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Triangularly Implicit Iteration Methods
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CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

It often happens that iteration processes used for solving the implicit relations arising in ODE-IVP
methods only start to converge rapidly after a certain number of iterations. Fast convergence right from
the beginning is particularly important if we want to use so-called step-parallel iteration in which the
iteration method is concurrently applied at a number of step points. In this paper, we construct highly
parallel iteration methods that do converge fast from the first iteration on. Our starting point is the
PDIRK method (parallel, diagonal-implicit, iterated Runge-Kutta method), designed for solving implicit
Runge-Kutta equations on parallel computers. The PDIRK method may be considered as Newton type
iteration in which the Newton Jacobian is 'simplified' to block-diagonal form. However, when applied in
a step-parallel mode, it turns out that its relatively slow convergence, or even divergent behaviour,
reduces the effectiveness of the step-parallel scheme. By replacing the block-diagonal Newton Jacobian
approximation in  PDIRK by a block-triangular approximation, we do achieve convergence right from the
beginning at a modest increase of the computational costs. Our convergence analysis of the block-
triangular approach will be given for the wide class of general linear methods, but the derivation of
iteration schemes is limited to Runge-Kutta based methods. A number of experiments show that the new
parallel, triangular-implicit, iterated Runge-Kutta method (PTIRK method) is a considerable improvement
over the PDIRK method.

CR Subject Classification (1991): G.1.7
Keywords and Phrases: numerical analysis, convergence of iteration methods, Runge-Kutta methods,
parallelism.

Note: The research reported in this paper was partly supported by the Technology Foundation (STW) in
the Netherlands.

1. Introduction

Suppose that we integrate the IVP

(1.1)
dy
dt  = f(y),  y(t0) = y0,   y, f ∈ RRd

by an implicit step-by-step method. For the class of general linear methods (cf. Butcher [7, p.367]),

this requires in each step the solution of a nonlinear system of the form

(1.2) R(Y) = 0,   R(Y) := Y - h(A⊗I)F(Y) - W ,
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where A denotes a nonsingular s-by-s matrix, W is an sd-dimensional vector containing information

computed in preceding integration steps, I is the d-by-d identity matrix, h is the stepsize tn - tn-1, and

⊗ denotes the Kronecker product. The s components Y i of the sd-dimensional solution vector Y

represent s numerical approximations to the s exact solution vectors y(etn-1 + ch); here, c denotes the

abscissa vector and e is the vector with unit entries. Furthermore, for any vector V  = (V i), F(V)

contains the derivative values (f(V i)). It is assumed that the components of c are distinct. In the

following, we shall use the notation I for any identity matrix. However, its order will always be clear

from the context.

The solution Y  of (1.2) will be called the stage vector and s will be referred to as the number of

stages.  The most well-known examples of step-by-step methods that leads to implicit relations of the

form (1.2) are provided by the class of implicit Runge-Kutta (RK) methods. In that case, s equals the

number of implicit stages of the RK method (note that for RK methods having explicit stages, s is

less than the total number of stages of the RK method, e.g. this happens for Lobatto methods).

The system (1.2), to be referred to as the corrector, will be solved iteratively by generating a

sequence of iterates { Y(j)} . Unfortunately, it often happens that iteration processes for solving (1.2)

only start to converge rapidly after a certain number of iterations. In particular, iteration methods

whose error amplification matrix is nonnormal often exhibit such a behaviour, in spite of the fact that

the eigenvalues of the amplification matrix are of small magnitude. Fast convergence right from the

beginning (rather than fast convergence in subsequent iterations) is particularly important if we want

to use so-called step-parallel iteration methods. In such methods, the iteration procedure is

concurrently applied at a number of step points, that is, iteration at the point tn+1 is already started

without waiting until the iterates Y(j) at tn have converged. This approach requires that the predictor

formula needed to start iteration at tn is based on a sufficiently "safe" iterate Y(j). In order to have an

efficient step-parallel iteration process, the value of j for which Y(j) is sufficiently "safe" should be

small, that is, substantially smaller than the order of the method (1.2). Step-parallel methods and its

various versions have been discussed and analysed in a number of papers, among which Miranker

and Liniger [19], Bellen [1], Bellen et al. [2,3], Burrage [4,5], Gear and Xu Xuhai [11], Chartier

[8], and Van der Houwen et al. [16,17].

In the step-parallel approach in [16,17] we used RK methods as the underlying corrector and the

PDIRK method (Parallel, Diagonal-implicit Iterated Runge-Kutta method) as the underlying iteration

scheme [15]. The PDIRK method may be considered as Newton type iteration in which the Newton

Jacobian is 'simplified' to block-diagonal form. This iteration method is quite efficient when iterating

until convergence, but it does have the drawback of a rather slow initial convergence. The aim of the

present paper is to improve the PDIRK approach such that we have convergence right from the

beginning. On the basis of a linear convergence theory, we have designed an iteration strategy that

does yield relatively fast initial convergence for a number of classical RK correctors, at a modest

increase of the computational costs. We tested this strategy on a few nonlinear problems from the

literature. These experiments do show a considerable improvement of the initial speed of

convergence. Since in step-parallel methods, fast initial convergence is crucial, the strategy designed
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in this paper should nicely fit into a step-parallel  iteration approach. This will subject of future

research.

2. The iteration scheme

Our starting point for solving the corrector equation (1.2) is the simplified (or modified) Newton

iteration scheme

(2.1) (I - A⊗hJ) ∆Y(j+1) = - R(Y(j)),   Y(j+1) = Y(j) + ∆Y(j+1),     j = 0, 1, ... ,

where J is an approximation to the Jacobian of the righthand side function f at tn-1, and Y(0) is the

initial iterate to be provided by some predictor formula. Each iteration with (2.1) requires the solution

of an sd-dimensional linear system for the Newton correction ∆Y(j+1). In actual computation, the

costs for solving this system can be reduced by first performing a similarity transformation of the

iterates (cf. Butcher [6]), Y(j) = (Q⊗I)X(j), where Q is a nonsingular matrix. Q should be such that

the system

(2.1') (I - Q-1AQ⊗hJ) ∆X(j+1) = - (Q-1⊗I) R(Y (j)),  Y (j+1) = Y (j) + (Q⊗I)∆X(j+1),  j = 0, 1, ...

,

is easier to solve than (2.1).

For example, if A has positive eigenvalues, then the Schur decomposition of A has the form

A = QTQ-1, where Q is unitary and T is lower triangular with the eigenvalues of A on its diagonal.

Hence, the linear system (2.1') is 'triangularly implicit' and consists of s subsystems of dimension d

that can be solved sequentially. On sequential computers, this is most effective if A has a one-point

spectrum, so that only one LU-decomposition is required. On parallel computers, the condition on the

spectrum of A can be relaxed to the requirement that A has arbitrarily positive eigenvalues. Since the s

LU-decompositions can be computed in parallel, effectively only one decomposition per processor is

required. Similarly, the s components of the residue R(Y (j)) can also be computed in parallel.

Furthermore, we have to perform s forward-backward substitutions in each iteration. If we impose

the additional requirement that in (2.1') the matrix T = Q-1AQ is diagonal, then the s subsystems are

uncoupled and in each iteration the forward-backward substitutions can also be done concurrently.

RK methods whose RK matrices have real eigenvalues can be found in Orel [20].

Unfortunately, the most powerful implicit methods have matrices A with complex eigenvalues. One

option to deal with the complex eigenvalue case is to decompose Q-1AQ into a real block- triangular

matrix of which the diagonal blocks are either diagonal or 2-by-2 matrices. This leads to an sd-

dimensional system that can be split into a sequence of subsystems either of dimension d or of

dimension 2d (this approach was followed in the implementation of the RADAU5 code of Hairer and
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Wanner [14]). A block-diagonal structure  of Q-1AQ implies that  (2.1') is suitable for implementation

on a parallel system.

An other option for reducing computational costs, that will be the subject of this paper, replaces the

matrix A in (2.1) by a 'more convenient' matrix B. In this paper, we consider the case where B is

lower triangular, i.e. B = L + D, where L is strictly lower triangular and D is diagonal with positive

diagonal entries dii . This leads to the iteration scheme

(2.2) (I - D⊗hJ) ∆Y(j+1) = (L⊗hJ) ∆Y(j+1) - R(Y(j)),   Y(j+1) = Y(j) + ∆Y(j+1),     j = 0, 1, ... .

In the case where L vanishes and (1.2) represents a Runge-Kutta (RK) method, the resulting iteration

scheme is the PDIRK method mentioned in Section 1. The method (2.2) requires LU-decompositions

of the d-by-d matrices I - hdiiJ, i = 1, ... , s, and, in each iteration, the evaluation of the residue

R(Y(j)), s forward-backward substitutions, and the matrix-vector multiplication (L⊗hJ) ∆Y(j+1).

By expressing this multiplication  in terms of the righthand side function F, the scheme (2.2) can be

replaced by

(2.3) (I - D⊗hJ) ∆Y(j+1) = h(L⊗I)(F(Y(j+1)) - F(Y(j))) - R(Y(j)).

This version may yield better convergence if the righthand side Jacobian is a less accurate

approximation to the true Jacobian. Just like the scheme (2.1'), the LU-decompositions and the

components of the residue R(Y (j)) occurring in (2.2) and (2.3) can be evaluated in parallel. The

schemes (2.2) and (2.3) will be called parallel, triangular-implicit, iterated methods. In the case where

(1.2) is an RK method, we shall refer to such methods as a PTIRK method and to distinguish them,

we shall speak of the LJ and LF version.

In the case of (2.2), a further degree of parallelism is obtained by using the Butcher similarity

transformation. This enables us to get rid of the triangular-implicit term (L⊗hJ) ∆Y(j+1) and leads to

(2.4) (I - D⊗hJ)∆X(j+1) = -  (Q-1⊗I)R(Y(j)),   Y(j+1) = Y(j) + (Q⊗I)∆X(j+1),   BQ = QD.

In addition to the parallelism already present in (2.2) and (2.3), the scheme (2.4) also allows that in

each iteration the s forward-backward substitutions can be done in parallel. Since the schemes (2.2)

and (2.4) are algebraicly identical,we shall call (2.4) the transformed LJ version.

Finally, we compare the computational costs of the various iteration schemes. These costs consists of

two contributions, respectively due to Jacobian updates and due to the successive iterations. In all

schemes, the number of flops per step originating from the Jacobian updates is given by

C1 =  
sd2

ν
 ( 1s CJ +  2

3
 d + 1),
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where ν denotes the averaged number of steps during which the Jacobian and the LU-decomposition

is kept constant, and CJ denotes the average numbers of flops for computing one entry of J. The

contribution C1 is perfectly parallelizable and effectively, can be reducd by a factor s on s processors.

The contribution due to m (say) iterations are summarized in Table 2.1 (for a specification of these

costs, we refer to Appendix B of this paper). In this table, Cf denotes the average numbers of flops

for computing one component of f. Evidently, on a parallel computer, the methods (2.2) with L = O

and (2.4) are the less expensive ones.

Table 2.1.  Computational costs due to m iterations.
------------------------------------------------------------------------------------------------------------------------

Method on one processor on s processors
------------------------------------------------------------------------------------------------------------------------

(2.2) with L = O msd(Cf + 2d + 2s) md(Cf + 2d + 2s)
(2.2) with L ≠ O: LJ version msd(Cf + 4d + 3s) md(Cf + 4ds + s2)
(2.3) with L ≠ O: LF version msd(Cf + 2d + 3s) md(sCf + 2ds + s2)
(2.4): transformed LJ version msd(Cf + 2d + 4s) md(Cf + 2d + 4s)

------------------------------------------------------------------------------------------------------------------------

3. Convergence of the iteration process
In order to analyse convergence, we define the iteration error ε(j) = Y (j) - Y , and we write the LJ

and LF versions (2.2) and (2.3) in the respective forms

(3.1) (I - B⊗hJ) (ε(j+1) - ε(j)) = - ε(j) + h(A ⊗ I)(F(Y + ε(j)) - F(Y )),

(3.2) (I - D⊗hJ) (ε(j+1) - ε(j)) = - ε(j) + h((A - L)⊗I)(F(Y + ε(j)) - F(Y ))

  +  h(L⊗I)(F(Y + ε(j+1)) - F(Y )).

The components of F(Y + ε) - F(Y) can be expanded according to Ji εi + O(εi2), where Ji is the

Jacobian matrix of the righthand side function at Yi. Assuming that J is nonsingular, we may define

the block-diagonal matrix ∆J of which the diagonal blocks are given by J-1∆Ji = J-1(Ji - J)  to obtain

(3.3) F(Y + ε(j)) - F(Y ) = (I⊗J) ε(j) + (I⊗J)∆J ε(j) + O((ε(j))2).

Ignoring the second-order terms (first-order convergence analysis), the error recursions for the LJ

and LF versions can be represented in the forms

(3.4) ε(j+1) = M (I + P∆J) ε(j),

(3.5) ε(j+1) = (I - N∆J)−1 M (I + Q∆J) ε(j),

where
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M := (I - B⊗hJ)−1((A - B)⊗hJ),
(3.6)

N := (I - B⊗hJ)−1(L⊗hJ), P = (A - B)-1A⊗I, Q = (A - B)-1(A-L)⊗I.

If we ignore ∆J (linear convergence analysis), then the error recursions of both versions are

characterized by the matrix M. However, if ∆J cannot be neglected, then the error recursions may

behave quite differently. For example, as h → 0, then we have

(3.4') ε(j+1) ≈ h ((A - B)⊗J + (A⊗J)∆J) ε(j),

(3.5') ε(j+1) ≈ h ((A - B)⊗J + ((A-L) ⊗J)∆J) ε(j).

Since the strictly lower triangular blocks of the amplification matrices in (3.4') and (3.5') differ by

the matrices hLij∆Jj, the convergence behaviour may  differ considerably and is highly problem

dependent. In the remainder of this paper, we shall focus on the matrix M.

3.1. Rate of convergence

In order to select a suitable matrix B, we consider the convergence of the individual error components

corresponding to the eigenvalues λ of J. From (3.1) it follows that these error components are

amplified by the matrix Z defined by

(3.7) Z = Z(z) = z (I - zB)-1 (A - B),      z := hλ.

Z will be called the amplification matrix associated with M.

A measure for the rate of convergence of the individual error components is defined by

(3.8) ρj(z) :=  √
j

|| (Z(z))j ||∞ .

where || ||∞ denotes the maximum norm. Note that ρ∞(z) = ρ(Z(z)), ρ(.) being the spectral radius

function. For the test equation y' = λy, the value of ρj(z) may be interpreted as the averaged factor by

which the iteration error corresponding to z = hλ is reduced in each iteration, until the corrector

solution is reached. For more general problems, we have to deal with ρj(z) where z runs through the

spectrum of hJ.

The convergence rate at infinity will be called the stiff rate of convergence. In the neighbourhood of

the origin we may write
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(3.9) ρj(z) = |z| √
j
|| (A - B)j ||    +  O(z2) =: ρ~j(z) +  O(z2)   as z → 0.

The quantity ρ~j(z) will be called the nonstiff rate of convergence. Furthermore, we denote the

maximal rate of convergence in the lefthand plane by ρj* . Of course, ρj*  refers to the worst case

situation, but it serves as an indicator for the robustness of the method.

3.2. Iteration strategies

In this section, we discuss the choice of the free matrix B = L + D in the iteration schemes (2.2) and

(2.3). We first briefly review the diagonal iteration strategy of [15], i.e. L = O, and then we focus on

the triangular iteration strategy where L is allowed to be an arbitrary strictly (lower) triangular matrix.

A nonvanishing matrix L enables us to reduce the norm of Zj considerably.

The reason for restricting B to the class of triangular matrices is that we have direct control on the

eigenvalues of B. As a consequence, suitable matrices B can be constructed without performing a

many-parameter search as was carried out in [15]. Since our main source of correctors is the class of

RK methods which usually possess a dominant lower triangular part, B is also assumed to be lower

triangular (recall that ideally B should equal A). Both for the diagonal iteration and the triangular

iteration approach, the matrices B, Z0 := A - B and Z∞ := I - B-1A associated with a number of

classical RK methods are specified in the Appendix to this paper.

3.2.1. Diagonal iteration. The diagonal iteration strategy is characterized by a diagonal matrix B

with positive diagonal entries. In this strategy, it was found for a large number of classical RK

correctors that a small stiff rate of convergence is crucial for a satisfactory overall convergence [15].

Therefore, in [15] the diagonal matrix B = D was obtained by a multi-parameter search such that Z∞
has a minimal spectral radius, that is, the asymptotic value ρ∞(∞) of the stiff rate of convergence is

minimized. For a large number of collocation based RK correctors, it turned out that the spectral

radius ρ(Z∞) of Z∞ = I - B-1A is extremely small. In fact, we conjecture that for collocation based

RK correctors, there exist matrices D with positive diagonal entries for which ρ(Z∞) actually

vanishes. This suggests an alternative construction of the matrix B = D. Writing down the

characteristic equation for Z∞ and imposing the condition that this equation has only zero roots, we

arrive at a (nonlinear) system for the entries dii of D. If this system can be solved for positive dii ,

i = 1, ... , s, then we have found an optimal matrix D. It has been verified for the Radau IIA

correctors with s ≤ 8 that such optimal matrices D do exist (see [18]). Notice that a zero spectral

radius ρ(Z∞) implies that Z∞ j vanishes for j ≥ s (this can be seen by considering the Schur

decomposition Z∞ = QTQ-1 with Q unitary and T strictly lower triangular).

If the matrices D are obtained by a numerical search as in [15], then they will always give rise to a

small but yet nonzero ρ(Z∞). Nevertheless, both for the nonstiff and the highly stiff error

components, the generated PDIRK methods show a satisfactory convergence rate for larger values of

j. On the other hand, it also turns out that for the higher-order methods, there may be regions in the z-
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plane where ρj(z) exceeds one for small j, so that initially error components corresponding to points

lying in such regions will diverge [17, Tables 3.2b]. The reason for this behaviour is the

'abnormality' of the matrix Z. In particular, for larger values of |z|, i.e. for the stiff error components,

the matrix Z(z) may differ considerably from a normal matrix. To be more precise, let the departure

from normality of the matrix Z be defined by ∆2(Z) := ||Z||F2 - ||ζ(Z)||22, where ζ(Z) denotes the

vector of eigenvalues of Z and || ||F and || ||2 respectively denote the Frobenius matrix norm and the

Euclidean vector norm (see e.g. [12, p.194]). By considering plots of ∆2(Z) as a function of |z| with

arg(z) constant, we found that in the lefthand halfplane ∆2(Z) monotonically increases from 0 to

values greater than 20. This situation is particularly unfortunate if we want to apply the step-parallel

iteration approach mentioned in Section 1. In such an approach, it is crucial that in the whole lefthand

halfplane the convergence rate is less than one right from the beginning.

3.2.2. Triangular iteration. The triangular iteration strategy is characterized by a lower

triangular B with positive diagonal entries such that Z∞ is strictly upper triangular. As a consequence,

we have a zero stiff rate of convergence for j ≥ s. The matrix Z∞ can be constructed by using the LU

decomposition of A. Let A = TLTU with TL lower triangular and TU unit upper triangular (Crout

decomposition), and define B = TL. Since Z∞ = I - B-1A, we immediately obtain the strictly upper

triangular matrix Z∞ = I - TU. The following lemma provides an explicit criterion for the positiveness

of the diagonal entries of B = TL.

Lemma 3.1. Let A, L, D, and U be s-by-s matrices such that A = LDU with L unit lower

triangular, D diagonal and U unit upper triangular, and let Ak denote the k-by-k principal submatrix

of A. Then D has diagonal entries given by

(3.10) dk =  
det (Ak)

det (Ak-1)  ,  k = 1, ... , s,

where det (A0) := 1 and det (A1) := a11.

Proof. Let Ai be decomposed according to Ak = LkDkUk with Lk unit lower triangular, Dk diagonal

and Uk unit upper triangular. Then det (Ak) = det (Lk) det (Dk) det (Uk) = det (Dk). Since the first k-1

pivots in the Gaussian elimination process do not depend on the entries aij  with i ≥ k and j ≥ k, it

follows that the diagonal entries dik of Dk are defined by dik = di. Hence, det (Dk) = det (Dk-1)dk,

which is equivalent with (3.10).  []

From this lemma it follows that the diagonal entries of the matrix B defined above are given by

(3.10), so that they are all positive, if all values det (Ak), k = 1, ... , s, are positive.

In the following, we restrict our considerations to collocation methods with distinct abscissas ci.

Such methods are generated by matrices A of the form
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(3.11) A = CVRV-1,  C = diag (c), R = diag (r ),  c = (ci),  r  = (i-1),  V = (e  c  c2 ... cs-1) ,

where i = 1, ... , s.

Theorem 3.1. If A results from a collocation method with positive, distinct abscissas ordered

according to 0 < c1 < c2 < ... < cs, then the following results hold:

(a) The values of det (A1) and det (As) are positive for all s.

(b) Let V and R be partitioned according to (3.12), where Vk and Rk denote the k-by-k principal

submatrices of the matrices V and R defined in (3.11). Then, for 1 < k < s, the value of det (Ak)

is positive if

(3.12) qk := det (VkRk - PSW-1Q) > 0,   V = ( )Vk P
Q W ,   R = ( )Rk O

O S  .

Proof. (a) For collocation methods we have that

(3.13) a11 = ∫
0  

c1

 c2 - t
c2 - c1

  
c3 - t
c3 - c1

  ...  
cs -  t
cs - c1

  dt.

From the condition on the collocation points it is immediate that det (A1) = a11 > 0 and from (3.11) it

follows that det (A) = det (C) det (VRV-1) = det (C) det (R) > 0.

(b) By means of (3.11) it is easily verified that Ak can be presented in the form

(3.14) Ak = Ck(VkRk - PSW-1Q)(Vk - PW-1Q)-1,

where Ck is the k-by-k principal submatrix of C and Vk, Rk, P, S, W and Q are specified in (3.12).

We now prove that det (Vk - PW-1Q) is positive by considering the factorizations

  


 
Vk - PW-1Q O

Q W   = 
 


 
I −PW-1

O I
 V

 and

  


 
Vk - PW-1Q O

Q W   =  


 
Vk - PW-1Q O

O I   ( )I O
Q W  .

From these two relations it follows that det (V) = det (Vk - PW-1Q) det (W). Since V is a

VanderMonde matrix and W is a row-scaled VanderMonde matrix, we conclude that both V and W

have a positive determinant. Thus, det (Vk - PW-1Q) > 0, and by virtue of (3.14), it follows that

det (Ak) is positive whenever the quantity qk defined in (3.12) is positive. []  
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Theorem 3.1 directly implies the positiveness of the diagonal entries of B = TL for all two-stage

collocation methods. For higher-stage methods, it provides the relatively simple criterion qk > 0,

1 < k < s, for verifying the condition det (Ak) > 0. We conjecture that the condition det (Ak) > 0,

1 ≤ k ≤ s, is true for all s, but so far we are not able to prove it. Instead, we verified the correctness

of this conjecture for s ≤ 6. An easy way of verifying the conditions qk > 0, replaces the abscissas ci

in qk by ci = pi + pi-1 + ... + p1 and expresses qk as a rational function of the s parameters pi. For

s ≤ 6, it turns out that all coefficients in this rational expression are positive. Since the parameters pi

are all positive (because pi := ci - ci-1 with c0 := 0), this implies that qk is positive.

Example 3.1. For s = 3, we have to prove that q2 > 0. A straightforward calculation yields

q2 =  
3p2p32 + 4p22p3 + 2p1p2p3 + p1p22 + p23

6(p1 + p2 + p3)2   ,

which is obviously positive. []

Summarizing we conclude that, unlike the diagonal approach, the triangular approach provides an

extremely simple construction of the matrix B and an explicit criterion for checking the positiveness

of its diagonal entries. Moreover, it turns out that for larger values of |z| the the departure from

normality ∆2(Z) defined in the preceding subsection is considerably reduced. Plots show that ∆2(Z)

monotonically increases from 0 at the origin to values less than than 0.4 at infinity, resulting in rates

of convergence that are less than one in the whole left halfplane for all j. This will be quantified in the

following subsection.

3.3. Comparison of convergence rates

For a number of well-known RK correctors, we compare the convergence rates defined by (3.8)

associated with the diagonal approach (PDIRK method) and the triangular approach (PTIRK

method). For j = 1, 2, 3, Table 3.1 presents the nonstiff rate of convergence ρ~j(z) as defined in (3.9),

the stiff rate of convergence ρj(∞), and the maximal rate of convergence ρj* . These figures indicate

that in the first few iterations, the PTIRK strategy converges considerably faster than the PDIRK

strategy. Hence, it should be a sound starting point for step-parallel applications. This will be subject

of future research.
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Table 3.1. Convergence rates  ρ~j, ρj(∞) and ρ* j.
------------------------------------------------------------------------------------------------------------------------

Corrector s Method ρ~1(z) ρ~2(z) ρ~3(z) ρ1(∞) ρ2(∞) ρ3(∞) ρ1* ρ2* ρ3* ρ∞*

------------------------------------------------------------------------------------------------------------------------
Gauss 2 PDIRK 0.79z 0.36z 0.45z  1.58 0 0 1.58 0.59 0.45 0.25

PTIRK 0.08z 0.08z 0.08z  0.15     0   0 0.15 0.14 0.14 0.14

Radau IIA 2 PDIRK 1.15z 0.52z 0.40z 1.78   0   0 1.78 0.63 0.47 0.26
PTIRK 0.15z 0.15z 0.15z  0.20     0   0 0.20 0.18 0.18 0.18

Lobatto IIIA 2 PDIRK 0.89z 0.31z 0.21z 2.29     0   0 2.29 0.58 0.39 0.17
PTIRK 0.08z 0.08z 0.08z 0.13     0   0 0.13 0.14 0.14 0.14

Radau IIA 3 PDIRK 1.15z 0.44z 0.34z 4.17 1.82 0 4.17 1.82 1.02 0.40
PTIRK 0.21z 0.20z 0.20z 0.46   0.26 0 0.46   0.40 0.39 0.37

Lobatto IIIA 3 PDIRK 0.91z 0.32z 0.30z 5.62 3.09 0 5.62 3.09 1.35 0.45
PTIRK 0.13z 0.13z 0.12z 0.23   0.17 0 0.23   0.33 0.32 0.30

Radau IIA 4 PDIRK 1.10z 0.52z 0.25z 4.68 3.31 2.09 4.68 3.31 2.09 0.52
PTIRK 0.25z 0.22z 0.20z 0.68   0.47 0.30 0.68   0.58 0.55 0.50

------------------------------------------------------------------------------------------------------------------------

4. Numerical illustration

In this section, we compare the diagonal-implicit iteration strategy with the triangular-implicit iteration

strategy. In all experiments, we used the 4-stage Radau IIA corrector with constant stepsizes (the

initial condition in the problems below is adapted such that the integration starts outside the transient

phase enabling us to use constant steps). Two predictors were tested, the simple last step value (LSV)

predictor Y(0) = (esT⊗I)Y and the extrapolation (EPL) predictor Y(0) = (E⊗I)Y. Here, Y denotes the

stage vector from the preceding step, es is the sth unit vector, and E is the extrapolation matrix.

In the tables of results, the LF and LJ versions (2.2) and (2.3) of the PTIRK method are indicated by

PTIRK(LJ) and PTIRK(LF). For a given number of iterations m, these tables present the minimal

number of correct digits cd of the components of the numerical solution at the end point

t = T of the integration interval (that is, at the end point the absolute errors are written as 10-cd).

These tables clearly show for both predictors the superiority of the PTIRK strategy in the first few

iterations. For large numbers of iterations, PDIRK and PTIRK(LJ) are better than PTIRK(LF).

Table 4.1a. LSV predictor: HIRES problem (4.1) of Schäfer.
---------------------------------------------------------------------------------------------

Strategy h m=1 m=2 m=3 m=4 . . . m=10
---------------------------------------------------------------------------------------------

PDIRK 15 * * * 4.3 . . . 6.5
PTIRK(LJ) 15 3.4 3.5 3.8 4.2 . . . 6.3
PTIRK(LF) 15 3.1 4.0 3.9 4.1 . . . 5.6

PDIRK 7.5 * * * 5.4 . . . 7.7
PTIRK(LJ) 7.5 4.0 4.2 4.7 5.1 . . . 8.3
PTIRK(LF) 7.5 3.3 4.4 4.7 5.3 . . . 7.0

---------------------------------------------------------------------------------------------
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Table 4.1b. EPL predictor: HIRES problem (4.1) of Schäfer.
---------------------------------------------------------------------------------------------

Strategy h m=1 m=2 m=3 m=4 . . . m=10
---------------------------------------------------------------------------------------------

PDIRK 15 * * * * . . . 6.4
PTIRK(LJ) 15 * 3.0 4.8 5.1 . . . 7.3

PDIRK 7.5 * * * 4.1 . . . 8.8
PTIRK(LJ) 7.5 * 2.5 6.1 6.6 . . . 9.0

---------------------------------------------------------------------------------------------

4.1. HIRES problem of Schäfer

Our first example is provided by a problem of Schäfer (called the HIRES problem in [14, Vol. II

p.157]). It was proposed in Gottwald [13] as a test problem and consists of 8 mildly stiff equations

on the interval 5 ≤ t ≤ 305:

y1' =  - 1.71y1 + 0.43y2 + 8.32y3 + 0.0007,    y1(5) = 0.0316516757045,

y2' = + 1.71y1  - 8.75y2,    y2(5) = 0.0064815495310,

y3' =  - 10.03y3 + 0.43y4 + 0.035y5,    y3(5) = 0.0045834510647,

y4' = + 8.32y2 + 1.71y3 - 1.12y4,     y4(5) = 0.0897432327351,

(4.1) y5' =  - 1.745y5 + 0.43y7 + 0.43y6, y5(5) = 0.1624514537526,

y6' =  - 280y6y8 + 0.69y4 + 1.71y5 - 0.43y6 + 0.69y7,   y6(5) = 0.6850438961444,

y7' = + 280y6y8  - 1.81y7,   y7(5) = 0.0056467003419,

y8' =  - 280y6y8 + 1.81y7,   y8(5) = 0.0000532996581.

4.2. CHREAC problem of Gear

This problem is a set of chemical reaction equations originating from Gear [10] on the interval [1,51]

and used in the test set of Enright et al. [9]:

y1' = - 0.013y1 - 1000y1y3, y1(1) = 0.990731920827,

(4.2) y2' = - 2500y2y3, y2(1) = 1.009264413846,

y3' = - 0.013y1 - 1000y1y3 - 2500y2y3, y3(1) = - 0.366532612659 10-5.

Table 4.2a. LSV predictor: CHREAC problem (4.2) of Gear.
---------------------------------------------------------------------------------------------

Strategy h m=1 m=2 m=3 m=4 . . . m=10
---------------------------------------------------------------------------------------------

PDIRK 50 1.4 2.2 2.6 2.9 . . . 5.2
PTIRK(LJ) 50 2.3 2.7 3.5 4.3 . . . 7.7
PTIRK(LF) 50 1.8 2.9 3.9 3.0 . . . 3.3

PDIRK 25 1.8 2.9 3.4 3.6 . . . 7.3
PTIRK(LJ) 25 2.3 3.6 4.2 5.3 . . . 9.8
PTIRK(LF) 25 2.1 4.3 4.4 4.6 . . . 6.4

---------------------------------------------------------------------------------------------
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Table 4.2b. EPL predictor: CHREAC problem (4.2) of Gear.
---------------------------------------------------------------------------------------------

Strategy h m=1 m=2 m=3 m=4 . . . m=10
---------------------------------------------------------------------------------------------

PDIRK 25 2.4 2.8 3.2 3.6 . . . 7.4
PTIRK(LJ) 25 2.9 3.7 4.3 5.6 . . . 9.8

---------------------------------------------------------------------------------------------

4.3. ATMOS20 problem of Verwer

The ATMOS20 problem is a system of 20 stiff nonlinear ODEs originating from an air pollution

model (see Verwer [21]). We solved this system in the integration interval [5,60].

Table 4.3a. LSV predictor: ATMOS20 problem of Verwer.

---------------------------------------------------------------------------------------------
Strategy h m=1 m=2 m=3 m=4 . . . m=10

---------------------------------------------------------------------------------------------
PDIRK 11 2.7 2.1 2.8 5.4 . . 9.8

PTIRK(LJ) 11 3.3 5.0 6.1 6.7 . . . 11.0
PTIRK(LF) 11 3.4 4.9 7.0 6.8 . . . 8.7

PDIRK 5.5 1.3 * * 6.5 . . . 11.2
PTIRK(LJ) 5.5 3.7 5.6 7.0 7.7 . . . 12.2
PTIRK(LF) 5.5 3.7 5.5 7.6 8.3 . . . 11.5

PDIRK 2.25 * * * 7.5 . . . 12.2
PTIRK(LJ) 2.25 4.0 6.2 7.8 8.6 . . . 12.6
PTIRK(LF) 2.25 4.0 6.2 8.2 10.0 . . . 12.1

---------------------------------------------------------------------------------------------

Table 4.3b. EPL predictor: ATMOS20 problem of Verwer.

---------------------------------------------------------------------------------------------
Strategy h m=1 m=2 m=3 m=4 . . . m=10

---------------------------------------------------------------------------------------------
PDIRK 11 1.8 2.6 2.1 5.4 . . 10.0

PTIRK(LJ) 11 2.0 3.7 6.3 7.0 . . . 10.9
PDIRK 5.5 * * * 6.4 . . . 11.8

PTIRK(LJ) 5.5 * 4.2 7.4 8.2 . . . 12.2
PDIRK 2.25 * * * 8.2 . . . 12.7

PTIRK(LJ) 2.25 * * 8.6 9.4 . . . 12.7
---------------------------------------------------------------------------------------------
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A. Appendix: Parameter matrices

For a number of RK methods, we have computed the matrices B = L + D according to the procedure

outlined in Sections 3.2.1 and 3.2.2, together with the amplification matrices Z0 and Z∞.

A.1. PDIRK strategy: Z(z) = z(I - zD)−1 (A - D),    Z0 = A - D,    Z∞ = I - D-1A.

A.1.1. Radau IIA

s = 2: B = ( )0.2584 0
0 0.6449 , Z0 = ( )0.1582 - 0.0833

0.7500 - 0.3949 ,   Z∞ = ( )- 0.6124 0.3225
- 1.1629 0.6124 .

s = 3: B = ( 0.3204 0 0
0 0.1400 0
0 0 0.3717), Z0 = ( -  0.1236 - 0.0655  0.0238

 0.3944  0.1521 - 0.0415
 0.3764  0.5125 - 0.2606

),

Z∞ = (  0 .3857  0.2045 - 0.0742
- 2.8179 - 1.0867  0.2968
- 1.0127 - 1.3789  0.7011).

s = 4: B = ( 0.3205 0 0 0
0 0.0892 0 0
0 0 0.1817 0
0 0 0 0.2334

),   Z0 = ( -  0.2075 - 0.0403  0.0258 - 0.0099
 0.2344  0.1177 - 0.0479  0.0160
 0.2167  0.4061  0.0073 - 0.0242
 0.2205  0.3882  0.3288 - 0.1709

),

Z∞ = (  0 .6474  0.1258 - 0.0805  0.0309
- 2.6290 - 1.3206  0.5368 - 0.1800
- 1.1923 - 2.2346 - 0.0402  0.1331
- 0.9447 - 1.6635 - 1.4092  0.7322

)
A.1.2. Lobatto IIIA

s = 2: B = ( )0.2113 0
0 0.3943 , Z0 = ( )0.1220 - 0.0417

0.6667 - 0.2277 ,   Z∞ = ( )-  0.5774 0.1972
- 1.6906 0.5774 .

s = 3: B = ( 0.4802 0 0
0 0.1094 0
0 0 0.1604), Z0 = ( -  0.2905 - 0.0339  0.0103

 0.4506  0.1175 - 0.0270
 0.4167  0.4167 - 0.0770),

Z∞ = (  0 .6049  0.0706 - 0.0215
- 4.1179 - 1.0743  0.2465
- 2.5981 - 2.5981  0.4804).

A.1.3. Gauss

s = 2: B = ( )0.1667 0
0 0.5000 , Z0 = ( )0.0833 - 0.0387

0.5387 - 0.2500 , Z∞ = ( )-  0.5000 0.2321
- 1.0774 0.5000 .



17

A.2. PTIRK strategy: Z(z) = z(I - zB)−1 (A - B),    Z0 = A - B,    Z∞ = I - B-1A.

A.2.1. Radau IIA

s = 2: B = ( )0.4167 0
0.7500 0.4000 , Z0 = ( )0 - 0.0833

0 - 0.1500 , Z∞ = ( )0 0.2000
0 0 .

s = 3: B = ( 0.1968 0 0
0.3944 0.4234 0
0.3764 0.6378 0.2000

), Z0 = ( 0 - 0.0655   0.0238
0 - 0.1313 - 0.0415
0 - 0.1253 - 0.0889

),

Z∞ = ( 0 0.3330 - 0.1208
0 0   0.2106
0 0 0

).

s = 4: B = ( 0.1130 0 0 0
0.2344 0.2905 0 0
0.2167 0.4834 0.3083 0
0.2205 0.4668 0.4414 0.1176

), Z0 = − ( 0 0.0403 - 0.0258 0.0099
0 0.0836 0.0479 - 0.0160
0 0.0773 0.1192 0.0242
0 0.0786 0.1126 0.0551

),

Z∞ = ( 0 0.3567 - 0.2283 0.0877
0 0 0.3490 - 0.1260
0 0 0 0.2144
0 0 0 0

).

A.2.2. Lobatto IIIA

s = 2: B = ( )0.3333 0
0.6667 0.2500 , Z0 = ( )0 - 0.0417

0 - 0.0833 , Z∞ = ( )0 0.1250
0 0 .

s = 3: B = ( 0.1897 0 0
0.4506 0.3075 0
0.4167 0.4911 0.1429

), Z0 = ( 0 - 0.0339   0.0103
0 - 0.0805 - 0.0270
0 - 0.0745 - 0.0595

),

Z∞ = ( 0   0.1787 - 0.0543
0 0   0.1673
0 0 0

).

A.2.3. Gauss

s = 2: B = ( )0.2500 0
0.5387 0.3333 , Z0 = − ( )0 0.0387

0 0.0833 , Z∞ = ( )0 0.1547
0 0 .
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