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Abstract

The implementation of implicit Runge-Kutta methods requires the solution of large systems of non-linear equations.
Normally these equations are solved by a modified Newton process, which can be very expensive for problems of high
dimension. The recently proposed triangularly implicit iteration methods for ODE-IVP solvers [HSw95] substitute
the Runge-Kutta matrix A in the Newton process for a triangular matrix T that approximates A, hereby making
the method suitable for parallel implementation. The matrix T is constructed according to a simple procedure,
such that the stiff error components in the numerical solution are strongly damped. In this paper we prove for a
large class of Runge-Kutta methods that this procedure can be carried out and that the diagonal entries of T are

positive. This means that the linear systems that are to be solved have a non-singular matrix.
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1. INTRODUCTION AND MOTIVATION
For solving the stiff initial value problem

y'@t) = ft,y(®), yltd)=wo, y,fER?, t<t<t,

one of the most powerful methods is an implicit Runge-Kutta (RK) method. In such a
method we have to solve every time step a system of non-linear equations of the form

R(Y,)=0; R(Y,) =Y,—(e®Dy, 1—h,(AQIF(Y,), (1.1)

where A denotes the s X s matrix containing the parameters of the s-stage RK method,
Yn_1 the approximation to y(¢, 1), e is the s-dimensional vector with unit entries, I is the
d X d identity matrix, h,, is the step size ¢, — t,,_1 and ® denotes the Kronecker product.
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The s components Y, ; of the sd-dimensional solution vector Y, represent s numerical
approximations to the s exact solution vectors y(et, 1 + ch,); here, ¢ denotes the abscissa
vector. Furthermore, for any vector X = (X;), F/(X) contains the derivative values (f(X;)).
It is assumed that the components of ¢ are distinct and positive.

Once we have solved (1.1), we obtain the step point value y,, = y(t,) by some step point
formula

Yn = Yn—-1+ hn(bT ® I)F(Yn)’

where b is a vector of dimension s containing method parameters. For stiffly accurate RK
methods, ¢, = 1, so that the step point value equals the sth component of Y,, and the step
point formula may be omitted.

To solve (1.1), in general one uses a Newton-type iteration scheme of the form

(I — B® h,J,)AY,U) = _R(Y,0)); vy U+D =y ) 4 Ay, U+, (1.2)
where J, is an approximation to the Jacobian of the right hand side function f at t,_1,
Y9 is the initial iterate to be provided by some predictor formula and B is an s x s matrix
that defines the type of Newton iteration. To get insight in the convergence behaviour
of (1.2), we apply the scheme to the scalar test equation 3’ = Ay. Defining the iteration
error €¥) by YU) — Y, we see from (1.1) and (1.2) that these errors are amplified by the
matrix Z defined by

Z(2) = 2(I —2B) (A= B); z:= Ah,.

We introduce the stiff and non-stiff amplification matrices of scheme (1.2), notation Z.,(B)
and Zy(B), respectively, by:

Zw(B) = |l‘im Z(z)=1—B™1A and Zy(B):= |1i|m0Z(z)/|z| =A-B.

Choosing B = A would lead to the modified Newton process, for which Z(z) = 0 for
all z. However, the computation of Yn(j) now requires the solution of a linear system of
dimension sd. For high-dimensional problems this requires a lot of computational effort.
Several attempts have been made to reduce these costs by selecting matrices B different
from A.

In [CB83], Cooper & Butcher propose the choice B = P, where P is a matrix that has a
one-point spectrum. By performing a similarity transformation to (1.2) they arrive at the
scheme
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PQ=QL,
(I - L®h,J,)AXUT) = (Q7' @ I)R(Y,9)), (1.3)
YO =Y + Q& DAXYH,

where L and @) are lower triangular and orthogonal matrices, respectively, that define the
Schur decomposition of P. Since the diagonal entries of L are equal, implementing (1.3)
requires only one LU-decomposition of dimension d.

In [HS091], the authors select B = D, where D is a diagonal matrix. Scheme (1.2) is
now suitable for implementation on an s processor machine, since the s components of Yn(j )
can be computed independently. The matrix D is constructed such that p(Z..(D)) = 0,
where p(-) denotes the spectral radius function. This method was called PDIRK, Parallel
Diagonal-implicit Iterated Runge-Kutta.

Recently, in [HSw95], a mixture of the two strategies described above was presented and
given the name PTIRK, Parallel Triangularly-implicit Iterated Runge-Kutta. Here, the
matrix B was identified with a lower triangular matrix 7" such that A =T U is the Crout
decomposition of A, i.e. U is unit upper triangular. One easily verifies that for this T
the stiff amplification matrix Z.,(7") is strictly upper triangular. Throughout this paper,
T will always denote this special lower triangular matrix. This choice of B yields, just
like in PDIRK, a stiff amplification matrix that has a zero spectral radius. However, the
new strategy leads to an amplification matrix Z(z) that has a much smaller departure
from normality than the amplification matrix in PDIRK. Consequently, the amplification
after several iterations, i.e. the norm of the powers of Z(z) is now considerably smaller
(see [HSw95|, Table 3.1). Suppose that all diagonal entries of 7' are distinct and that
the eigenvalue decomposition of T is given by T'Q) = @ D, where D is diagonal and @
non-singular. Applying a similarity transformation in an analogous way as in [CB83], we
arrive at the scheme

TQ=QD,
(I = D ® hyJ,)AXUHY = —(Q7' @ I)R(Y,D), (1.4)
YUt = Y0) 4 (Q ® I)AXUHY,

It is clear that the s components of Y can be computed in parallel. The only additional
costs of (1.4) with respect to PDIRK are the appliance of the transformations (Q ® I)
and (Q ' ®I).

In order to ensure the non-singularity of the matrix (I — D ® h,J,) in (1.4), the pos-
itiveness of the diagonal entries of D is required. In [HSw95] the positiveness of D was
proved for s < 5 and conjectured for s > 5. The main scope of this paper is to prove this
conjecture. This will be done in Section 3, using operator theory.
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The outline of the rest of the paper is as follows. Section 2 gives some preliminaries to
the conjecture. In Section 4 we prove for s = 2, that the choice B = T made in PTIRK
is in some sense optimal.

2. PRELIMINARIES

The s x s matrix A belonging to the RK collocation method with abscissa vector ¢ has the
form ([HW91], p. 82)

A=CVRV™,

where C' = diag{ci,cs,...,¢s}, R = diag{1,1/2,...,1/s} and V is the Vandermonde
matrix generated by c, i.e.

Here, the abscissae c¢; have to be distinct. In the sequel the abscissae are also supposed
to be positive. Without loss of generality, we assume that the RK method is written such
that ¢; < ¢y < ... <c¢s. Let A =T U denote the Crout decomposition of A. The diagonal
entries tg; of T satisfy the formula [HSw95]

| Ayl
tep = , 2.1

where |A;| denotes the determinant of the jth principal sub-matrix of A and |4, := 1.
From (2.1) we see that the existence of the Crout decomposition immediately follows from
the positiveness of tg.

In [HSw95] the authors proved the positiveness of ¢y, k € {1,2,...,s}, for s < 5 in
the following way: first they showed that |A;| and |A,| are positive (for general s); then
the positiveness of the remaining |A4s|,...,|As 1| was demonstrated by computing them
explicitly; this approach does not lead to a proof for general s.

Another idea is to investigate whether the matrix VRV ! is positive definite. By us-
ing the result that every positive definite matrix has an LU-decomposition with positive
diagonal entries ([GL89], p. 140), the proof of the conjecture would then easily follow,
realizing that T' = C' L, where L is the lower triangular matrix in the Crout decomposition
of VRV ™. However, the following example shows that VRV ~! is not always positive
definite: If s =3, c=(1/3,1/2,2/3)" and z = (1,3, -7)7, then z" VRV 'z = —11.
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In the following section the proof of the conjecture will be given by considering VRV !
as the matrix of an operator on the space of polynomials of degree less than s with respect
to a basis of Lagrange polynomials.

3. PROOF OF THE CONJECTURE

Theorem 1 Let V be the s X s Vandermonde matrix generated by ci,co,...,cs, where
0<ec <e<...<c let R be the diagonal matriz diag (1,1/2,...,1/s). There exist a
lower triangular matriz L, and unit upper triangular matriz U, such that LU = VRV 1.
The diagonal entries of L are positive.

Notice that from this theorem it immediately follows that for any s x s RK collocation
matrix A with positive distinct abscissae, there exists a lower triangular matrix 7" with
positive diagonal entries such that Z.,(7') is strictly upper triangular, by setting 7' = C L.

Proof of Theorem 1: Let P, be the s-dimensional linear space of polynomials of degree
less than s with real coefficients, and C the canonical basis for Py, i.e.

C={l,z,...,2°'}.

Define the operator H : P, — P, by H(p) = q where ¢ is defined by
1 x
a(e) == [ p(t)at

X

We use the notation mat(H ). for the matrix of the operator H with respect to the basis C.
It can be easily verified that

mat(H)c = R.

We denote the kth Lagrange polynomial with respect to ¢y, cs,...,cs by lx:

W)= —2= 5 kefL2,...,s)
,i;ékck_cz

Notice that [ is of degree s—1 and thus element of P,. The Lagrange polynomials define
also a basis for P, which will be denoted by L:

L= {ll,lQ,...,lS}.

We write C for the matrix that expresses the canonical basis in the Lagrange basis. Since
for every m € {0,1,...,s—1} the equality

™ = Clmll + Cgmlg —+ ...+ Csmls

should hold, it can be seen that C, = V. Consequently, the matrix of the operator H with
respect to the basis £ is given by
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mat(H), = Cr -mat(H)¢-C.' = VRV ™' = B.

It (H (lk)) . denotes the image under H of [}, with respect to the basis £, then

/Blk
(HW)),=Ber=| : |,
ﬂnk

where ey, is the kth canonical basis vector of R* and (§;;) = B.
We claim that £;; > 0. To see this, notice that H(l;) is a polynomial with coefficient (3,
in the direction of ;. Since lx(c;) = 0 for k£ > 1, it is clear that

(H(ll)) (01) = f1-

With respect to the value of I; in zero, we observe that [;(¢;) = 1, and that all its roots
are to the right of ¢;; therefore [; is positive on [0, ¢;], which implies

(H(L)) (1) = 0—11 [ nwar>o.

Consequently, 811 > 0.
It is now possible to define

Uik 1= _ D ;o ked{2,...,s}.
b

From this definition it follows that, for £ > 1,

Vik
0 0
; (1)
(H(l + chll))ﬁ = B(ey + vize1) = B (1] = 2
; BLY
0

Assuming ﬂ%) # 0, we are able to define

(1)
vzkzz—% : ked{3,...,s},
Bas

such that
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U1k

U2k 0
0 0
; (2)

(H(lk + ’ngl2 + Ulkll))ﬁ =B 0 = 3k

1
0 :
: By
0

Continuing this procedure, we finally arrive at

k
(H(Z ’Uz'kli))ﬁ = Buy, = Tk,
=1

where

(defining 65;-) ) = Bi;) and uy and 7y are vectors defined by

U1k 0
Vk—1,k 0
U = 1 and 7, = I(c’;c—l)
0
0 G

If we can show that ﬂ,(clfc_l) > 0 for k£ € {2,3,...,s}, we have demonstrated that the

procedure outlined above can be carried out. By observing that u; and 7, are columns of
matrices U and L, respectively, for which the relation BU = L holds, we then have proved
Theorem 1 using U for U .

The vectors u; and 7, can be considered as polynomials in P with respect to the basis L.
Moreover, 7}, is the image of u; under the operator H:

H(Uk) =T-

Since 74 (cx) = /B,(C’,zfl), we have to prove that ri(c;) > 0. We define the polynomial Uy, of
degree s+1 by

Up(x) = /0 " ua(t) dt.
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Uk(l‘) 1

0 c1 ce. Cr—1 Ck Ck+1 ... Cs

-« - - - - >

uy, has U
k—1 zeros

uy has
s—k zeros

1=
-3
N—r

Figure 1: Sketch of Uy(z)

Notice that Ux(0) = 0 and, for z > 0, the sign of r equals the sign of Uy (the latter holds
since Uy, = zry). Since lx(c;) = 0 for ¢ < k and r, has only components in the direction of
l; with j > k, we see that rx(c;) = 0 for 4 < £ and consequently

Ue(ci) =0 for i<k.

This means that u (being the derivative of Uy) has k—1 zeros in the interval (0, cx_1).
All components of u; in the direction of the last s —k Lagrange polynomials are zero.
Consequently, ug(c;) = 0 for ¢ > k, so that u; has s—k zeros in the interval [cjy1, ck].

We now consider 2 cases (see also Figure 1):

, (3.1)

uk(ck_l) > 0
< 0. (32)

Uk(qu)
Remark that, since all ¢; are distinct, Uy has a single zero in c;_1, so that the situation

ug(ck—1) = 0 does not arise. Suppose that (3.2) holds. Since uy(cx) = 1, the polynomial
uy, should have a zero in the interval (c;_1,cx). In that case, ug has (k—1) + (s—k)+1=3s
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zeros. However, the degree of uy is only s—1, proving that only situation (3.1) can occur,
and ug > 0 on (cg_1,Ck)-

From Uy (c,_1) = 0, it now follows that Uy (cx) > 0. Since r has the same sign as Uy, we
have proved the theorem. O

4. Is PTIRK OPTIMAL?
In this section we investigate the optimality of the matrix 7" in PTTIRK. Since the number
of parameters becomes too large to handle conveniently for s > 2, we restrict ourselves
here to methods with 2 implicit stages, i.e. s = 2.

In the class of lower triangular matrices, 7' is optimal in the sense that it leads to the
smallest stiff amplification matrix measured in the infinity norm:

Theorem 2 If L is a 2 X 2 lower triangular matriz, then
1 Zoo(L)|loo > (1 Zoo(T) | co-
Proof: Write L™ = (l;;) with 15 = 0. Then

l1,1c1(—2cp+c1) liici®
Zoo(L) = ( L+ 1122(:2—:1) 1 o) ) .

Define for z > 0:

Cq (—2 Cy —+ Cl) 012

2(62 —Cl) x‘ 2(02—01)

Then g(z) > g(Tmin) = ¢1/(2¢a — ¢1), where zpin = 2(c2 — ¢1)/(c1 (2¢9 — ¢1)). Since
1Zeo(T)llco = 9(#min), it follows that || Zeo(L)lleo 2 [|Zoo(T)llco- O

g(z) = ‘1 + z.

For two well-known stiffly accurate RK methods with 2 implicit stages, it is possible to
show that in the class of lower triangular matrices that lead to a ‘small’ stiff amplification
matrix, 7T is optimal in the sense that it has the smallest non-stiff amplification matrix,
again measured in the infinity norm:

Theorem 3 If L is a 2 X 2 lower triangular matriz with the property that p(Z.(L)) =0,
then, for the 2-stage RadaullA, and the 3-stage Lobatto IIIA method,

1Zo(D)lloe > 1 Z0(T) |-

Proof: Write A = (a;;) and L = (I;;) with l15 = 0. Then || Zy(L)||cc = max(m4, ms), where
my and my are given by

my = |ain — lin| + |az] and  my = |ag — loy| + |a1a — lag] -
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Let J be the interval such that if l;; ¢ J, then m; > ||Zy(7T)||o. Notice that J only
depends on c. From o(Z.(L)) = 0 it follows that trace(Z.(L)) = det(Zw(L)) = 0. Using
these two equations, it is possible to express ly; and ly9, and thus ms, in l;;. We have to
proof that for l1; € J, mg > || Zo(T)||o. We treat the two methods separately.

RadaulTIA:  c¢=(1/3,1)", | Zo(T)||oo = 3/20, J = [7/20,29/60], and

3, —24h 1 +5+180% |1 1
) =2 ’ A I R .
mallu) =7+ 6711 1 6h,
It can be verified that lmu} (ma(l11)) = ma(t11) = 3/20.
11€

LobattoIlIA: ¢ = (0,1/2, )T, || Zo(T)|lee = 1/12, J = [7/24,3/8], and

2 —12L,+2+ 1202 |1 1
6 120,

mz(lll) =

3" 3001
The reader is invited to check that lIIlleI} (ma(l11)) = ma(tyy) = 1/12.
11
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