional linear system falls apartarioesar subsystems, s of
which have dimensioniddy, ... , @&, respectively. The vectat := (dy, tb, ... , ¢)T characterizes

the partitioning into blocks of the matrikand will therefore be called thoartitioning vector. For
large d andb, the block-triangular approach reduces the computational work considerably, provide
that the number of iterations does not increase excessively. Such an increase of the number c
iterations can be avoided by decreasing the stepsize. Let hdembte the stepsizes taken by the full
Jacobian and block-triangular versions, and Ibetsuch that for i¥ m, the block-triangular version
produces the same accuracy as the full Jacobian version. Assuming that the block-triangular vers
up-dates its Jacobian and corresponding LU-decomposition with the same frequency as the 1
Jacobian version, the sequential computational compIE(qu)/@Ithe block-triangular version over a
step h is given by

(1.4) Cp)=pled2 + 2 (prlostdd + 2hfrims||d |2,

where |[d ||, denotes the Euclidean norm @f Cd? represents the computational complexity for
computingj, andd is the maximal value of the dimensions &urthermore, assuming that
sufficiently many processors are available, the speed-up factor for the block-triangular approach
p =0S processors is given by

_ C(os) _ 3c + Zos(d + 3sm)
C(os) 3T + 20sd2(d3 + 3smhhl|d|,2)

(1.5) S:



If the righthand side Jacobian Xispensivgi.e. ¢ and are large, then we have speed-up by a factor
S=cc-L. Consequently, for expensive righthand side Jacobians, it is recommendable taJchsose
sparse as possible (e.g. block-diagonal).

In the case ofheaprighthand side Jacobians (c andan be ignored), it follows from (1.5) that

_ 3sm + d
< ¢ Ssmt
1" 3smARrt + G322

(1.6) S

showing that S = S(m) is a monotonically decreasing function of m satisfying the inequality

2 2
(1.7) ¥ gmye 3s+d

hA-L]jd]},2 Kb 3shhrt + a2

The important issue is whether the block-triangular iteration method does converge as his
the aim of this paper to get insight into the effect on the convergence of block-triangular Jacobi
approximations.

2. Iteration of RK methods
Consider the following Newton-type iteration scheme for approximgfing

(1-B0ONT) (YO - YED) = - REYGD) + hr(YD YED), j=1,..,m,
(2.1)
Yn+1 = (esT 0 I) Y(m),

where | is the sd-by-sd identity matrix, B is diagonal or (lower) triangular with positive diagonal
entries,J is an approximation to the true Jacobian yhand wherd™ is an appropriately chosen
function based on the structure f to be discussed below. It will be assumed théat ,U)
vanishes for any. Hence, if (2.1) converges, then it converges to the solutionYof RQ. We
remark that the cask = J and (Y ®,Y (-1)) = 0 has been analysed in [6] for B diagonal and in [7]
for B triangular.

A consequence of the introduction of the functioms that in each iteration in (2.1) the s systems of
dimension d have to be solvedquentially even if B is diagonal. However, as already observed in
Section 1, if the matrid is ao-by-o block-triangularapproximation jik) to J where the blockdix

are g-by-dk matrices, then each of the s linear systems in (2.1) falls apart into a sequeficeaf
subsystems, respectively of dimensiana, ... , ;. The block-triangular structure dfenables us

to ‘up-date’ the components B{Y (),Y(-1)) during the computation of the stage value approximation
Y0,



2.1. The error equation

Let the righthand side Jacobian J be partitioned according tqi) wiiére the blocksydare g-by-

dk matrices, and let J be split according to J§ =X + 1y, where J, J, and J; are (with respect to
the block partitioning jd) strictly lower triangular, diagonal and strictly upper triangular block
matrices. Furthermore, let us define

(2.2) FYDYGy=(Lonryd)+(coln) Gyhyl1)-(L+Cydln) Fyid),
where C is diagonal, L is strictly lower triangular, and where forlatlye functionG satisfies the
relationG(U,U) = F(U). In fact,G(Y 1),Y(-1)) is an approximation t&(Y) using the most recent
iteration values available.

In this section, we discuss the convergence for the linearytasdy. For this model equation,
G(Y0),Y(-1) can be expressed in the form

GIYOYEM=>103) YD +(0Op+d)) YD,

so that
(2.3) hreY®, Y@y =(L O hd+cOhd) YO +(COh@ + ) - (L + C) 0 hd) YD,
The recursion fol () takes the form
(2.4) (1-B0h3) (YO -YGED) =(eO 1) yp - Y(D)

+((Lon) +(conhy)) YO +((COh@ + 1)) +((A-L-C)Oh)) YD,
For the exact corrector solution we have
(2.5) (1-BONI) (Y-Y)=(eDO1)yn-Y

+(Lon)+(cohny)Yy+((Coh@+d)+(A-L-C)Oh)) Y.

From (2.4) and (2.5) it follows that the error recursion is given by

YO -y =M (Y(D -Y),
(2.6)

M=h(1-hs)*(ADJ-S), S:=BOT+LOJ+COJ.
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The error amplification matrix M is completely determined by the RK matrix A and the lower block-
triangular matrix S. In this paper, we shall restrict our analysis to the two special cases

(2.7a) B=C=D, J=b,
(2.7b) B=D,C=0, J=b+d,

where D denotes a diagonal matrix with nonnegative diagonal entries. The methods generated
(2.7a) and (2.7b) both lead to the same matrix S:

(2.8) S=TOJ-DOJy, T:=L+D

Hence, they possess identical error recursions, but will produce different solutions when applied
nonlinear problems.

A necessary and sufficient condition for convergence of the error recursion (2.6) requires the spec
radiusp(M) to be less than 1. In the cade=J,L=C =0, analysed in [6], this spectral radius
condition leads to a condition in terms of the eigenvalues of hJ. For the more general family
methods generated by (2.7), this is not possible and the comuliiijrx 1 can only be verified by a
direct numerical computation. However, if all diagonal entries of hS are sufficiently large, then th
conditionp(M) < 1 can be transformed into a spectrum condition-fdyJIn the case where not all
diagonal entries are large, it is possible to derive bounds for the amplificationufacturring in the
relation

(2.9) IM@OV)[[=ullabv]l,
wherev is in the eigenspace of J aads in the eigenspace of the matrix
(2.10) Z@)=A1 -z (A-T), z:=h,

A denoting the eigenvalue of J corresponding. tid a [ v happens to be an eigenvector of M, then
the amplification factop = p(h,z) equals the corresponding eigenvalue of M, so that convergence
requires that alll are less than 1. Henggh,z) < 1 is a necessary condition for convergence.

The derivation of amplification factor bounds and the convergence condition for the large-diagone
entries case will be the subjects of the following two sections.



2.2. Derivation of amplification factor bounds
The following theorem holds:

Theorem 2.1.Let S be of the form (2.8), let Z(z) be defined by (2.10), and/lahda be
eigenvectors of J and Z(z) with eigenvaldeend{(z), respectively. If

1

(2.11a) h < ,
Yl |l

y:=11D | max|| (1 - T O Y™,

then the amplification factqr defined in (2.9) satisfies

(2.11b) " < 1@l +yhil bl

1-yhil Ll

and the corresponding convergence region is given by

(2.11c) Spectrum hJd C:={z:p(Z(z)) <1-2yh || Y |}.

Proof. From (2.8) it follows that M can be represented in the form

M=(+Q)* (@+R).
(2.12)
Q=(-Ton)Hpony) R=(-To0n)(a-T)0nJ).

By means of the conditions of the theorem, it is easily verified that

R@Ov)=(MI-mT)1@A-T)01)@0v) =2z @0v)
so that

IR@OV) I=[¢@) | [labvl.

Furthermore, assuming that || Q || < 1, we have

- 1
1 +Q g — = .
et oo



Hence,

QI+ 14(2)]
1-11Qll

IM@OW | =]l(1+Q?*(Q+R @OV < lladvl.

Since || Q kyh|l & ||, wherey is defined in (2.11a), we obtain the bound (2.11b) and the
convergence region (2.11¢).

The bound (2.11b) op is sharp forJ = O, i.e.u = |{(z)|, but will be rather conservative asj||J
increases. If the spectrum of J is assumed to cover the whole left halfplane, then the conditions (2.
lead to the stepsize condition

1 - max p(Z(2))
(2.13a) h < Rez0
2y |l L

Similarly, if the spectrum of J is known to be negative, then we obtain

1 - maxp(Z(2))
2y |l L ]

(2.13D) h <

Given the IVP, the two crucial quantities determining the stepsize conditions (2.13) are the walues ¢
and maxp(Z(z)). In [7] matrices T have been constructed suchg(ia(z)) is small in the whole left
halfplane. In order to get some idea of the magnitude of the coeffici@rtconsider the case where

J is a normal matrix, so that

- _ 7)1
y= 11D [jmax || (1 = 2T)™ |I.
The following two examples compute the corresponding stepsize conditions (2.13).

Example 2.1.For the two-point Radau IIA corrector, the Butcher matrix A and the matrix T as
constructed in [7] are given by

D4 va O -0z 250 PEQ@) D(lZ— 52) (5- ZZ)D :




From this we findy = 0.71, max. p(z(z)) = 0.18, and ma}p(Z(z)) 0.09. Hence, the
convergence conditions (2.13) become h < 0.58}and h < 0 64 lWAFL, respectively(]

Example 2.2.Similarly, the four-point Radau IIA corrector is defined by the Butcher matrix

[j11299947932316<04030922072352.02580237742034-ﬁ0099046765073[]
.23438399574740.20689257393536 — .04785712804854 .01604742280652
.21668178462325 .40612326386737 .18903651817006 —.0241821048998
.22046221117677 .38819346884317 .32884431998006 .06250000000000

for which [7] derived the matrix

1130 0 0 0
[ N

.2344 2905 O 0
L2167 .4834 .3083 O []
.2205 .4668 .4414 1176

T =

Numerically, we foundy = 0.96,Rrrt19%x0 p(Z(z)) = 0.51, andzr<noap(2(z)) = 0.16, so that the
conditions (2.13) become h < 0.2%|[d and h < 0.43 ||]f2, respectively[]

2.3. Large diagonal entries in the Jacobian
It sometimes happens that hS has large diagonal entries (€.=hB8S), or equivalently,

(2.14a) mkin | kk | >> hl( miin D;)L i=1,..,s, k=1,..,d,

where J is assumed to be nonsingular. Outside the transient phase, where usually relatively la
stepsizes h are taken, condition (2.14a) is often satisfied. From (2.14a) it then follows that the er
amplification matrix M can be approximated by

M=l-SYADJ)=1-(TO1-DOIy)HAaOI).

The eigenvalues of M are given by those of the méf(lz()M: |- (T Ol1-zDO I)'l(A [ I),where
z runs through the spectrum ofJ). Hence, we have convergence if

(2.14b) Spectrum of 3Jy O C:={z: p(M(2)) < 1}.
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Example 2.3.We derive the region of convergence for the two-point and four-point Radau II1A
correctors of the Examples 2.1 and 2.2. The characteristic equation for the eigep(@|uwdshe
matrix i\7|(z) take the form ddA — T + zD +{i(z)(T — zD)) = 0. Inspection of the region whei¢z)

is bounded by 1 reveals that for both correctors the region of convergence for the eigenvailigs of J
contains a disk of radius r which is centered at the origin and an infinite wedge in the left halfplar
with half anglea. For the two-point and four-point Radau IlA correctors, we obtain {r = 0.27,
a =58} and {r = 0.11,a = 18%, respectively[]

Remark 2.1. It often happens that the system of ODEs (1.1) contagrsstiff equations (an
equation y(t) = fi(y(t)) is callednonstiffif all derivative value9fi(y(t)) / dy;, j =1, ..., d, are of
moderate size, say bounded by 1). Such nonstiff equations do not need implicit treatment. Therefc
in applying the convergence conditions (2.13) and (2.14), we may delete all rows and all columns
J and g which correspond to nonstiff equatiofis.

2.4. Permutation, transformation and scaling of the ODE system

It is often possible that therdering of the equations in the system of ODEs (1.1) can be changed in
such a way that entries of large magnitude in J move to the lower left corner of the matrix. This mi
help to reduce the norm of the matrixid condition (2.13) or to relax the condition (2.14b), so that
an attractive partitioning vectat can be obtained (i.el has small entriesjd Let us writez(t) =

Py(t) where P is a permutation matrix, which is such that the JacobidroPth® permuted system
Z'(t) = PF(PTz(t)) has a dominant, lower block-triangular structure. We shall define a reordering by
the permutation vectqy = (py, p, ..., R) T, where pdenotes the index of the y-component in the
original system g = (1, ..., dJ implies no reordering). Evidently, the permutation matrix P
associated withp is defined by P :=(ep1, €y, - ,epd)T and the entries of PJRare given by

J*ij = ‘JPin’ where g denote the entries of J.

It may happen that the solution vecygnossesses components of large and small magnitude. In suct
cases, it is not clear when the permuted Jacobian has a ‘dominant, lower block-triangular’ structu
and it may be useful to scale the ODE system by wrifitig= Dy(t), where D = diad1/y(to)).
Then,y'(t) = Df(D-1y(t)) has the scaled Jacobian D3land rather than choosing P such that’PJP

is dominant, lower block-triangular, P is chosen such that PIPJls dominant, lower block-
triangular.

It should be remarked that it is possible to achieve a complete lower block-triangular structure by t
real-Schur-decomposition of J. Writia¢f) = Qy(t) andz'(t) = Qf(QTz(t)), the (orthogonal) matrix Q

can be chosen such that QJgas a lower block-triangular structure with blocks of at most dimension
2. However, the computation of @y the QR-algorithm) is rather expensive and requires$ 15d
(Moler) flops (cf. [4, p. 235]).
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Finally, we remark that in actual computation, the reordering, the real-Schur-decomposition, and t
scaling approach are most effective if the righthand side Jacobian is slowly changing over a lar
number of steps and if the transformed righthand sit{&3 #t)) and @G(QTz(t)) can be provided in
‘written out' form (otherwise the many additional matrix vector multiplications will reduce the
efficiency considerably).

3. Numerical experiments

The crucial aspect of the block-triangular Jacobian approximations discussed in this paper, is 1
convergence behaviour for> 1. In this section, we illustrate the performance and speed-up factors
for a few test problems. Given the partitioning ved@nd the iterated RK method {(2.1),(2.2)}, we
shall apply the following three modes (see also (2.7))

(3.1) Full Jacobian: J=J, B=D, C=0,
(3.2a) Triangular Jacobian: J=b+J, B=D, C=0,
(3.2b) Diagonal Jacobian:  J = b, B=C=D.

We used the four-stage Radau IIA corrector and we define the matrices Aand T =L + D as
Example 2.2. We shall refer to the methods generated by (3.1), (3.2a) and (3.2b) as the FullJ,
TrianJ and the DiagJ versions (for a discussion of the FullJ version we refer to [7]).

3.1. Convergence conditions

The TrianJd and DiagJ versions both lead to S(F=J- D [0 Jy as defined in (2.8), so that the matrix

S is of the form as presupposed in the conditions (2.13) and (2.14). For the the four-stage Radau
corrector, we have the stepsize condition

(3.3) h<0.25]d]|
(see Example 2.2), so that there is no severe stepsize restriction, provided that the partitioning ve:
d is such thatJ is nonstiff. Alternatively, we may check whether the conditions (2.14) are satisfied.

For the four-stage Radau IlA corrector, these conditions read:

(3.4) mkin | kx| >>8.85H, k=1, ..,d, spectrumiJy O C,

whereC is specified in Example 2.3.
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3.2. Test problems

In all experiments, constant stepsizes have been used. If needed, we adapted the initial condition ¢
that the integration starts outside the transient phase. For a given number of iterations m, the table
results present the minimal number of significant digits sd of the componengt tie end point

t = teng Of the integration interval (i.e. the absolute errors are written &8).1Burthermore, we
compute the corresponding speed-up factors. Since in all examples, the costs for computing
Jacobian are negligible, we shall use formula (1.6).

3.2.1. Problem of DavisonlIn Enright [3], the following 80-dimensional system of ODEs with
a strongly dominant Jacobian matrix is advocated as a test problem for stiff solvers:

4 .
(35) YO =AD+ te kzosﬂ%), d =80, y(0) =0, fend= .

Here, the entries of A = §xare 0.01, except for the diagonal entries, the lower and upper off-
diagonal entries that are respectively given fpya (1.5807, g .1 = g j+1 = 0.1. This problem
originates from Davison [2]. It is an ideal example for applying a fully diagonal approximation to the
Jacobian. Keeping the original orderipg= (1, ... , 80, we have ||J ||= 0.88, so that condition
(3.3) becomes h < 0.32.

Table 3.1.Davison problem (3.5).

Version h dT m=1 m=2 m=3 m=4 ... m=10 m=oco
FullJ 0.5 (80) 1.6 2.2 2.1 2.1 2.0 2.0
Diag) 0.5 (1,..,1) 1.6 22 21 21 2.0
Fulld 0.2 (80) 1.9 3.3 4.1 4.2 4.2 4.2
Diag) 0.2 (1,..,1) 1.9 3.3 41 4.2 4.2
Fulld 0.1 (80) 2.2 4.0 5.7 7.0 7.2 7.2
Diag) 0.1 (1,..,1) 22 40 57 7.0 7.2

Since (3.5) is linear, the DiagJ and TrianJ modes are identical. We applied the method wi
{o =1,d = (80)}, i.e. the FullJ version, and witho{= 80,d = (1,...,1Y}, where d is the
partitioning vector. Table 3.1 presents the sd-values obtained. Not surprisingly, the accuracies are
same for hh! = 1, so that (1.7) shows that the speed-up factor is at least S = 80. Note thi
convergence is also obtained for h > 0.32, indicating that the convergence condition (3.3) is ratt
conservative.
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3.2. HIRES problem of Schéafer
A second example is provided by the HIRES problem given in [5, p.157] which originates fron
Schafer [8] for explaining the 'High Irradiance Responses' of photomorphogenesis:

y1'=—1.71y; + 0.43y» + 8.32y5+ 0.0007, y1(5)=0.316516757046 1§
y2'=+1.71y; - 8.75y, y2(5)=0.648154953106 18,
y3'=—-10.03y5 + 0.43y, + 0.035)s, y3(5)=0.458345106475 18
Y4 =+8.32y%+1.71y3- 1.12yy, y4(5)=0.897432327352 1§
(3.6)  y5'=-1.745y+ 0.43y;7 + 0.43y, y5(5) =0.162451453753,
Y6 =—280ysyg+0.69ys + 1.71y5— 0.43y5+ 0.69y;,  ye(5)=0.685043896144,
y7' =+ 280yyg — 1.81yy, y7(5)=0.564670034192 19,
yg' =—280ysyg + 1.81ys, yg(5)=0.532996580805 1f)

with teng= 305. Only the last three equations of the system (3.7) are relatively stiff, so that we ce
keep the original ordering. It is easily seen that setiirg? andd = (4,4) yields a matrix {J that
contains only one non-zero entry, i(dy)3 5 = 0.035. Hence, in view of condition (3.3), we may
expect amplification factors less than 1 without severe restrictions on the stepsize h.

Table 3.2.HIRES problem (3.6) of Schafer.

Version N dT m=1 m=2 m=3 m=4 ... m=10 m=co
Fulld 15 (8) 3.1 4.0 3.9 4.1 5.6 7.9
Diagl 15 (4,4) 22 38 40 4.1 5.6
Fulld 7.5 (8) 3.3 4.4 4.7 5.3 7.0 9.0
Diagl 7.5 (4,4) 25 45 48 55 7.0

The DiagJ and TrianJ modes produce almost the same results. Therefore, we listed results only
the Diagd mode. The figures in Table 3.2 show that from the second iteration on, the FullJ and Die
version yield comparable accuracies forlhh 1. The speed-up factor is given by 8 + nil.

3.3. NUCREAC problem of Strehmel-Weiner
In Strehmel and Weiner [9, p. 310], we find a simplified model of a nuclear reactor:

8
y1'=-1 (500y, - 374280)y + é; Bivi,

(3.7) y2 =- ;& (330 — 136000y — 9900),

Yi'=-Vvi(yi—y) 3<i<8,
where
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|j.745794025602E:|

49.4780292219 30.2 3

E|.579316355556[| |:|82 8 D % 1.13 %
1321865374099 . +_ | 301

y(0.5) = Ij.104186334140t| B=(Bi) = . v=(vi) = 0.111 —
1040256901940 %.030%
1011285091275 0124
.004608805868

Only the first two equations are stiff, so that in the DiagJ and TrianJ modes we may st
d = (2,2,2,2) with o = 4. Since the stiff subsystem is iterated with a full Jacobian, convergence i
expected without stepsize restriction (see Remark 2.1). The reswtg=l5 listed in Table 3.3
show that the FullJ and DiagJ versions produce comparable accuracies for m > fland (dgain,

the TrianJ and DiagJ modes yield almost identical results). The speed-up factor (1.6)
S=4+25ml

Table 3.3.NUCREAC problem (3.7) of Strehmel-Weiner.

Version N dT m=1 m=2 m=3 m=4 ... m=10 m=co
FullJ 2 (8) 1.5 2.5 3.3 3.5 3.5 3.5
Diagl 2 (2,2,2,2) 1.0 20 29 35 3.5
FullJ 5 (8) 1.9 3.2 4.2 5.2 8.1 8.1
Diagl 5 (2,2,2,2) 1.6 29 41 5.2 8.1
FullJ 10 (8) 2.2 3.8 5.0 6.2 10.1 10.1
Diagd 10 (2,2,2,2) 2.0 3.6 5.0 6.2 10.1

3.4. ATMOS20 problem of Verwer

The ATMOS20 problem is a stiff, nonlinear system of 20 ODEs originating from an air pollution
model (see Verwer [10], we note that this paper contains a misprint, i.e. the third reaction rate shol
read 0.123,¢° instead of 0.12QGg°). We solved the corrected system in the integration interval
[5,60]. Table 3.4 lists results for the following four cases:

. o=1, d=(20), p=(1, .., 20);
l: o0=3, d=(7,5,8), p=(1, ..., 20);

: o=8, d
p
IV: 0=20,d=(1,..,1), p=(1, .., 20).

(3131313’212131]]—)1
(16,17,18,5,6,8,9,10,11,12,13,14,15,7,19,20,3,174,2)
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The DiagJ and TrianJ modes produced almost the same accuracies:JFor2hind hhl = 4, the
cases Il and Il lead to a satisfactory speed-up facterdlst5 + 2.2mt and S= 1.85 + 3.1mi,
respectively. The extremely cheap, but over-optimistic case IV leads to a rather poor converger
behaviour.

Table 3.4.ATMOS20 problem of Verwer [10].

Version N Case m=1 m=2 m=3 m=4 ... m=10 m=co
Fulld 5 I 3.4 49 7.0 6.8 8.7 11.0
TrianJd 5 I 3.4 51 52 6.1 8.2
1] 2.5 3.3 4.0 4.7 7.7
v 2.2 28 34 41 4.1
Fulld 10 I 3.7 55 7.6 8.3 11.5 12.3
TrianJd 10 I 3.8 57 6.0 7.2 10.3
1] 2.8 3 46 54 9.5
v 2.4 3.2 41 4.7 4.5
Fulld 20 I 4.0 6.2 8.2 10.0 12.1 12.1
TrianJd 20 I 4.1 6.4 6.7 7.7 11.9
1] 3.0 4.3 53 6.1 11.0
v 2.7 3.7 47 51 4.9
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