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Abstract

In this paper a collection of Initial Value test Problems for systems of Ordinary Differential Equations, Implicit
Differential Equations and Differential-Algebraic Equations is presented. This test set is maintained by the
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Test problems collected so far:

Chemical Akzo Nobel problem

Problem HIRES
Pollution Problem
Ring Modulator

Andrew’s squeezing mechanism

Transistor Amplifier

Medical Akzo Nobel problem
EMEP problem

NAND gate

Charge pump

Wheelset

Two bit adding unit

Car Axis problem

Fekete problem

ii

(ODE of dimension 6)
(ODE of dimension 8)
(ODE of dimension 20)

(ODE of dimension 15)

(index 3 DAE of dimension 27)
(index 1 DAE of dimension 8)
(ODE of dimension 400)

(ODE of dimension 66)

(index 0 IDE of dimension 14)
(index 2 DAE of dimension 9)
(index 2 IDE of dimension 17)
(index 1 DAE of dimension 350)
(index 3 DAE of dimension 10)
(index 2 DAE of dimension 160)



I Introduction

In testing new codes for the numerical solution of Initial Value Problems, it would save a lot of
time if one could give a generally accepted reference for test problems and use the same Fortran 77
codes of the test problems, instead of describing and programming the problems oneself. Moreover,
if everyone would use the same source of the test problem, i.e. the same formulation, parameters,
integration interval, initial values, way of programming, etc., the comparison between the results
of several authors becomes much easier. This test set tries to fulfill these demands.

This set is meant to be a supplement to existing test sets, like NSDTST and STDTST by
Enright & Pryce [EP87], and PADETEST by Bellen [Bel92]. Information on the numerical solution
is presented by solving the problems with some well-known codes. Some problems were taken
directly from industry, others from the literature. Especially, the standard work by Hairer &
Wanner [HW91], in which a lot of problems arising in practice are brought together, turned out
to be very useful. The cooperation with M. Giinther, B. Simeon (TH Darmstadt) and G. Denk
(TU Miinchen) has led to a few contributions to the test set as well.

The test set can be obtained in two ways:

1. via the WWW page with URL
http://www.cwi.nl/cwi/projects/IVPtestset.shtml ,
2. via anonymous ftp at the site
ftp.cwi.nl in the directory pub/IVPtestset .

Every test problem consists of a description (c.f. Section II) and a Fortran code (c.f. Section IIT).
Both are obtainable via WWW or in the ftp directory mentioned above.

Drivers that make these codes suitable for runs with the codes RADAUS5 by Hairer & Wan-
ner [HW95], VODE by Brown, Hindmarsh and Byrne [BHB92] and DASSL by Petzold [Pet91] are
available as well.

Section II gives information on the structure of the problem descriptions. It is followed by
Section IIT on the format of the Fortran subroutines, here we also explain how to use the Fortran
codes for running the test problems.

1.1 How to submit new test problems

In order to let this test set be a success, it is necessary that a lot of new test problems are
contributed. On the other hand, to restrict the amount of time for the maintainers of the test
set to incorporate new problems, it is important that the submissions are in a prescribed format.
Firstly, every problem should have a PostScript file (preferably together with a IATpX-file) with a
description of the problem containing the 4 subsections mentioned in Section II. Secondly, a set of
Fortran routines that are necessary for implementation has to be supplied in the format specified
in Section III.
Submissions can be sent by e-mail to IVPtestset@cwi.nl.

1.2 People Involved

This test set is maintained by the project group for Parallel IVP Solvers of CWI, department of
Numerical Mathematics. Members of this group are:

1. P.J. van der Houwen senna@cwi.nl

2.  W. Hoffmann' walter@fwi.uva.nl
3. B.P. Sommeijer bsom@cwi.nl

4. W.M. Lioen walter@cwi.nl

5. W.A. van der Veen wolter@cwi.nl

6. J.J.B. de Swart jacques@cwi.nl

1 University of Amsterdam
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IT Problem descriptions

Every problem description contains the following 4 subsections:

1. General information
The problem identification is given. Is it an IDE, ODE or DAE, what is its dimension, its
index? The contributor and any further relevant information are listed too. What is meant

here by IDE, ODE, DAE and index, is explained in Section III.

2. Mathematical description of the problem
All ingredients that are necessary for implementation are given in mathematical formulas.

3. Origin of the problem
A brief description of the origin, in order to give a physical interpretation of the problem.
References to the literature are given for further details.

4. Numerical solution of the problem
This subsection consists of 4 subsubsections.

(a) Solution in the endpoint. The values of the solution components in the endpoint
are listed.

(b) Behaviour of the numerical solution. This subsubsection presents plots of (some
of) the components over (part of) the integration interval.

(¢) Run characteristics. Integration statistics of runs with DASSL, RADAU5 and VODE
(if applicable) serve to give insight in the numerical difficulty of the problem. Specifi-
cations of the computer and Fortran 77 compiler used to perform the run, are included.
The characteristics are in the following format:

solver

The name of the numerical solver with which the run was performed.
rtol

The user supplied relative error tolerance.

atol

The user supplied absolute error tolerance.

ho

The user supplied initial step size (if relevant).

scd

The scd values denote the minimum number of significant correct digits in the
numerical solution in the endpoint, i.e.

scd := —log;o(max. norm of the relative error in the endpoint).

If some components of the solution vector are not taken into account for the com-
putation of the scd value, or if the absolute error is computed instead of the relative
error, then this is specified locally.

steps

Total number of steps taken by the solver (including rejected steps due to error
test failures and/or convergence test failures).

accept

The number of accepted steps.

# f and # Jac

The number of evaluations of the derivative function and its Jacobian, respectively.
# LU

The number of LU-decompositions (if delivered by the code). The codes, except
for RADAUS5, count the LU-decompositions of systems of dimension d, where d
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is the dimension of the test problem. RADAUS5 uses the three-stage Radau ITA
method. Every iteration of the inexact Newton process, used for solving systems
of non-linear equations, requires the solution of a linear systems of dimension 3d.
This linear system is, by means of transformations, reduced to 2 linear systems of
dimension d, one of which is complex. The decompositions of these 2 linear systems
are counted by RADAUS5 as 1 LU-decomposition.
e CPU

The CPU time in seconds to perform the run on the specified computer. Since
timings on most computers may depend on other processes (like e.g. daemons), the
minimum of the CPU times of 100 runs is listed.

Apart from tests with publicly available, well-known codes, tests with PSODE are
included. PSODE is a code developed at CWI for the parallel solution of ODEs. PSODE
uses the 4-stage Radau ITA method and solves the 4 stages in parallel. The integration
statistics listed in this Test Set refer to the implementation on a sequential computer.
We included the speed-up factors obtained with PSODE on the Cray C98/4256 at
SARA, using the tool ATExpert. Since PSODE is still under development, it is not
yet publicly available. For more details on PSODE and its parallel implementation, we

refer to [SB95] and [HS91].

Work-precision diagram. For every relevant solver, a range of input tolerances and,
if necessary, a range of initial stepsizes, were used to produce a plot of the resulting
scd values against the number of CPU seconds needed for the run. The format of
these diagrams is as in Hairer & Wanner [HW91, pp. 166-167, 324-325]. The range of
tolerances and initial stepsizes is problem dependent and specified locally.

We want to emphasize that the reader should be careful with using these diagrams for
a mutual comparison of the solvers. The diagrams just show the result of runs with the
prescribed input on the specified computer. A more sophisticated setting of the input
parameters, another computer or compiler, as well as another range of tolerances might
change the diagrams considerably.



IIT Fortran codes for the problems

For every test problem, the file problem.f contains a set of Fortran subroutines defining the
problem. We have categorized the test problems in three classes: IDEs, ODEs and DAEs.

In this test set, we call a problem an IDE (system of Implicit Differential Equations) if it is
of the form

G(ta Y, y,) = 0; tbegin S t S tend;
y,G(t,y,y") € RY,
Y(tbegin) and y'(tbegin) are given.

A problem is named an ODE (system of Ordinary Differential Equations), if it has the form

y, = f(t,y), tbegin S t S tenda
y, f(t,y) € RY,

Y(tbegin) is given,
whereas the label DAE is given to problems which can be cast in the form

Myl = f(ta y): tbegin S t S tend’

y, f(t,y) € RY, M e R

Y(tbegin) is given,
where M is a constant, possibly singular matrix. Connected to IDEs and DAEs is the concept of
index. Here, we mean by the index of a problem the differential index as defined in [HW91]. Note
that ODEs and DAEs are subclasses of IDEs.

Every class of problems corresponds to one format of the Fortran routines.

I11.1 IDEs
The form for IDEs reads

G(ta yay,) = 0; tbegin S t S tend;
y,G(t,y,y") € RY,
Y(tvegin) and y'(tbegin) are given.

The subroutines are:

1. subroutine prob(problm, neqn, tbegin, tend, ijac, mljac, mujac,
ind1l, ind2, ind3)
character*(*) problm
integer neqn, ijac, mljac, mujac, indl, ind2, ind3
double precision tbegin, tend

describes the problem
problm - character

On exit, problm contains a character string uniquely identifying the problem.
The first 8 characters (possibly blank padded) should be unique.

neqn - integer
On exit, neqn contains d, the dimension of the problem.

tbegin - double precision
On exit, tbegin contains tpegin, the begin point of the integration interval.

tend - double precision
On exit, tend contains tenq, the end point of the integration interval.
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ijac - integer
On exit, ijac contains a switch for the computation of the Jacobians 8G/8y and

8G [dy":

e ijac = 0: the Jacobians have to be computed internally by the solver,
a dummy subroutine jeval is supplied;

e ijac = 1: the Jacobians are supplied by the subroutine jeval, defined below.

mljac - integer
On exit, mljac contains a switch for the structure of the Jacobians 8G /8y and 0G/dy':

e mljac = neqgn: the Jacobians are full matrices;

e 0 <mljac < neqn: the Jacobians are band matrices,
mljac is the lower bandwidth of the Jacobian matrices
(mljac > number of non-zero diagonals below the main diagonal).

mujac - integer
On exit, mujac contains the upper bandwidth of the Jacobian matrices G /9y and
8G/dy' (mujac > number of non-zero diagonals above the main diagonal).
Need not be defined if mljac = neqn.

The parameters ind1, ind2 and ind3 give information on the index of the variables. The
right hand side function subroutine feval is written such that the index 1, 2, 3 variables
appear in this order. The relation ind1 + ind2 + ind3 = neqn should hold.

indl - integer
On exit, ind1 contains the number variables with index lower than 2 (ind1 > 0 should
hold).
For systems of index lower than 2 this equals neqn.

ind2 - integer
On exit, ind2 contains the number of index 2 variables.
For systems of index lower than 2 this equals 0.

ind3 - integer
On exit, ind3 contains the number of index 3 variables.
For systems of index lower than 2 this equals 0.

For the definition of index of a variable, we refer to [BCP89]. We remark that the differential
index of the whole problem equals the maximum of the indices of all variables.

. subroutine init(neqn, y, dy, incon)
integer neqn, incon
double precision y(neqn), dy(neqn)

returns the (possibly inconsistent) initial values y(tpegin) and y'(tbegin)
neqn - integer

On entry, neqn must specify d, the dimension of the problem.
Unchanged on exit.

y - double precision array of dimension at least (neqn)

On exit, y(i) contains y;(tbegin), ¢ = 1,...,d, the initial values of the solution.
dy - double precision array of dimension at least (neqn)
On exit,
e dy(i) contains y(tpegin), @ = 1,...,d, consistent initial values of the derivative of

the solution, if incon = 1.

e dy(i) contains 0 or an approximation to ¥;(tbegin), @ = 1,...,d, inconsistent initial
values of the derivative of the solution, if incon = 0.
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incon - integer
On exit, incon contains a switch for the consistency of the initial values thegin; Y(tbegin),
and yl(tbegin):
e incon = 0: the initial values are possibly inconsistent:
G(tvegin, Y(tbegin)s ¥ (tbegin)) 7 0. The solver has to compute ¥’ (thegin)-
e incon = 1: the initial values are consistent: G(tpegin, Y(tbegin), ¥ (tbegin)) = 0.

. subroutine geval(neqgn, t, y, dy, g)
integer neqn
double precision t, y(neqn), dy(neqn), g(neqn)

evaluates the function G

neqn - integer
On entry, neqn must specify d, the dimension of the problem.
Unchanged on exit.

t - double precision
On entry, t must specify ¢, the value of the independent variable.
Unchanged on exit.

y - double precision array of dimension at least (neqn)
On entry, y(i) must specify y;(t), ¢ = 1,...,d, the solution at t = t.
Unchanged on exit.

dy - double precision array of dimension at least (neqn)
On entry, dy (i) must specify yj(t), ¢ = 1,...,d, the derivative of the solution at ¢ = t.
Unchanged on exit.

g - double precision array of dimension at least (neqn)
On exit, g(i) contains G,(t,y,dy), ¢ = 1,...,d, the value of the function G at t = t.

. subroutine jeval(neqn, t, y, dy, dgdy, dgddy, ldim)

integer neqn, ldim

double precision t, y(neqn), dy(neqn), dgdy(ldim,neqn), dgddy(ldim,neqn)
evaluates the Jacobians G /9y and 8G /8y’

(this routine is only called if ijac = 1; a dummy subroutine is supplied in the case ijac = 0)

neqn - integer
On entry, neqn must specify d, the dimension of the problem.
Unchanged on exit.

t - double precision
On entry, t must specify ¢, the value of the independent variable.
Unchanged on exit.

y - double precision array of dimension at least (neqn)
On entry, y(i) must specify y;(t), i = 1,...,d, the solution at t = t.
Unchanged on exit.
dy - double precision array of dimension at least (neqn)
On entry, dy (i) must specify yi(t), ¢ = 1,...,d, the derivative of the solution at ¢ = t.
Unchanged on exit.
dgdy - double precision array of dimension (ldim,p) where p > neqn
On exit,
o dgdy(i, j) contains G;(t,y,dy)/dy; if the Jacobian is a full matrix
(mljac = neqn);
e dgdy(i— j +mujac + 1, j) contains 0G;(t,y,dy)/dy;
if the Jacobian is a band matrix (0 < mljac < neqn)
(LAPACK / LINPACK / BLAS storage).

viii



dgddy - double precision array of dimension (1ldim,p) where p > neqn
On exit,

e dgddy(i, j) contains 8G;(t,y,dy)/dy; if the Jacobian is a full matrix
(mljac = neqn);

e dgddy(i — j +mujac + 1, j) contains 8G;(t,y,dy)/dy;
if the Jacobian is a band matrix (0 < mljac < neqn)
(LAPACK / LINPACK / BLAS storage).

1dim - integer
On entry, 1dim must specify the first dimension of the arrays dgdy and dgddy as declared
in the calling (sub)program. If m1jac = neqn, then the Jacobians are supposed to be
full and the relation 1dim > neqn must hold. If 0 < mljac < neqn then the Jacobians
are taken as banded and the relation 1dim > mljac + mujac + 1 should hold.
Unchanged on exit.

5. subroutine solut(neqn, y)
integer neqn
double precision y(neqn)

returns a reference solution in the endpoint y(tenq)

neqn - integer
On entry, neqn must specify d, the dimension of the problem.
Unchanged on exit.

y - double precision array of dimension at least (neqn)
On exit, y(i) contains y;(tena), ¢ = 1,...,d, the reference solution at ¢t = tepq, the
endpoint.

If the index of the IDE is lower than 2, then the problem can be handled by DASSL. The file
dassld.f contains a driver such that compiling

£77 dassld.f ddassl.f problem.f

yields an executable that solves a problem, of which the Fortran routines in the format above are
in the file problem.f, with DASSL.

The auxiliary linear algebra routines used by DASSL are included in the driver. Unless stated
otherwise, all input parameters are set to their default values.

1I1.2 ODEs

For the ODE case, the problem is written in the form
y, = f(tay)a tbegin S t S tend;
y, f(t,y) € RY,

Y(tbegin) is given.
The subroutines are:

1. subroutine prob(problm, neqn, tbegin, tend, ijac, mljac, mujac)
character*(*) problm
integer neqn, ijac, mljac, mujac
double precision tbegin, tend

describes the problem

problm - character
On exit, problm contains a character string uniquely identifying the problem.
The first 8 characters (possibly blank padded) should be unique.
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neqn - integer
On exit, neqn contains d, the dimension of the problem.

tbegin - double precision
On exit, tbegin contains tpegin, the begin point of the integration interval.

tend - double precision
On exit, tend contains te,q, the end point of the integration interval.

ijac - integer
On exit, ijac contains a switch for the computation of the Jacobian:

e ijac = 0: the Jacobian has to be computed internally by the solver,
a dummy subroutine jeval is supplied;

e ijac = 1: the Jacobian is supplied by the subroutine jeval, defined below.

mljac - integer
On exit, mljac contains a switch for the structure of the Jacobian:

e mljac = neqgn: the Jacobian is a full matrix;

e 0 <mljac < neqn: the Jacobian is a band matrix,
mljac is the lower bandwidth of the Jacobian matrix
(mljac > number of non-zero diagonals below the main diagonal).

mujac - integer
On exit, mujac contains the upper bandwidth of the Jacobian matrix
(mujac > number of non-zero diagonals above the main diagonal).
Need not be defined if m1jac = neqn.

. subroutine init(neqn, y)
integer neqn
double precision y(neqn)

returns the initial value y(tbegin)

neqn - integer
On entry, neqn must specify d, the dimension of the problem.
Unchanged on exit.

y - double precision array of dimension at least (neqn)
On exit, y(i) contains y;(tpegin), ¢ = 1,...,d, the initial values.

. subroutine feval(neqn, t, y, dy)
integer neqn
double precision t, y(neqn), dy(neqn)

evaluates the right hand side function f (i.e. the derivative y')

neqn - integer
On entry, neqn must specify d, the dimension of the problem.
Unchanged on exit.

t - double precision
On entry, t must specify ¢, the value of the independent variable.
Unchanged on exit.

y - double precision array of dimension at least (neqn)
On entry, y(i) must specify y;(t), 2 = 1,...,d, the solution at t = t.
Unchanged on exit.

dy - double precision array of dimension at least (neqn)
On exit, dy (i) contains f;(t,y), 7 =1,...,d, the derivatives of the solution y at t = t.



4. subroutine jeval(neqn, t, y, jac, 1ldim)
integer neqn, ldim
double precision t, y(neqn), jac(ldim,neqn)

evaluates the Jacobian df/dy
(this routine is only called if ijac = 1; a dummy subroutine is supplied in the case ijac = 0)

neqn - integer
On entry, neqn must specify d, the dimension of the problem.
Unchanged on exit.

t - double precision
On entry, t must specify ¢, the value of the independent variable.
Unchanged on exit.

y - double precision array of dimension at least (neqn)
On entry, y(i) must specify y;(t), 2 = 1,...,d, the solution at t = t.
Unchanged on exit.

jac - double precision array of dimension (1dim,p) where p > neqn
On exit,

e jac(i, j) contains f;(t,y)/dy, if the Jacobian is a full matrix (mljac = neqn);
e jac(i— j+mujac+ 1,j) contains 9f;(t,y)/0y;

if the Jacobian is a band matrix (0 <mljac < neqn)

(LAPACK / LINPACK / BLAS storage).

1ldim - integer
On entry, 1dim must specify the first dimension of array jac as declared in the calling
(sub)program. If mljac = neqn, then the Jacobian is supposed to be full and the
relation 1dim > neqn must hold. If 0 < mljac < neqn then the Jacobian is taken as
banded and the relation 1dim > mljac + mujac + 1 should hold.
Unchanged on exit.

5. subroutine solut(neqn, y)
integer neqn
double precision y(neqn)

returns a reference solution in the endpoint y(tend)

neqn - integer
On entry, neqn must specify d, the dimension of the problem.
Unchanged on exit.

y - double precision array of dimension at least (neqn)
On exit, y(i) contains y;(tena), ¢ = 1,...,d, the reference solution at ¢t = tepq, the
endpoint.

The files rad5do. f, voded.f and dassldo.f are drivers such that compiling

£77 radbdo.f radaub.f problem.f
£77 voded.f vode.f problem.f
£77 dassldo.f ddassl.f problem.f

yields executables that solve a problem, of which the Fortran routines in the format above are in
the file problem. f, with RADAU5, VODE and DASSL, respectively.
The auxiliary linear algebra routines used by RADAUS5, VODE and DASSL are included in the
corresponding drivers. For RADAUS5, the DECSOL routines are used. In voded.f, the input
parameter iwork(6) is set equal to 1d6, to allow VODE to make more f-evaluations. Unless
stated otherwise, all input parameters are set to their default values.
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I11.3 DAEs
The form for DAEs reads

Myl = f(tay)’ tbegin S t S tenda
y;f(t;y) € Rda M e RdXd

Y(tbegin) is given,
where M is a constant, possibly singular matrix. The subroutines are:

1. subroutine prob(problm, neqn, tbegin, tend, ijac, mljac, mujac,
mlmas, mumas, indl, ind2, ind3)
integer neqn, ijac, mljac, mujac, mlmas, mumas, indl, ind2, ind3
double precision tbegin, tend

describes the problem

problm - character
On exit, problm contains a character string uniquely identifying the problem.
The first 8 characters (possibly blank padded) should be unique.
neqn - integer
On exit, neqn contains d, the dimension of the problem.
tbegin - double precision
On exit, tbegin contains fpegin, the begin point of the integration interval.

tend - double precision

On exit, tend contains te,q, the end point of the integration interval.
ijac - integer

On exit, ijac contains a switch for the computation of the Jacobian:

e ijac = 0: the Jacobian has to be computed internally by the solver,
a dummy subroutine jeval is supplied;

e ijac = 1: the Jacobian is supplied by the subroutine jeval, defined below.

mljac - integer
On exit, mljac contains a switch for the structure of the Jacobian:

e mljac = neqn: the Jacobian is a full matrix;

e 0 <mljac < neqn: the Jacobian is a band matrix,
mljac is the lower bandwidth of the Jacobian matrix
(mljac > number of non-zero diagonals below the main diagonal).

mujac - integer
On exit, mujac contains the upper bandwidth of the Jacobian matrix
(mujac > number of non-zero diagonals above the main diagonal).
Need not be defined if mljac = neqn.

mlmas - integer
On exit, mlmas contains a switch for the structure of the mass matrix M:

e mlmas = neqn: the mass matrix is a full matrix;
e 0 <mlmas < neqn: the mass matrix is a band matrix,
mlmas is the lower bandwidth of the mass matrix
(mlmas > number of non-zero diagonals below the main diagonal).

mumas — integer
On exit, mumas contains the upper bandwidth of the mass matrix
(mumas > number of non-zero diagonals above the main diagonal).
Need not be defined if mlmas = neqn.
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The parameters ind1, ind2 and ind3 give information on the index of the variables. The
right hand side function subroutine feval is written such that the index 1, 2, 3 variables
appear in this order. The relation ind1 + ind2 + ind3 = neqn should hold.

indl - integer
On exit, ind1 contains the number variables with index lower than 2 (ind1 > 0 should
hold).

For systems of index lower than 2 this equals neqn.
ind2 - integer
On exit, ind2 contains the number of index 2 variables.
For systems of index lower than 2 this equals 0.
ind3 - integer
On exit, ind3 contains the number of index 3 variables.
For systems of index lower than 2 this equals 0.

For the definition of index of a variable, we refer to [BCP89]. We remark that the differential
index of the whole problem equals the maximum of the indices of all variables.

. subroutine init(neqn, y, dy, incon)
integer neqn, incon
double precision y(neqn), dy(neqn)

returns the (possibly inconsistent) initial values y(tbegin) and y'(tbegin)
neqn - integer

On entry, neqn must specify d, the dimension of the problem.
Unchanged on exit.

y - double precision array of dimension at least (neqn)

On exit, y(i) contains y;(tbegin), ¢ = 1,...,d, the initial values of the solution.
dy - double precision array of dimension at least (neqn)
On exit,
e dy(i) contains y;(tpegin), ¢ = 1,...,d, consistent initial values of the derivative of

the solution, if incon = 1.
e dy(i) contains 0 or an approximation to y}(tbegin), ¢ = 1,...,d, inconsistent initial
values of the derivative of the solution, if incon = 0.
incon - integer
On exit, incon contains a switch for the consistency of the initial values thegin; Y(tbegin),
and y'(tbegin):
e incon = 0: the initial values are possibly inconsistent:
My (tbegin) 7 f(tbegin, Y(tbegin)). The solver has to compute y'(tbegin)-
e incon = 1: the initial values are consistent: My'(tpegin) = f(tbegin, ¥(tbegin))-

. subroutine feval(neqn, t, y, dy)
integer neqn
double precision t, y(neqn), dy(neqn)

evaluates the right hand side function f

neqn - integer
On entry, neqn must specify d, the dimension of the problem.
Unchanged on exit.

t - double precision
On entry, t must specify ¢, the value of the independent variable.
Unchanged on exit.

xiii



y - double precision array of dimension at least (neqn)
On entry, y(i) must specify y;(t), ¢ = 1,...,d, the solution at t = t.
Unchanged on exit.

dy - double precision array of dimension at least (neqn)
On exit, dy (i) contains f;(t,y),¢=1,...,d.

. subroutine jeval(neqn, t, y, jac, 1dim)

integer neqn, ldim

double precision t, y(neqn), jac(ldim,neqn)

evaluates the Jacobian df /9y

(this routine is only called if ijac = 1; a dummy subroutine is supplied in the case ijac = 0)

neqn - integer
On entry, neqn must specify d, the dimension of the problem.
Unchanged on exit.

t - double precision
On entry, t must specify ¢, the value of the independent variable.
Unchanged on exit.

y - double precision array of dimension at least (neqn)
On entry, y(i) must specify y;(t), 1 = 1,...,d, the solution at t = t.
Unchanged on exit.
jac - double precision array of dimension (1dim,p) where p > neqn
On exit,
e jac(i,j) contains 9f;(t,y)/0y; if the Jacobian is a full matrix (mljac = neqn);
e jac(i— j+mujac+ 1,j) contains 9f;(t,y)/0y;
if the Jacobian is a band matrix (0 <mljac < neqn)
(LAPACK / LINPACK / BLAS storage).
1dim - integer
On entry, 1dim must specify the first dimension of array jac as declared in the calling
(sub)program. If mljac = neqn, then the Jacobian is supposed to be full and the
relation 1dim > neqn must hold. If 0 < mljac < neqn then the Jacobian is taken as
banded and the relation 1dim > mljac + mujac + 1 should hold.
Unchanged on exit.

. subroutine solut(neqn, y)
integer neqn
double precision y(neqn)

returns a reference solution in the endpoint y(tend)

neqn - integer
On entry, neqn must specify d, the dimension of the problem.
Unchanged on exit.

y - double precision array of dimension at least (neqn)
On exit, y(i) contains y;(tend), ¢ = 1,...,d, the reference solution at t = tenq, the
endpoint.

. subroutine mas(neqn, am, 1ldim)
integer neqn, ldim
double precision am(ldim,neqn)

returns the mass matrix M

neqn - integer
On entry, neqn must specify d, the dimension of the problem.
Unchanged on exit.

xiv



am - double precision array of dimension (1ldim,p) where p > neqn
On exit,
e am(i,j) contains M;; if the mass matrix is a full matrix (mlmas = neqn);
e am(i — j + mumas + 1, j) contains M;; if the mass matrix is a band matrix
(0 < mlmas < neqn) (LAPACK / LINPACK / BLAS storage).
1ldim - integer
On entry, 1dim must specify the first dimension of array am as declared in the calling
(sub)program. If mlmas = neqn, then the mass matrix is supposed to be full and the
relation 1dim > neqn must hold. If 0 < mlmas < negn then the mass matrix is taken
as banded and the relation 1dim > mlmas + mumas + 1 should hold.
Unchanged on exit.

If the index of the problem is lower than 4, then RADAUS5 can solve problems of this type. The
file rad5da.f contains a driver such that compiling

£77 radbda.f radaub.f problem.f

yields an executable that solves a problem, of which the Fortran routines in the format above are
in the file problem.f, with RADAUS5. The DECSOL routines are used for the linear algebra and
are included in the driver.

Since DAEs are a subset of the class of IDEs, DASSL can solve index 1 DAEs by setting

G(t,y,y') = My' - f(t,y).
The file dasslda.f contains a driver for DASSL. Compiling
£77 dasslda.f ddassl.f problem.f

yields an executable that solves a index 1 DAE, of which the Fortran routines are in the file
problem.f, with DASSL.

The auxiliary linear algebra routines used by DASSL are included in the driver. Unless stated
otherwise, all input parameters are set to their default values.

XV
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Chemical Akzo Nobel problem 1-1

1 Chemical Akzo Nobel problem

1.1 General information
This IVP is a stiff system of 6 non-linear differential equations. It has been taken from [Sto95].
The parallel-IVP-algorithm group of CWI contributed this problem to the test set.
1.2 Mathematical description of the problem
The problem is of the form
dy
— = 0) =
7 f(@), y(0) =yo,
with
ye RS, 0<t<180.
The function f is defined by

—2r1 +ry —r3 -7y
—ir —ry —irs +Fin
_ T —T2 +r3
f(y) - —rg +,,,3 _27.4 ’
T9 —7Ts3 +T‘5
—ry
where the r; and F;, are auxiliary variables, given by
T1 = kl ° y% ° y2§7
ry = ka-ys-ya,
ko
r3 = ? *Y1 - Ys,
ra = ks-y1-ui,
rs = ky-yg-y3,
p(0s)
F,, = kKA - (—= —y2).
( H Y2)
The values of the parameters ki1, ko, k3, k4, K, klA, p(O2) and H are
kk = 18.7,
ks = 0.58,
ks = 0.09,
ky = 042,
K = 344,
kA = 3.3,
p(OZ) = 09,
H = 737.
Finally, the initial vector yq is given by
0.437
0.00123
10
Yo 0
0
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1.3 Origin of the problem

The problem originates from Akzo Nobel Central Research in Arnhem, The Netherlands. It
describes a chemical process, in which 2 species, MBT and CHA, are mixed, while oxygen is

continuously added. The resulting species of importance is CBS. The reaction equations, as given
by Akzo Nobel [CBS93], are

1
2MBT + 50, 5 MBTS + H,O,

ks /K
CBS+ MBT < MBTS+ CHA,
k2
MBT+2CHA+ Oy ™8 BT+ sulfate,
1
MBT.CHA + 50 % ©BS+ H»0,

MBT+ CHA < MBT.CHA.

The last equation describes an equilibrium

sl — [MBT.CHA]
[MBT] - [CHA]’
while the others describe reactions, whose velocities are given by
ri = ki-[MBT]*-[0,]3,
ro = ko [MBTS]-[CHA],
k
ry = % - [MBT) - [CBS],
r4 = ks-[MBT]-[CHA]?,
rs = k- [MBT.CHA]?-[0,]?,
respectively. Here the square brackets ‘[ ]’ denote concentrations.
The inflow of oxygen per volume unit is denoted by Fj,, and satisfies

Fi, = KlA - (I% — [0q)]),
where klA is the mass transfer coefficient, H is the Henry constant and p(O2) is the partial oxygen
pressure. p(Oz) is assumed to be independent of [O;]. The parameters ki, k2, k3, ks, K, klA, H
and p(O2) are given constants?.

The process is started by mixing 0.437 mol/liter [MBT] with 0.367 mol/liter [MBT.CHA].
The concentration of oxygen at the beginning is 0.00123 mol/liter. Initially, no other species are
present. The simulation is performed on the time interval [0, 180 minutes].

Identifying the concentrations [MBT], [O2], [MBTS], [CHA], [CBS], [MBT.CHA] with y1, ... ,ye,

respectively, one easily arrives at the mathematical formulation of the preceding subsection.

1.4 Numerical solution of the problem

1.4.1 Solution at ¢t = 180:

y1 | 0.1161602274780192
Yo | 0.1119418166040848 - 102
ys | 0.1621261719785814
ys | 0.3396981299297459 - 10~2
ys | 0.1646185108335055
ye | 0.1989533275954281

I This value plays a role in parameter estimation.
2 Apart from H, which is generally known, all parameters have been estimated by W. Stortelder [Sto95].
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1.4.2 Behaviour of the numerical solution

The following plots show the behaviour of the solution components:

0.5

0 0
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y(@3) x10° y(4)
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0.1 2
0 ' ' ' 0 ' ' '
0 50 100 150 200 0 50 100 150 200
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0.2 - 0.4 -
0.1} 0.3
0 ' ' ' 0.2 ' ' '
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v10°  Y(2)on[04]
y) . . .
1
O L
0 1 2 3 4

1.4.3 Run characteristics

The runs were performed on a SGI workstation, an Indy with a 100 MHz R4000SC processor,
using the Fortran 77 compiler with optimization: £77 -0.
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solver rtol atol hO scd steps accept #f #Jac # LU CPU
DASSL 10~¢ 10~ 3.98 46 44 72 13 0.02
10-7 107 5.76 160 155 225 24 0.05
10~ 10-10 8.00 396 391 474 32 0.10
RADAU5 1077 1077 1077 7.09 59 58 388 46 55  0.03
10-10 10710 10-10 | 915 284 284 1595 69 109 0.11
VODE 10~* 10* 2.45 64 63 92 2 17  0.01
10-7 107 5.91 183 170 263 4 41  0.04
10-10  10-10 7.87 367 358 450 7 44  0.07
PSODE 10-% 107* 10°°® 4.94 25 24 612 3 92  0.04
10-7 1007 1077 7.71 70 68 1548 7 196  0.09
10~10 10710 10710 | 1142 219 218 4550 5 248  0.25

The speed-up factors of PSODE on the Cray C98 are, in order of decreasing rtol: 1.8, 1.8, 1.9.

1.4.4 Work-precision diagram

In Figure 1 we present a work-precision diagram (cf. [HW91, pp. 166-167, 324-325]). The runs
were performed on a SGI workstation, an Indy with a 100 MHz R4000SC processor, using the
Fortran 77 compiler with optimization: £77 -0. We used: rtol = 10~(4+™/9 m =0,1,4,...,24
for DASSL, m = 6,...,24 for RADAU5, m = 0,...,24 for VODE, m = 1,...,24 for PSODE;
atol = rtol; hO = rtol for RADAUS5 and PSODE.

References
[CBS93] CBS-reaction-meeting Kéln. Handouts, May 1993. Br/ARLO-CRC.

[HW91] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II: Stiff and
Differential-algebraic Problems. Springer-Verlag, 1991.

[Sto95] W. J. H. Stortelder, 1995. Private communication.
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Figure 1: Work-precision diagram for Chemical Akzo Nobel problem
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2 Problem HIRES

2.1 General information

This IVP is a stiff system of 8 non-linear differential equations. It was proposed by Schéafer
in 1975 [Sch75]. The name HIRES was given by Hairer & Wanner [HW91]. It refers to ‘High
Irradiance RESponse’, which is described by this IVPODE. The parallel-IVP-algorithm group of
CWI contributed this problem to the test set.

2.2 Mathematical description of the problem
The problem is of the form

with
ye R 0<t<321.8122.
The function f is defined by

—1.71y; +0.43y, +8.32ys +0.0007
1.71y1 —8.75y2
~10.03y; +0.43ys +0.035ys
B 8.32ys +1.7lys —1.12y,
fly)= —1.745y5 +0.43ys  +0.43y;
—280yeys +0.69ys +1.71ys —0.43ys +0.69y;
280y6y8 —181y7
—280yeys  +1.81y;

The initial vector y is given by (1,0,0,0,0,0,0,0.0057)T.
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2.3 Origin of the problem

The problem originates from plant physiology, and is described in [Sch75]. It explains the “High
Irradiance Responses” (HIRES) of Photomorphogenesis on the Basis of Phytochrome, by means
of a chemical reaction involving 8 reactants. It has been promoted as a test problem by Gottwald
in [Got77]. The reaction scheme is given below.

Figure 1: Reaction scheme for HIRES (taken from [Got77])

The values of the parameters were taken from [HW91]:

ki = 171k, = 280
ky = 043k =  0.69
ks = 832|k* = 069
ks = 069]|ox, = 0.0007
ks = 0.035
ke = 832

Identifying P, Py, P, X, Ps. X, P, X', P, X', P;, X'E and E with y;, 7 € {1, ..., 8}, respectively,
the differential equations mentioned in Subsection 2.2 easily follow.
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2.4 Numerical solution of the problem

2.4.1 Solution at ¢t = 321.8122:

U1
Y2
Y3
Ya
Ys
Ys
Yr
Ys

0.7371312573325668 -
0.1442485726316185 -
0.5888729740967575 -
0.1175651343283149 -
0.2386356198831331 -
0.6238968252742796 -
0.2849998395185769 -
0.2850001604814231 -

1073
103
10~4
102
102
1072
102
102

2-3
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2.4.2 Behaviour of the numerical solution

Problem HIRES

The following plots show the behaviour of the solution (on different time intervals):
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2.4.3 Run characteristics

The runs were performed on a SGI workstation, an Indy with a 100 MHz R4000SC processor,
using the Fortran 77 compiler with optimization: £77 -0.

solver rtol atol hO scd steps accept #f #Jac # LU CPU
DASSL 10+ 10 1.03 99 90 176 32 0.04
10-7 1077 336 311 307 459 40 0.10
10-10  10-10 7.01 1077 1061 1493 47 0.31
RADAU5 107* 10=* 1077 2.32 45 37 331 22 45  0.03
10-7 1077 1079 481 135 133 784 46 85  0.06
10710 10710 107" | 885 701 701 3752 140 223 0.27
VODE 10-* 10~ 1.33 131 129 191 10 24  0.03
10-7 1077 3.84 390 365 608 9 69 0.09
1010 10-10 6.18 880 827 1224 15 134 0.18
PSODE 10=* 10~* 1077 5.18 61 60 1540 17 232 0.12
10-7 1007 107° 831 203 181 5061 24 624 0.37
10710 10710 10-11 | 1077 570 558 14022 66 984 0.94

The speed-up factors of PSODE on the Cray C98 are, in order of decreasing rtol: 2.2, 2.3, 2.2.

2.4.4 Work-precision diagram

In Figure 2 we present a work-precision diagram (cf. [HW91, pp. 166-167, 324-325]). The runs
were performed on a SGI workstation, an Indy with a 100 MHz R4000SC processor, using the
Fortran 77 compiler with optimization: £77 -0. We used: rtol = 10~(4+™/49) m = 0,...,24;
atol = rtol; h0 = 1072 - rtol for RADAU5 and PSODE.

References

[Got77] B. A. Gottwald. MISS — ein einfaches Simulations-System fiir biologische und chemische
Prozesse. EDV in Medizin und Biologie, 3:85-90, 1977.

[HW91] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II: Stiff and
Differential-algebraic Problems. Springer-Verlag, 1991.

[Sch75] E. Schéfer. A new approach to explain the ‘high irradiance responses’ of photomorpho-
genesis on the basis of phytochrome. J. of Math. Biology, 2:41-56, 1975.
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3 Pollution problem

3.1 General information

This IVP is a stiff system of 20 non-linear differential equations. It is the chemical part of the air
pollution model developed at The Dutch National Institute of Public Health and Environmental
Protection (RIVM) and it is described by Verwer in [Ver94]. The parallel-IVP-algorithm group of

CWI contributed this problem to the test set.

3.2 Mathematical description of the problem

The problem is of the form

with

The function f is defined by

y € R 0<t<60.

— Z T+ Z T;
j€{1,10,14,23,24} j€{2,3,9,11,12,22,25}

—rg—r3—7r9g —Ti2+71r1+79

—ri5 + 711+ 7117 + 7119 + 722

—Try —Ti6 —T17 —T23 + 715

—r3+2r4+ 716 + 77 + 713 + 720

—Tg — T8 —T14 — T20 + 73 + 2718

—r4—T5—Te+T13

T4 +75 +18 + 77

—T7 — T8

—Tri2 + 717+ 79

—rg—ro+rg+7r1n

T9

—r11 + 710

—Tr13 + 712

T14

—ri8 —T19 + T16

—T20

T20

—T21 — T2 — T4 +T23 +T25
—T25 + 724

where the r; are auxiliary variables, given by
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= ki-n re = ka-y2-ys

r3 = k3-ys-y2 |4 = kg-yr

rs = ks-yr re = ke Yr-Us

re = kr-oyg rs = ks-Yo-Ys

T9 = ko yi1-y2 |0 = ko Y1101

r11 = ki1 913 1o = k12 Y102

13 = k13- yu4 T4 = kia-y1-Ye

15 = kis-y3 rie = kie-ya

ri7 = kir-ya rig = kig Y16

ri9 = kio- Y16 roo = k20 Y17 Vs

ro1 = ka1 Y19 roo = k22 - Y19

Tos3 = koz-Y1-vys |Toa = ko4 Y191

Tos = ka5 Y20

The values of the parameters k; are

ky,  =0.350 ks =0.266-102
k3! =0.123-10° | ks =0.860-1073
ks =0.820-10"3| kg =0.150-10°
k;  =0.130-10"3 | kg = 0.240-10°
k¢ =0.165-10° | k;p = 0.900-10*
ki =0.220-10"1 | k1o =0.120-10°
ki3 =0.188-10 k4 =0.163-10°
kis = 0.480-107 kg =0.350-10"3
kiz =0.175-10"1 | k;g = 0.100-10°
kg =0.444-10'2 | kyy =0.124-10*
koy =0.210-10 koo =0.578-10
ko =0.474-10""1 | kyy =0.178-10*

kos =0.312-10

Finally, the initial vector yq is given by

Pollution problem

yo = (0,0.2,0,0.04,0,0,0.1,0.3,0.01,0,0,0,0,0,0,0,0.007,0,0,0)7.

3.3 Origin of the problem

The problem is a chemical model consisting of 25 reactions and 20 reacting compounds. The

reactions read:

INotice that this constant has a typing error in [Ver94].
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e I e o e

NO2
NO+03
HO2+NO
HCHO
HCHO
HCHO+OH
ALD
ALD+OH
C203+NO
C203+NO2
PAN
MEO2+NO
CH30
NO2+OH
o3p

03

03

01D

01D
S02+0H
NO3

NO3
NO2+03
NO3+NO2
N205

L A A A

NO+O3P
NO2
NO2+OH

2 HO2+CO
CO
HO2+CO
MEO2+HO2+4-CO
C203
NO2+MEO2+CO2
PAN
C2034+-NO2
CH30+NO2
HCHO+HO2
HNO3

03

01D

03P

2 OH

03P
SO04+HO2
NO
NO2+03P
NO3

N205
NO3+NO2

3-3

Writing down the reaction velocities r; for every reaction equation and making the identification
in the table below, one arrives at the system of differential equations given in the preceding
subsection. The square brackets ‘[ ]’ denote concentrations. Also listed are the concentrations at

t=0.

The time interval [0,60] represents the behaviour of the reactants sufficiently.

variable species

initial value

Yo [NO]

Ys [OH]

Yr [HCHO]
ys [CO]

Yo [ALD]
Y10 [MEOQ]
Y11 [C203]
Y12 [CO2]
Y13 [PAN]
Y14 [CH30]
Y15 [HNO3]
Y16 [01D]
Y17 [SO2]
Y18 [SO4]
Y19 [NO3]
Y20 [N205]

0
0.2
0
0.04
0

0
0.1
0.3
0.01

o

0.00

OO OO OO OoOOoOOo
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3.4 Numerical solution of the problem

3.4.1 Solution at t = 60:

n
Y2
Y3
Ya
Ys
Ys
Yr
Ys
Yo
Y10
Y1
Y12
Y13
Y14
Yis
Yie
Y17
Y18
Y19
Y20

0.5646255480022769 -

0.1342484130422339

0.4139734331099427 -
0.5523140207484359 -
0.2018977262302196 -
0.1464541863493966 -
0.7784249118997964 -

0.3245075353396018

0.7494013383880406 -
0.1622293157301561 -
0.1135863833257075 -
0.2230505975721359 -
0.2087162882798630 -
0.1396921016840158 -
0.8964884856898295 -
0.4352846369330103 -
0.6899219696263405 -
0.1007803037365946 -
0.1772146513969984 -
0.5682943292316392 -

10-7

Pollution problem
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3.4.2 Behaviour of the numerical solution

The following plots show the behaviour of the solution components on the interval [0,12]:

0.05

y(1)

0 10 20
y(4)
0.04
0.02
0
0 10 20
y(7)
0.1
0.09
0.08
0 10 20
x10° ¥(10)
5
0
0 10 20

0.2

0.15
0

y(2)

—

10

x107 YO
4

0.31

0.3
0

20

20

10

4

20

0 10

20

3-5

4

o

0 10

20

4 L\

0 10

X 10'3 y(9)

20

10

1

20

0.5

20



3-6
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3.4.3 Run characteristics
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X 10'3 y(15)
4
0 10 20
4
0 10 20

The runs were performed on a SGI workstation, an Indy with a 100 MHz R4000SC processor,
using the Fortran 77 compiler with optimization: £77 -0.

solver rtol atol hO scd steps accept #1f #Jac # LU CPU
DASSL 10~* 10~* 1.98 36 35 57 14 0.03
10-7 107 4.13 135 135 192 23 0.09
10-10  10-10 5.55 365 362 497 40 0.23
RADAU5 10~* 10=* 10°° 2.41 25 20 164 15 24  0.06
10-7 1077 1077 4.94 44 44 272 19 37 0.09
10~10 10710 10-10 | 853 207 207 1125 26 76 0.29
VODE 10~* 107* 1.65 55 55 106 5 17  0.04
10-7 10~ 7 3.64 149 149 210 4 26 0.07
10~10 10-10 472 375 357 528 7 60 0.18
PSODE 10~* 107* 107% 5.58 34 34 834 7 136  0.24
10-7 1077 1077 7.52 90 90 1982 6 244  0.51
101 10-10 10710 | 10.66 283 283 6183 5 324 1.34

The speed-up factors of PSODE on the Cray C98 are, in order of decreasing rtol: 2.8, 2.8, 2.7.

3.4.4 Work-precision diagram

In Figure 1 we present a work-precision diagram (cf. [HW91, pp. 166-167, 324-325]). The runs
were performed on a SGI workstation, an Indy with a 100 MHz R4000SC processor, using the
Fortran 77 compiler with optimization: £77 -0. We used: rtol = 10~(4+™/49) m = 0,...,24;
atol = rtol; hO = rtol for RADAUS5 and PSODE.
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4 Ring modulator
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4.1 General information

The type of the problem depends on the parameter C,. If Cy # 0, then it is a stiff system of 15

non-linear ordinary differential equations.

For C; = 0 we have a DAE of index 2, consisting of

11 differential equations and 4 algebraic equations. It has been taken from [KRS91], where the

approach of Horneber [Hor76] is
this problem to the test set.

4.2

followed. The parallel-IVP-algorithm group of CWI contributed

Mathematical description of the problem

For the ODE case, the problem is of the form

with

The function f is defined by

dy
a = .f(t7 y)’ y(o) = Yo,
yeRB, 0<t<1073

c~ 1(y8 —0.5y10 + 0.5y11 + y14 — R~ lyl)
c~ l(yQ —0.5y12 + 0.5y13 + y15 — R~ lyg)
C; (y10 — ¢(Up1) + q(Upa))
C;'(=y11 + q(Up2) — q(Ups))
C;7 (y12 + q(Up1) — q(Ups))
C; ' (—=y13 — q(Up2) + q¢(Upa))
Cy Y (=R, Yyr +a(Up1) + a(Up2) — ¢(Ups) — a(Ups))
f(t’ y) = _L;Iyl (1)
_L;13Jz
L, (0.5y1 — y3 — Ry2y10)
L (—0.5y1 + ya — Ry3y11)
L;5'(0.5y2 — ys — Rgoy12)
L;3H(—0.5y2 + yg — Ry3y13)
Ls_l( —y1 + Uin1(t) — (Ri + Rg1)y14)
L' (=y2 — (Re + Rg1)y15)
The auxiliary functions Up1,Ups2,Ups,Upa, q,Uin1 and U;,o are given by
Upt = wy3s — ¥y — yr — U2 (t),
Up2 = -ya + w6 — yr — Umalt),
Ups = wya + wys + yr + Uina(t),
Ups = -yz — ¥ + yr + Uima(t),
q(U) = ’Y(eaU - 1)5
Uin1(t) = 0.5sin(20007t),
Uin2(t) = 2s5in(200007t).
The values of the parameters C, Cs, Cp, R, Ry, Ly, L1, Lga, Ls3, Rg1, Ryo, Ry3, R, R, v and
6 are:
C = 16-1078,
107° = ODE-system,
° { 0 = DAE-system,
C, = 1078,
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R = 25000,
R, = 50,
L, = 445,
L,y = 0.002,
Lo, = 5-107%,
Ls = 5-107%,
R, = 36.3,
Ry, = 17.3,
R, = 17.3,
R; = 50,
R. = 600,
v = 40.67286402 1077,
§ = 17.7493332.

Finally, the initial vector yq is given by

v = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)".

Ring modulator
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4.3 Origin of the problem

The problem originates from electrical circuit analysis. It describes the behaviour of a ring modu-
lator. A ring modulator mixes a low-frequency signal with a high-frequency signal. The diagram
of a ring modulator is given below.

all

Br By

. R 4

EP:‘TU, [‘]1'

Figure 1: Circuit diagram for Ring Modulator

Ol &l

Every capacity in the diagram leads to a differential equation:
CU =1.

Applying Kirchhoff’s Current Law yields the following differential equations:

cUy = I —05I3+0.50+I; — R71U;,

CU, = Iy —05I5+05I+Is— R'Us,

CUs = Iy —q(Up1)+q(Upa),

CUs = —I; +q9(Up2)—q(Ups),

CUs = I, +q(Up1)—q(Ubs),

CUs = —Is —q(Up2)+q(Upa),

CpUr = —R;'Ur+q(Up1) +q(Up2) — q(Ups) — ¢(Upa),

where Up1,Up1,Up; and Up, stand for:

Upr = U3 — Us — Ur — Ung,
Ups = -Us + Us — Ur — Una,
Ups = Uy + Us + Ur + Upa,
Ups = -Us — Us + Ur + Upo.

The diode function g is given by

where v and 6 are fixed constants.
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Every inductor leads to a differential equation as well:

LI =U.

Ring modulator

Hence, we obtain another 8 differential equations for the 8 inductors:

Lik
Lyl
LyoIs
Lysly
Ls2j5
LsSjﬁ
Laly
lejS

Initially all voltages and currents are zero.

Identifying the voltages with yq,...

_Ula
_UZJ
0.5U; — Us — Rgols,
—-0.5U; + U, — R93I4,
0.5U, — Us — Rgpls,
—0.85U, + Us — Rgsls,
Uy + Ui, — (Ri+Rg)ly,
—Uy, — (R.+ Rp)Is.
,y7 and the currents with yg,...,y15, we obtain the 15

differential equations mentioned before.

4.4 Numerical solution of the problem

All the tests concern the ODE-case in which only 1 ring modulator is involved (i.e. Cys = 10~°

and N =1).

4.4.1 Solution at t = 1073:

N
Y2
Ys
Ya
Ys
Ys
Yr
Ys
Yo
Y10
Y11
Y12
Y13
Y1a
Y15

0.27531919254370
—0.39115731811511
—0.38851730770493

0.27795920295388

0.11146002811043

—0.17079903291846 -
—0.66609789784834 -

0.29791296267403 -
—0.31427403451731 -
0.70165883118556 -
0.85207537676917 -
—0.77741454302426 -
—0.77631966493048 -
0.78439425971261 -
0.25232278361831 -
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4.4.2 Behaviour of the numerical solution
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The following plots show the behaviour of the solution components:
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4.4.3 Run characteristics

The runs were performed on a SGI workstation, an Indy with a 100 MHz R4000SC processor,
using the Fortran 77 compiler with optimization: £77 -0.

solver rtol  atol  hO scd  steps accept #f #Jac # LU CPU
DASSL 1074 1074 0.77 5989 5759 10230 442 3.51
10°7 107" 3.63 18987 18746 28016 546 9.98

RADAU5 107* 10=* 1076 | 2.89 2562 2119 15747 1076 2161  3.44
10-7 1077 107% | 5.99 11158 10699 58768 2309 5989 11.71
VODE 10-* 10~* 0.50 7326 6837 11712 250 1191 2.97
10-7 1077 3.43 17977 16899 25937 329 2213 6.83
PSODE 107* 10=* 107% | 3.75 2537 2190 58638 422 7516 11.18
10°7 1077 107% | 7.70 8506 7384 172496 420 19836 32.23

The speed-up factors of PSODE on the Cray C98 are, in order of decreasing rtol: 2.8, 2.7.
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4.4.4 Work-precision diagram

In Figure 2 we present a work-precision diagram (cf. [HW91, pp. 166-167, 324-325]). The runs
were performed on a SGI workstation, an Indy with a 100 MHz R4000SC processor, using the
Fortran 77 compiler with optimization: £77 -0. We used: rtol = 10=(4+m/8) m =0,2,...,24 for
VODE and m =0,..., 24 otherwise; atol = rtol; h0 = 10~2 - rtol for RADAU5 and PSODE.
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5 Andrew’s squeezing mechanism

5.1 General information

The problem is a non-stiff second order DAE of index 3, consisting of 7 differential and 6 algebraic
equations. It has been promoted as a test problem by Giles [Gil78] and Manning [Man81]. The
formulation here corresponds to the one presented in Hairer & Wanner [HW91]. The parallel-IVP-
algorithm group of CWI contributed this problem to the test set.

5.2 Mathematical description of the problem

The problem is of the form

with initial conditions
Here,

t < 0.03,
R7

RS,
R7—>R7X7
R14—>R7 ’
R” - RS,
dg

y

m m IA

)

QA e - >a o

The function M(q) = (M;;(q)) is given by:

= my-ra® +my(rr? — 2da -7 - cosqa + da®) + I, + I,

= Miy(q) = my(da® —da-rr-cosqy) + I,

= my-da® + I,

= mg(sa® + sb?) + I,

my(e —ea)? + Iy,

Mys(q) = ma((e — ea)® + zt(e — ea)sinqq) + L4,

my(2t? + 22t(e — ea)sinqq + (e — ea)?) + ms(ta® + tb?) + Iy + I,
me(zf — fa)? + I,

= Mer(q) = me((2f — fa)® —u(zf — fa)singe) + I,

= me((ef — fa)? — 2u(zf — fa)sings +u?) +ma(ua® + ub®) + Iy + Ir,

= 0 for all other cases.

Il

SSEESEEESESER

/\f\f\/\/\f\/\/\/\/\/\

\/\_/\_/\_/\/S/\/\/\/\/\_/
I

The function f = (fi(g,q)) reads:
filg,4) = mom —my-da-rr-ds(ds + 241) singo,
f2(q’Q) = m2-da-'rr-(jf-sinq2,
f3(g,4) = Fy(sc-cosqs —sd-sings) + Fy(sd - cosgs + sc-sings),
fa(g,4) my - zt(e — ea)ds - cos g,
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fs(a,4) = —my-zt(e — ea)ds(ds + 24¢s) cos qa,
fe(q,q) = —mg-u(zf — fa)q'? * COs gg,
fr(q,4) = me-u(zf — fa)is(ds + 2¢7) cos gs.

F, and F), are defined by:

= F(zd — zc),

F(yd — yc),

—co(L —1y)/L,

= V(zd—2c)? + (yd —yc)?,
sd - cosqz + sc-sin g3 + zb,

‘S__g_h'ﬁj‘:‘j@
|

= sd-sings — sc- cosqs + yb.
The function g = (gi(g)) is given by:

= rr-cosq; —d-cos(q + gz) — ss-singz — zb,

rr-sing; —d -sin (g1 + g2) + ss - cos gz — yb,

rr-cosq —d-cos(qy +qa) —e-sin(gy + g5) — zt - cosqs — za,

rr-sing; —d-sin (g + g2) + € - cos(qs + g5) — 2t - sings — ya,

= rr-cosq; —d-cos(q1 +q2) —zf -cos(ge + g7) — u-sing; — za,

S
N N N N S
vvv&vv
I

= rr-singg —d-sin(q +q2) — zf -sin(gs + ¢7) + u - cos g7 — ya.

The constants arising in these formulas are given by:

m; = 0.04325 |, = 2.194-107% | ss = 0.035
my = 0.00365 | I, = 4.410-1077 | sa = 0.01874
ms = 0.02373 | I3 = 5.255-1076 | sb = 0.01043
my = 0.00706 | I, = 5.667-1077 | sc = 0.018
my = 0.07050 | Iy = 1.169-107% | sd = 0.02
me = 0.00706 | Iy = 5.667-1077 | ta = 0.02308
my = 0.05498 | I, = 1.912-107% | tb = 0.00916
ra = -0.06934|d = 0.028 U = 0.04
ya = —0.00227|da = 0.0115 ua = 0.01228
b = —-0.03635|e = 0.02 ub = 0.00449
yb = 0.03273 | ea = 0.01421 zf = 0.02
re = 0014 | rr = 0.007 zt = 0.04
yc = 0.072 | ra = 0.00092 fa = 0.01421
co = 4530 | Iy = 0.07785 mom = 0.033

The initial values are

—0.0617138900142764496358948458001

0

0.455279819163070380255912382449
0.222668390165885884674473185609 | ,

0.487364979543842550225598953530

—0.222668390165885884674473185609

1.23054744454982119249735015568

q'O = (0307030305070)T7

q90
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14222.4439199541138705911625887
—10666.8329399655854029433719415
0

o O oo

98.5668703962410896057654982170
—6.12268834425566265503114393122
0

0
0
0

5.3 Origin of the problem

The problem describes the motion of 7 rigid bodies connected by joints without friction. See [Gil78]
and [Man81] for more details.

5.4 Numerical solution of the problem

To show the behaviour of the solution we use the RADAUS5 code of Hairer & Wanner [HW91].
Hence, we transform the problem to the form

M%=f(y), y(0) = yo,
with
q I O 0 O q
v=1G | M= 000 0| ™ i M(g)i - £la,d) + GT(@))
A O 0 0 O 9(q

This is the index 3 formulation. Replacing the function g(q) arising in f by G(g)¢ or 9q9(9)(d,4) +
G(q)q yields the index 2 and index 1 formulation, respectively.

The Jacobian was approximated by

o I O O o I O O o I O O
O o0 I O O o0 I O O 0 I O
oo MG |'lo o M GT |['{ 0 O M GT |’
G O O O O G 0 O 0O 0 G O

for the index 3, 2 and 1 formulation, respectively. That is, the derivatives of f(q,¢) as well as
those of M(q) and G(q) are neglected. Note that the evaluation of such a Jacobian is for free.

The RADAUS input parameters IWORK(5), IWORK(6) and IWORK(7) were set equal to 7,
7 and 13 respectively. This means that the first 7 variables are of index 1, the next 7 of index 2
and the last 13 of index 3. See [HLR&0] for a justification.
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5.4.1 Values of the first 7 components at ¢t = 0.03:

y1 | 0.1581077- 102
Yo | —0.1575637 - 102
¥z | 0.4082224-107!
ys | —0.5347301

ys | 0.5244100

ye | 0.5347301

yr | 0.1048081- 10

Andrew’s squeezing mechanism
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5.4.2 Behaviour of the solution

The following plots show the behaviour of the first 7 solution components mod2x:

y(1) mod(2*pi)
) : . :
_2 b
0 0.01 0.02 0.03
y(3) mod(2*pi)
0.4}
0.2}
0 0.01 0.02 0.03
y(5) mod(2*pi)
0.6} ' '
0.4t - - N
0 0.01 0.02 0.03
y(7) mod(2*pi)
SR VAVAN
1t . . .
0 0.01 0.02 0.03

5.4.3 Run characteristics

5-5
y(2) mod(2*pi)
2- '\'\'
0
4 N NN
0 0.01 0.02 0.03
y(4) mod(2*pi)
0.2f ' ' '
0.
-0.2}
-MW
-0.6% . . .
0 0.01 0.02 0.03
y(6) mod(2*pi)
0.6f ' ' '
0.4}
O'ZM
0.
-0.2} , , ,
0 0.01 0.02 0.03

The runs were performed on a SGI workstation, an Indy with a 100 MHz R4000SC processor, using
the Fortran 77 compiler with optimization: £77 -0. They correspond to the index 3 formulation.

solver rtol  atol  hO scd steps accept #f # Jac # LU CPU
RADAU5 107* 107* 107% | 2.39 80 54 703 53 80  0.50
107 1077 1077 | 3.83 171 162 1431 154 170  1.16
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5.4.4 Work-precision diagram

In Figure 1 we present a work-precision diagram (cf. [HW91, pp. 166-167, 324-325]). The runs
were performed on a SGI workstation, an Indy with a 100 MHz R4000SC processor, using the
Fortran 77 compiler with optimization: £77 -0. We used: rtol = 10=(4+™/8) m = 0,...,24;
atol = rtol; hO = rtol.
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Figure 1: Work-precision diagram for Andrew’s squeezing mechanism
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6 Transistor amplifier

6.1 General information

The problem is a stiff DAE of index 1 consisting of 8 equations and is of the form My’ = f(y)
with M a matrix of rank 5. P. Rentrop has received it from K. Glashoff & H.J. Oberle and has
documented it in [RRS89]. The formulation presented here has been taken from [HLR80]. The
parallel-IVP-algorithm group of CWI contributed this problem to the test set.

6.2 Mathematical description of the problem

The problem is of the form
G(t,y,y') =0, y(0) =yo, ¥'(0) = vy,
with
yeRS, 0<t<0.2
The function G is defined by
G(t,y,y') = My' — f(y),

where the matrix M is given by

- 0 0 0 0 0 0
c; -C 0 0 0 0 0 0
0 0 —-C O 0 0 0 0
M= 0 0 0 —-C; (s 0 0 0
o 0 0 0 Cs —-C3 0 0 0 ’
0 0 0 0 0 —-Cy O 0
0 0 0 0 0 0 —Cs Cs
0 0 0 0 0 0 Cs —Cs
and the function f by
~R

—g—’; + ?12(12% + R%) — (a—1)g(y2 — v3)
—9(y2 —y3) + £
—5+ 2+ ag(y2 — v3)
—2 +us(m + 1) — (@ — Dg(ys — ve)

—9(y5 —ye) + £

— B+ 2 4 ag(ys — ys)

Ys
Rg

where g and U, are auxiliary functions given by

z

g(z) = B(e?r —1) and U.(t) = 0.1sin(200xt).
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The values of the technical parameters are:

U, = 6,

Ur = 0.026,

a = 0.99,

g = 1078,

R, = 1000,

Ry = 9000 for k=1,...,9,

Chk k-1078% for k=1,...,5.

Consistent initial values at t=0 are

y1(0) = 0, y’l(O) 51.338775
12000 = Uy/(2+1), w5(0) = wi(0)

y3(0) = 92(0), y5(0) = —u2(0)/(Cs- R3)
va(0) = U, yL(0) = —24.9757667
y:(0) = Up/(££+1), wi(0) = w4(0)

y6(0) = 5(0), ys(0) = —y5(0)/(Cy- Ry)
yr(0) = U, yh(0) = —10.00564453
ys(0) = 0O, ys(0) = y7(0)

The initial values y{(0), y5(0) and y7(0) were determined numerically.

6.3 Origin of the problem

The problem originates from electrical circuit analysis. It is a model for the transistor amplifier.
The diagram of the circuit is given below:

Figure 1: Circuit diagram of Transistor Amplifier (taken from [HLR80])

Here U, is the initial signal and Ug is the amplified exit voltage. To formulate the governing
equations, Kirchoff’s Current Law is used in each numbered node. This law states that the
total sum of all currents entering a node must be zero. All currents passing through the circuit
components can be expressed in terms of the unknown voltages Uy, ..., Us. Consider for instance
node 1. The current I, passing through capacitor C; is given by
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d
Ic, = %(Cl(@ - Uh)),

and the current Iz, passing through the resistor Ry by

U, — U
Ig, = e L

Here, the currents are directed towards node 1 if the current is positive. A similar derivation for
the other nodes gives the system:

node 1: %(Cl(U2—U1))+U;%(Ot) - g—(l) = 0,
node 2:  £(Cy(Uy —Us)) + 5t —Ua(4- + 77) + (@ = 1)g(U2 —Us) = 0,
node 3: —%(02U3) + g(U2 — U3) — g—‘z = ()7
node 4: —2(C3(Uy — U, U U 49Uy — U =0
#(C3(Us = Us)) + 7 — 7 —ag(Uz — Us) :

node 5: %(03(U4_U5))+g_2 —U5(RL5+RL6)+(06—1)9(U5 —-Us) = 0,
node 6: —%£(C4Us) + g(Us — Us) — g—‘j’ = 0,
de 72 —2(Cs(U; - U o U ag(Us — U, =0
node 7: —5(C5(Ur —Us)) + g2 — 5t — ag(Us — Us) ;
node 8: —%(05(U7 —Us)) + g—z = 0,

where
U;-U;

g(Us =Uj) = Ble 7 —1)
is a simple model of the transistors. The initial signal U,(t) is
U.(t) = 0.1sin(2007t).

To arrive at the mathematical formulation of the preceding subsection, one just has to identify U;
with ;.

6.4 Numerical solution of the problem

6.4.1 Solution at ¢t = 0.2:

"N —0.556214501 - 10~2
y2 | 0.3006522473125- 10
yz | 0.284995878984 - 10
Ya 0.29264225362 - 10
Us 0.27046178656 - 10
y6 | 0.2761837776452- 10
Y7 0.4770927631 - 10
U8 0.1236995867 - 10
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Transistor amplifier

6.4.2 Behaviour of the numerical solution

The following plots show the behaviour of the solution components:

y(1)
0.1 : : :
OM/\/\/\/\/\NWVWV\M/\/\/¥
0.1 - : :
0 005 01 015
y(3)
3

2.6
0

6.4.3 Run characteristics

0.05

0.1

0.15

0.2

y(2)
3.2 -
AWM
2.8 ' ' '
0 005 01 015 02
y(4)
6 : . :
4%
2 N N N
0 005 01 015 02
y(6)
4 .
3WWW
2 N N N
0 005 01 015 02
y(8)
5 .
"
5 - - -
0 005 01 015 02

The runs were performed on a SGI workstation, an Indy with a 100 MHz R4000SC processor,
using the Fortran 77 compiler with optimization: £77 -0.

solver rtol atol  hO scd  steps accept #f #Jac # LU CPU
DASSL 10-4 10~ 2.91 6003 2340 18200 7212 3.97

1077 107" 4.56 33008 6531 115181 52725 25.32
RADAU5 10=7 1077 1072 | 835 3196 3066 25021 3047 3187 2.34
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6.4.4 Work-precision diagram

In Figure 2 we present a work-precision diagram (cf. [HW91, pp. 166-167, 324-325]). The runs
were performed on a SGI workstation, an Indy with a 100 MHz R4000SC processor, using the
Fortran 77 compiler with optimization: £77 -0. We used: rtol = 10=(4+™/8) m = 0,...,24 for
DASSL and m =8, ...,24 for RADAUS5; atol = rtol; h0 = 1072 - rtol for RADAUS5.
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7 Medical Akzo Nobel problem

7.1 General information

The problem consists of 2 partial differential equations. Semi-discretisation of this system yields
a stiff ODE. The parallel-IVP-algorithm group of CWI contributed this problem to the test set
in collaboration with R. van der Hout from Akzo Nobel Central Research.

7.2 Mathematical description of the problem
The problem is of the form

with
ye RN 0<t<20.

Here, the integer N is an user-supplied parameter. The function f is given by

. Y241 — Y253 Y23 — 2Y2—1 + Y241
foj-1 = «qj SAC + B; (AC? — k y2j-1Y25,
f2j = —k Y25Y25—1,
where

_2(jA¢—1)3

YT T2
_ (JAc—1)

ﬂ] - C2 -

Here, j ranges from 1 to N, A( = %, y_1(t) = &(t), yan+1 = yan—_1 and g € RV is given by
g = (OaUOaO’UO’ e aO’UO)T'

For the function ¢ we chose

_ [ 2 for te(0,5],
9(t) _{ 0 for te€(5,20].

Suitable values for the parameters k, vy and ¢ are 100, 1 and 4, respectively.

7.3 Origin of the problem

The Akzo Nobel research laboratories formulated this problem in their study of the penetration of
radio-labeled antibodies into tumorous tissue [Hou94]. This study was carried out for diagnostic
as well as therapeutic purposes.

Let us consider a reaction diffusion system in one spatial dimension:

Ou 0%u
5 = W — kU’U, (1)
dv = —kuw, (2)

at
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which originates from the chemical reaction

A+BE

Here A reacts with a substrate B and k denotes the rate constant. The concentrations of A and
B are denoted by u and v, respectively. In the derivation of the equations (1) and (2) it was
assumed that the reaction is governed by mass action kinetics and in addition that the chemical
A is mobile while B is immobile.
Consider a clean semi-infinite slab, in which the substrate B is uniformly distributed. When
the slab is exposed at its surface to the chemical A, this chemical starts to penetrate into the slab.
To model this penetration, the equations (1) and (2) are considered in the strip

St ={(z,t): 0< 2 <00, 0<t<T} forsome T,
along with the following initial and boundary conditions:
u(z,0) =0, v(z,0) =vy for z >0,
where vg is a constant, and
u(0,t) = ¢(t) for 0 <t < T.
In order to solve the problem numerically, we transform the variable xz in such a way that the

semi-infinite slab is transformed into a finite one. A suitable transformation is provided by the
following special family of M&bius transformations:

(= z , with ¢ > 0.
r+c

Each transformation in this class transforms St into the slab:
{(¢t):0<¢<1,0<t<T}

In terms of ¢ the problem now reads:

Ou C—1)*0%u  2(¢—1)%06u
—_— = x 7 - 4" 7k 3
ot 2 oz T & ¢ (3)
% = —kuwv, (4)
with initial conditions
U(C70) = 07 U(C,O) = o for C > 07 (5)
and boundary conditions
ou
u(0,t) = ¢(t), 8_C(1’t) =0 for 0<t<T. (6)
The last boundary condition is derived from 2%(oo,t) = 0.

The system consisting of (3), (4), (5) and (6) will be written as a system of ordinary differential
equations by using the method of lines, i.e. by discretizing the spatial derivatives. We use the
uniform grid {¢;};=1,...,n defined by:

. . 1
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Let u; and v; denote the approximations of u((;,t) and v((;,t), respectively. Obviously, u; and
v; are functions of t. In terms of the function w;, our choices for the discretisation of the spatial
first and second order derivatives read

Ou;  uUjyp; —uj— u;  wj_q —2u; +uy

et L j—1 and g _ Zi-1 J ]+1’

ac¢ 2A( a2 (A()?

respectively, where j = 1,..., N. Suitable values for ug and w1 are obtained from the boundary
conditions. They are given by ug = ¢(t) and uyy; = up.

Defining y(t) by y = (u1,v1,us,vs,...,un,vy)T, and choosing T = 20, this semi-discretised
problem is precisely the ODE described in Subsection 7.2.
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To give an idea of the solution to the PDE (3) — (6) we give plots of w and v as function of z and ¢:

X-axis

X-axis

temporarily) B.

(

From these plots we nicely see that injection of chemical A destroys
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7.4 Numerical solution of the problem

The numerical experiments were done for the case N = 200.

7.4.1 Solution at t = 20:

We only give the value of some components of y in the endpoint. For the complete reference
solution we refer to the Fortran subroutine solut. The components listed in the Table below

correspond to the values of w and v in z = 1,2.4,4.0 and 6.0.

Y9 =
Y149
Y99 =
Y239 =

0.23399422318936 - 10~ 3
0.35956160302716 - 10~3
0.11737412926802 - 10~3
0.68600948191191 - 10~ 11

Yso

Y150
Y200
Y240

0.00000000000000
0.00000000000000
0.61908071460151 - 10~5
0.99999973258552
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7.4.2 Behaviour of the numerical solution

Medical Akzo Nobel problem

The following plots show the behaviour of the solution components y; for
1 € {79,80,133,134,171,172,199, 200}, which correspond to approximations of the PDE solutions
u and v on the grid linesz =1,z =2, 2 =3 and =z = 4:

y(79) (=u(L,t))

2
1
0
0 5 10 15 20
y(171) (=u(8.b)
0.4 - - -
0.2 k
0 " " N
0 5 10 15 20
y(80) (=v(1.))
1 . . .
05
0 N N N
0 5 10 15 20
y(172) (=v(3,1)
1 . . .
05
0 N
0 5 10 15 20

7.4.3 Run characteristics

y(133) (=u(2.1)

1
05} k
O ' n
0 5 10 15 20
y(199) (=u(4.t)
0.04 -
0.02} /\
0 N
0 5 10 15 20
y(134) (=v(2,1))
1 : : :
0.5/
0 N N N
0 5 10 15 20
y(200) (=v(4.))
1 : :
0.5/
O N
0 5 10 15 20

The runs were performed on a SGI workstation, an Indy with a 100 MHz R4000SC processor,
using the Fortran 77 compiler with optimization: £77 -0. Since some solution components are
zero, the scd values listed here denote the absolute precision.
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solver rtol atol  hO scd steps accept #f #Jac #LU CPU
DASSL 10-% 10~ 3.35 386 372 604 59 3.66

107 1077 5.55 1322 1303 1799 77 11.31
RADAU5 10~* 10=* 10~° | 4.16 124 110 841 74 118  2.53
10°7 1077 10711 | 7.22 546 525 3306 338 419  9.79
VODE 10~ 10~* 2.88 414 395 615 10 77T 2.54
10°7 1077 4.78 1025 993 1262 18 128  5.59
PSODE 107* 10=* 107 | 6.08 240 231 5447 15 412 20.41
10-7 10-7 107! | 8.73 819 807 18059 10 512 63.60

The speed-up factors of PSODE on the Cray C98 are, in order of decreasing rtol: 3.4, 3.4.

7.4.4 Work-precision diagram

In Figure 1 we present a work-precision diagram (cf. [HW91, pp. 166-167, 324-325]). The runs
were performed on a SGI workstation, an Indy with a 100 MHz R4000SC processor, using the
Fortran 77 compiler with optimization: £77 -0. We used: rtol = 10~(4+™/8) m = 0,...,24;
atol = rtol; h0 = 1075 - rtol for RADAU5 and PSODE.
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8 EMEP problem

8.1 General information

The problem is a stiff system of 66 ordinary differential equations. The ‘Mathematics and the
Environment’ project group at CWI contributed this problem to the test set.

8.2 Mathematical description of the problem
The problem is of the form

d
=1ty v =y,

with
y € R 14400 < t < 417600.
The initial vector g = (g;) is given by

((1.0-10° for i=1

5.0-10° for i€ {2,3}

3.8-102 for i=4

35-108 for =5
gi=4{ 1.0-107 for i€ {6,7,...,13}
5.0-10'"  for i=14
1.0-102 for i€ {15,16,...,37}
1.0-1073 for =38
1.0-102 for i€ {39,40,...,66}

\

The function f is too voluminous to be described here. We refer to the Fortran subroutine feval
and to [VS94] to get more insight in the function.

8.3 Origin of the problem

The problem is the chemistry part of the EMEP MSC-W ozone chemistry model, which is in
development at the Norwegian Meteorological Institute in Oslo, Norway. About 140 reactions
with a total of 66 species are involved. Below we give the correspondence between the solution
vector ¥y and the chemical species.

y=( NO, NO2, S02, Co, CH4, C2Hs,
NC4H10, C2H4, C3Hs, OXYL, HCHO, CH3CHO,
MEK, 03, HO?2, HNO3, H202, H2,
CH302, C2H50H, SA, CH302H, C2H502, CH3COO,
PAN, SECC4H, MEKO2, R200H, ETRO2, MGLYOX,
PRRO2, GLYOX, OXY02, MAL, MALO2,  OP,
OH, oD, NO3, N205, ISOPRE,  NITRAT,
ISRO2, MVK, MVKO2, CH30H, RCO3H, OXYO2H,
BURO2H, ETRO2H, PRRO2H, MEKO2H, MALO2H, MACR,
ISNI, ISRO2H, MARO2, MAPAN, CH2CCH3, ISONO3,
ISNIR, MVKO2H, CH2CHR, ISNO3H, ISNIRH, MARO2H ).

The integration interval covers 112 hours. Rate coefficients are often variable. E.g., photolysis
rates obviously depend on solar elevation and cloudiness, and undergo a discontinuity at sunrise
and sunset, as can be seen from the plots in the next section. The unit of the species is number
of molecules per cm?®, the time ¢ is in seconds. The test problem corresponds to the rural case
in [VS94].

A more elaborate description of the model can be found in [VS94], [Sim93] and [SASJ93].
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8.4 Numerical solution of the problem

8.4.1 Solution at the endpoint

EMEP problem

We only give the value at the endpoint t = 417600 of the components of y corresponding to NO,
NO2, SO2, CH4, O3 and N205 (i.e. 1, Y2, Y3, Us, Y14 and ys9). For the complete reference
solution we refer to the Fortran subroutine solut.

NO
S0O2
03

0.25645805093601 - 10®
0.23156799577319 - 1012
0.31503085853931 - 1013

NO2
CH4
N205

0.51461347708556 - 1011
0.34592853260350 - 1014
0.76845966195032 - 10°
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8.4.2 Behaviour of the numerical solution

We restrict ourselves to plots of the same species as mentioned in Section 8.4.1. The values at the
horizontal axis denote the time ¢ in hours modulo 24 hours.

x 10%° x 10™°
2 8
1.5} 6
o S
2 1 Q 4
0.5} 2
o} o}
04 16 04 16 04 16 04 16 04 16 04 16 04 16 04 16 04 16 04 16

3.5

3.491

3.48¢

CH4

3.47¢

3.46
(0] 3.45
04 16 04 16 04 16 04 16 04 16 04 16 04 16 04 16 04 16 04 16
x 10%? x 10°
4r 6
5,
3,
4,
[Te)
82 Q 3t
=
2,
1,
1/
(0] (0] J
04 16 04 16 04 16 04 16 04 16 04 16 04 16 04 16 04 16 04 16

8.4.3 Run characteristics

The runs were performed on a SGI workstation, an Indy with a 100 MHz R4000SC processor, using
the Fortran 77 compiler with optimization: £77 -0. Since components y3g and ysg are relatively
very small and physically unimportant, we did not include these components in the computation
of the scd value.
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solver rtol atol hO scd steps accept #f #Jac # LU CPU
DASSL 1072 1 1.65 668 609 1380 161 4.53
107% 1 3.24 1824 1727 3303 257 9.61
1076 1 5.17 4356 4185 7340 432 20.06
RADAU5 1072 1 107 | 2.74 303 217 3011 201 300 15.20
10-% 1 10~7 | 3.16 615 496 5157 439 593 29.11
1076 1 1077 | 5.20 1547 1395 10592 1243 1464 69.21
VODE 1072 1 1.00 731 680 1331 72 204 4.27
107% 1 2.58 2015 1908 3373 66 316 8.67
1076 1 4.57 4082 3816 6195 87 651 16.87
PSODE 1072 1072 1077 | 2.40 301 298 8890 139 1308 27.76
10~% 10~* 1077 | 4.78 530 499 15967 193 2048 46.48

The speed-up factors of PSODE on the Cray C98 are, in order of decreasing rtol: 3.7, 3.6.

8.4.4 Work-precision diagram

In Figure 1 we present a work-precision diagram (cf. [HW91, pp. 166-167, 324-325]). The runs
were performed on a SGI workstation, an Indy with a 100 MHz R4000SC processor, using the
Fortran 77 compiler with optimization: £77 -0. We used: rtol = 10=(2+m/8) m =0,...,16 for
PSODE and m = 0,...,32 otherwise; atol = rtol for PSODE and atol = 1 otherwise; h0 = 10~7
for RADAUS5 and PSODE.
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9 NAND gate

9.1 General information

The problem is a system of 14 stiff implicit ordinary differential equations. It has been contributed
by Michael Giinther and Peter Rentrop [GR95].

9.2 Mathematical description of the problem

The problem is of the form:

Cw®) W = jepe), 0 =,

with
y € RY, 0<t<80.

The equations are given by:

Cas- (U5 — 1) = iDs(y2 —Y1,¥5 — Y1,Y3 — Ys, Y5 — Y2,Ya — VD)
Y1 —Ys
+ 1-1
Ros (1-1)
Cep- (U5 —92) = —iBs(y2—y1,¥5 —y1,¥3 — ¥s,Y5 — ¥2,Y4 — VDD)
y2 — Vbp
+22 =27 1-2
Ron (1-2)
) . y3 —Vep .
Cps(ys —ys) (95 —93) = TR ips(ys — ys) (1-3)
BS
. y4a— Ve .
Cep(ys —Vpp) - (—94) = LlRT —ipp(ya — Vpp) (1-4)

Ces-1h +Cap 92+ Crs(ys —ys) - U3
—(Cags+Cap+Crs(yzs —ys) +C5) - 95 —Cp(yo — ) - (J5 — ¥9) =

Ys — Y . Ys — Y .
2L+ iBs(ys — ys) + T5—— + iBp (Yo — Us) (1-5)
Rgs Rep
Ces 96 = —iBs(yr —ye, Vi(t) — ye,ys — Y10, Vi(t) — y7, 99 — ¥s)
+ CGS’ . f/]_(t) _ yﬁR_ Y10 (1—6)
as
Cep- 91 = ipg(yr —ve, Vi(t) — e, ys — y10, Vi(t) — y7, 99 — ¥s)
+ Cgp-Vi(t)— L% (1-7)
@D
) . -V )
Css(ys —y10) - (Y8 — Y10) = —ySRJ +i5s(ys — y10) (1-8)
BS
. . Yo — Ve .
Cep(yo —us): (Y9 —95) = N +i5p(ys — ys) (1-9)
BD
Cs(ys — y10) - (98 — ¥10) — CBD (Y14 — ¥10) * (10 — Y14) + C10 - Y10 =
f10 — % + igs(ys —y10) + yi0 — 42 + igp(ym — ¥10) (1-10)
RGS RGD
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Cas- 11 = _ilE)S(yu — 11, Va(t) — y11, 913, Va(t) — y12, y14 — Y10)
+ Cgs-Va(t) — YL (1-11)

Rgs
Cop-the = i5g(v12 —y11, Valt) — yi1,913, Va(t) — y19, ¥14 — Y10)
+ Cap-Va(t) - 220 (1-12)
Rap
. -V )
Cps(y13) -3 = —yIBRJ +i5s(y13) (1-13)
BS
o . . _ yu—Vep | .

BD (W14 — Y10) - (Y14 — Y10) = T Rps +igp(y1a — Y10) (1-14)

The functions Cgp and Cpgg read

Cpp(U) =Cps(U) =

with Cy = 0.24-10~* and ¢p = 0.87.

The functions {54 and i5 ¢ have the same form denoted by ips. The only difference between them
is that the constants used in ¢pg depend on the superscript D and E. The same holds for the

. .D/E .D/E
functions igp , ipg -

The functions igg,igp and ipg are defined by

Y Upsy) _ <
ips(Ups) = { OZS (eXp( o) 1) ior ng ;g
or Ugps
. —ig - (exp(UB;D) - 1) for Ugp <0
i50(Usp) = 0 o fi U, ; 0
or Ugp

ins(Ups,Ugs,Us,Uap,UBp) =

GDS,(Ups,Ugs,Ups) for Upg >0
0 for Ups=0
GDS_(Ups,UGD,UBD) for Upg <0

where

GDSy(Ups,Ugs,Ups) =

0 for Ugs —Urp <0
—B-(146-Ups)- for 0<Ugs —Urg <Ups
-(Ugs — Urg)®

—B-Ups-(1+6-Upg) - for 0<Ups <Ugs—Urg

[2-(Ugs — Urg) — Ups|

with Urg = UT0+7'<\/¢—U35—\/3)
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GDS_(Ups,Ugp,Usp) =

0 for Ugp —Ure <0

B-(1—6-Upg)- for 0<Ugp —Urg < —-Ups

(Ugp — Urg)? (6)
—B-Ups-(1—6-Ups)- for 0<—-Ups <Ugp —Urk

-[2-(Ugp — Urg) + Ups]

with Urg = UT0+7'(\/¢_UBD_\/$)

The constants used in the definition of ¢pg,ipp and ipg carry a superscript D or E. Using for
example the constants with superscript F in the functions ¢pg yields the function igs. These
constants are shown in the following table.

L I g | D ]
is 10~ 10—
Ur 25.85 25.85
Uro 0.2 —2.43
B | 1.748-1073 | 5.35-10~*
07 0.035 0.2

6 0.02 0.02
@ 1.01 1.28
The other constants are given by
Vgp = —2.5,
Vbp =5,

Cy=C1p=0.5- 10_4,
Rgs = Rgp = 4,
Rps = Rpp =10,

Cos =Cap =0.6-107%

The functions V3 (t) and V5(t) are

20—tm if 15 <tm <20

5 if  10<tm<15

i) =9 p—5 if 5<tm<10
0 i  tm<5

with tm = ¢t mod 20 and

40 — tm if 35 <tm <40
5 if 20 < tm < 35

tm — 15 if 15 <tm < 20
0 if tm < 15

with tm = ¢ mod 40.
The initial values are given by

Y1 =Y2 =Ys =y7 = 5.0,

Ys = Y1 = Ys = Y9 = Y13 = Y14 = Vpp = —2.5,
Y6 = Y10 = Y12 = 3.62385,
y11 = 0.

Remark: in this description the unit of time is the nanosecond, while in the report [GR95] the
unit of time is the second.
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9.3 Origin of the problem

The NAND gate in Figure 1 consists of two n-channel enhancement MOSFETs (ME), one n-
channel depletion MOSFET (MD) and two load capacitances Cs and Cy9. MOSFETs are special
transistors. They have four terminals: the drain, the bulk, the source and the gate. The gate
voltages of both enhancement transistors are controlled by two voltage sources V; and V5.

VDD

Figure 1: Circuit diagram of the NAND gate (taken from [GR95])

V2
LOW | HIGH

LOW | HIGH | HIGH
HIGH | HIGH | LOW

Figure 2: Response of the NAND gate

Depending on the input voltages, the NAND gate generates a response at node 5 as shown in
Figure 2. If we represent the logical values 1 and 0 by high respectively low voltage levels, we see
that the NAND gate executes the Not AND operation. This behaviour is easily explained: If V}
respectively V5 is low, then the corresponding enhancement transistors locks; the voltage at node
5 is high at Vpp = 5V due to MD. If both V; and V; exceed a given threshold voltage Ur, then a
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drain current through both enhancement transistors occurs. The MOSFETSs open and the voltage
at node 5 breaks down. The response is low.

Gate < i e | [ BulK ]|

Cas
Rgs

| |
Source| ° [

Figure 3: Companion model of a MOSFET (taken from [GR95])

In the circuit analysis the three MOSFETSs are replaced by the circuit shown in Figure 3. Here,
the well-known companion model of Shichmann and Hodges [SH68] is used. The characteristics
of the circuit elements can differ depending on the MD or ME case. This circuit has four internal
nodes corresponding to the drain, the bulk, the source and the gate. The static behaviour of the
transistor is described by the drain current ipg. To include secondary effects, load capacitances
like Rgs, Rep, Rps, and Rpp are introduced. The so-called pn-junction between source and
bulk is modelled by the diode ipg and the non-linear capacitance Cpg. Analogously, ipp and
Cpp model the pn-junction between bulk and diode. Linear gate capacitances Cgg and Cgp are
used to describe the intrinsic charge flow effects roughly.

To formulate the circuit equations, we note that the circuit consists of 14 nodes. These 14
nodes are the nodes 5 and 10 and the 12 internal nodes of the three transistors. For every node
a variable is introduced that represents the voltage in that node. In terms of these voltages
the circuit equations are formulated by using the Kirchoff Current Law (KCL) along with the
transistor model shown in Figure 3. The differential equations given in the previous section result
from applying KCL to the following nodes:

equations nodes
1-4 internal nodes MD-transistor
5 node 5
69 internal nodes ME1-transistor
10 node 10
11-14 internal nodes ME2-transistor
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9.4 Numerical solution of the problem

9.4.1 Solution at t=80:

a1
Y2
Y3
Ya
Ys
Ye
Yr
Ys
Y9
Y10
Y11
Y12
Y13
Y14

4.971088699357187
4.999752103929143
—2.499998781491202
—2.499999999999975
4.970837023267885
—0.2091214033360282
4.970593243271932
—2.500077409198804
—2.499998781491201
—0.2090289585389384

—2.3999997751031701 -

—0.2091214033360281
—2.499999999999991
—2.500077409198804

10—

NAND gate
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9.4.2 Behaviour of the numerical solution

The following plots show the behaviour of the solution components on the interval [0,80]:
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9.4.3 Run characteristics

NAND gate
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The runs were performed on a SGI workstation, an Indy with a 100 MHz R4000SC processor,
using the Fortran 77 compiler with optimization: £77 -0.

solver rtol  atol hO | scd steps accept #f #Jac # LU CPU
DASSL 10~* 107* 0.56 894 744 1668 323 1.79
107 1077 3.66 3805 3414 6039 914 5.84

9.4.4 Work-precision diagram

In Figure 4 we present a work-precision diagram (cf. [HW91, pp. 166-167, 324-325]). The runs
were performed on a SGI workstation, an Indy with a 100 MHz R4000SC processor, using the
Fortran 77 compiler with optimization: £77 -0. We used: rtol = 10~(4+™/8) m = 0,...,24;

atol =

rtol.
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10 Charge pump

10.1 General information

The problem is a stiff DAE of index 2, consisting of 3 differential and 6 algebraic equations. It
has been contributed by Michael Giinther, Georg Denk and Uwe Feldmann [GDF95].

10.2 Mathematical description

The problem is of the form

MY @) =0, ¥(0)=w,

with
y €R?, 0<t<12-1075.

The matrix M is the zero matrix except for the the minor M; 3.5, that is given by

1 00 00O
Mi.31.5 = 0110 0].
0 00 11

The function f is defined by

—Yo

0

0
—Ys + ‘/;n(t)

f(ty) = y1 — Qa(v) >

yo —Cs - yr
y3 — Qs(v)
Y4+ —Cp - s
ys — Qp(v)

with v := (v1,v2,v3) = (v6,Y6 — ¥7,¥6 —¥s), Cp = 0.4-107'2 and Cg = 1.6 - 10712, The functions
Qg, Qs and Qp are given by:

1. ifv; < Vpp :=Upg — V& — &

QG(U) = Coa: (1)1 - VFB)
QRs(v) = Qp(v)=0

with Cpp = 410712, Upg = 0.2, v = 0.035 and ® = 1.01.

2. if v;1 > Vpp and vo < Urg := Uy +’Y(\/@+U1 — Vg — \/6)

Qe(w) = Coxv(v/(7/2)2 +v1 — Vip —7/2)
QRs(v) = Qp(v)=0.

3. if v; > Vpp and v9 > Urg

UaeprUgsr )+ /B Uns

2
= C,: | =(U, U —
Qg (v) 3( apr + Ugst T —— G —

Qs(0) = Qo) = —3(Qa — Caxrv/B = Ups).
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Here, Ups, UgstT and Ugpr are given by

Ups = wva—mw1,

Ugst = wv2—Urg,

U i vy — Urg for vy > Urpg,
GoT = 0 for vs < Urg.

The function V;,(t) is defined using 7 = (108 - t) mod 120 by

0 if  T<50
V() = 20(r — 50) if  50<7<60
in 20 if  60<7T<110
20(120 — 7) if 7> 110.

Finally, the initial value yq reads

Yo = (07 05 07 05 0: Oa 07 05 O)T

10.3 Origin of the problem

The Charge-pump circuit shown in Figure 1 consists of two capacitors and an n-channel MOS-
transistor. The nodes gate, source, gate, and drain of the MOS-transistor are connected with the
nodes 1, 2, 3, and Ground, respectively. In formulating the circuit equations, the transistor is
replaced by four non-linear current sources in each of the connecting branches. They model the
transistor.

1
2 — 3
1>—r —|—4l
Vin(t)
Cs —— Ca——
Ground

Figure 1: Circuit diagram of Charge-pump circuit (taken from [GDF95])

After inserting the transistor model in the circuit, we get the final circuit, that is the circuit shown
in Figure 1, where:

e The transistor has been removed and is replaced by a solid line between the nodes 2 and 3.
The point where the lines 2-3 and 1-Ground cross each other becomes a node, which will

be denoted by T'.

e There are current sources between nodes 1 and T, between 2 and T and between 3 and T.
There is also a current source between the ground and node T, but as the node Ground does
not enter the circuit equations, it will not be discussed. The currents produced by these
sources are written as the derivatives of charges: current from 1 to T: Q, from T to 2: Q'
and from T to 3: Q',. Here, the functions Q¢, @s and @ p depend on the voltage drops Uy,
U; — Us and U; — Us, where U; denotes the potential in node 1.

The unknowns in the circuit are given by:
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e The charges produced by the current sources: Yr1, Y72, Y73. They are aliases for respectively
Qa, Qs and @Qp. Consequently, Y/, is the current between node T and node 3.

e The charges Yg and Yp in the capacitors Cs and Cp.
e Potentials in nodes 1 to 3: Uy, Us, Us.
e The current through the voltage source V;,(t): I.

In terms of these physical variables, the vector y introduced earlier reads
y = (Y1,Ys, Yo, Yp, Yy3, U1, Us, Us, )T

Now, the following equations hold

YT’1 = -1,
Yi+Yr, = 0,
Yh+Y[, = 0,

Uy = Via(t).

The charges depend on the potentials and are given by

YTl = QG(Ul,Ul _UQ,Ul —Ug),
Ys = Cs-Us,
Yro = Qs(Uy,Uy — Uz, Uy — Us),
Yp = Cp-Us,
Yrs = Qp(U1,Uy — Uy, Uy —Us).

The functions Q¢g, Qs and @ p are given in the previous section.

Remark: the potential U; is known. Here, it is treated as an unknown in order to keep the
formulation general and leaving open the possibility to extend the circuit. In addition, removing
Uy by hand contradicts a CAD approach in circuit simulation.
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10.4 Numerical solution of the problem

Michael Giinther, Georg Denk and Uwe Feldmann [GDF95] provided the source code defining the
problem.

Their implementation is written for use with DASSL. To deal with the discontinuities and
the index 2 character, they included a special DASSL driver (pumpdriv.f). At the points, where
the derivative of V;,(t) is discontinuous, DASSL is restarted in order to prevent loss of accuracy.
Since yg is an index 2 variable, the error control for this variable has been switched off by setting
atol(9)=rtol(9)=1000. For this problem, it would have been possible to include the index 2 variable
in the error control, but this would require a modification of the DASSL code. In the future we
hope to include results obtained by RADAUS.

10.4.1 Solution at the endpoint

Until further notice the ninth component is ignored because it is neglected in the error control. At
the endpoint all components are zero except for the first one, which is given by y; = 1.26283-10713,
We remark that the magnitude of this component is at most 10719,
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10.4.2 Behaviour of the numerical solution

Only the last four components have been plotted, since they are the physically important quan-
tities. The other five components refer to charge flows inside the transistor, which are quantities
the user is not interested in. These components have a similar behaviour as the components 6, 7
and 8, but their magnitude is at most 10719,

Since there is no error control for the variable yg, we prescribed a maximal value for the
stepsize. By comparing plots of yg obtained by varying this maximal value, we were able to come
up with a sufficiently accurate solution, that is shown in the last plot.

y(6) y(7)
30 10
20 st |11 TV
6,
10
4,
0 5!
-10 0
0 0.5 1 15 0 0.5 1 1.5
x 10°° x 10°
y(8) y(9)
40 0.04
o _ _
sof || VTV
10 -0.02}
0 -0.04
0 0.5 1 1.5 0 0.5 1 1.5
x 10° x 10°

10.4.3 Run characteristics

The runs were performed on a SGI workstation, an Indy with a 100 MHz R4000SC processor, using
the Fortran 77 compiler with optimization: £77 -0. The various components differ enormously in
magnitude. Therefore, the parameters atol and rtol were chosen to be component-dependent and
are given by

atol(i) = Tol-10=¢ for i=1,...,5,
atol(¢) = Tol for i=6,...,8,
atol(9) = 1000,
rtol(¢) = Tol for i=1,...,8,
rtol(9) = 1000.
Since the components ys,¥s,...,ys are exactly zero in the endpoint and the error control of the

ninth component was neglected, the computation of the number of significant correct digits (scd),
involves only the first component y;.

solver Tol scd  steps accept #f # Jac CPU
DASSL 1072 | 0.14 45% 3636 8369 4662  0.56
1074 | 3.80 14933 11257 33593 15019 1.06
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10.4.4 'Work-precision diagram

In Figure 2 we present a work-precision diagram (cf. [HW91, pp. 166-167, 324-325]). The runs
were performed on a SGI workstation, an Indy with a 100 MHz R4000SC processor, using the
Fortran 77 compiler with optimization: £77 -0. We used: Tol = 10~(2+m/8) m =0, ..., 16.
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Charge pump
T T T T T T T T T
DASSL —o—
1t i
o
[}
)
[}
E
=
o
o
1 1 1 1 1 1 1 1 1
0 0.5 1 15 2 2.5 3 35 4 45 5

scd

Figure 2: Work-precision diagram for Charge pump
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11 Wheelset

Contributed by Bernd Simeon, Claus Fiihrer, Peter Rentrop, Nov. 1995.

11.1 General Information

The wheelset example shows some typical properties of simulation problems in contact mechanics,
i.e., friction, contact conditions, stiffness, etc.. This problem is originally described by a system
of differential-algebraic equations (DAEs) of index 3 with additional index 1 equations. An in-
dex reduced formulation as an index 2 DAE with additional index 1 equations is provided also.
The differential-algebraic system consists of 17 equations. Test results are based on the index-2
formulation.
Comments to bernd.simeon@mathematik.th-darmstadt.de

claus@dna.lth.se
Reference: B. Simeon, C. Fiihrer, P. Rentrop: [SFR91]
Differential-Algebraic Equations in Vehicle System Dynamics, Surv. Math. Ind. 1:1-37 (1991)

11.2 Mathematical description of the problem
The wheelset problem is described by the DAE

po= v

(1)
B = d(p,q,v,8,N(p,q,N)) 3)
0 = gi(p,9) (4)
92(p, 9) (5)
with p np=2>5 position variables
v Ny =5 velocity variables
I) ng=1 variable of first order dynamics
q ng =4 contact variables
A ny =2 Lagrange multipliers

The integration interval is from 0 to 10 [s].
(1) — (3) stand for the kinematic and dynamic equations with positive definite mass matrix M (p).
The 2 index-3 constraint equations g; describe the contact condition for wheel and rail while the
additional 4 index-1 constraints go express that wheel and rail may not intersect. The equations
are given in detail in the next subsections.

11.2.1 Differential equations

The position coordinates are defined as (cf. Sect. 3)

x lateral displacement

Y vertical displacement
pi=1 =z longitudinal displacement

0 yaw angle

%) roll angle

and the contact variables as ¢ := ( v &L Yr &R ) with

£L)r = coordinate of the contact point left/right,
Yrr = shift angle left/right.
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The first three equations in (2) yield the momentum equations:
mpi = mpg (21}0/@ cosa 4+ vi Kk cosa(l—l—n(mcosa—ysina)))
+Tp, + TR, + Q1 —mpgsina—bi 1A —biagA —2¢c,
mry = —mg (21}0& sinaz 4+ v2 k sina(1+n(mcosa—ysina)))
+Tr, + Try, + Q2 —mp g cosa —ba 1 A1 — ba2 Ao
mgpZ = mpg (—ZUOR(a’ccosa — gsina) +v3 k2 z)
+Tp, + Tr, + Qs + Fa(t) —bz1 Ay —bg 2 Ap

where b; ; denotes the (4, j) element of the constraint Jacobian dg¢;(p, ¢)/Op, see below. The next
three equations yield the spin equations:

I, 6 cos p=
-1 (—0 @ sin @ + vo k( H(sin o cos O cos ¢ + cos asin ) — Osin asin 0 sin gp))
—I1 (wo + B) (¢ — vok sin B sin )
—(I; — L) (0 sin ¢ — vg k (cos @ cos p sin & + sin ¢ cos a)) (¢ — vo k sin asin B)
+ [ —(&rsinf + R(&L)sinr cosBcos p) Ty,
—R(&1)sin¢r sin Ty,
+(—&r cos0 + R(&r) sin )y, sin 6 cos ) TL3]
+[ corresponding terms of the right side ]

—cos@ sinp My + cosp My +sinf sinp Mz — by 1 Ay — b2 Ao

L=
I, 8 vy K sina cos b

+1I (wo + B) (9 cos ¢ + vg k (cos 8 sin @ sin @ — cos @ cos a))
+(I1 - L) (0 sin ¢ — vg &(cos B cos @ sin a + sin p cos a))

(6’ cos p + vp k(cos 6 sin @ sin a — cos p cos a))
+ [ —(&L cosBsinp — R(£L) cospr, cosbcosp) T,

+(€L cosp + R(€L) cos Y sin ) T,
+(€L sin@sin — R(EL) cosy, sin b cos p) T, ]

—I—[ corresponding terms of the right side ]
+ sin0M1 + cosf M3 - b5,1 )\1 - b5,2 )\2
L (B + 0sing) =
- (0 @ cos @ — vy k (P(cos o cos  — sin o cos fsin ) — B sin asin 6 cos go))
+ [ —R(£1) (cosvpr sin @ + sinvpy, cosOsin ) Ty, + R(EL) siny, cos Ty,
—R(&L) (cosypr, cos@ — sinypr sin fsin ) T, ]

—{—[ corresponding terms of the right side ]
+ cos cosp My + sinp My —sin cosp Ms + L a(t).
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The forces @ and moments M of the wagon body (cf. Sect. 3) satisfy the following equations:

Q1 = mag (ngn — tan a) (lateral force)
cosa \ g

Q2 = —ma§cosa (’Uggn tan o + 1) (vertical force)
Qs = —2c¢,2 (longitudinal force)
My, = 0
My, = Qsz (yaw moment)
Ms; = —h@ (roll moment)

0 = cosf My —sinf M; (no pitch moment)

The creep forces Tf, , , and Tk, , , of the left and right contact point are obtained via the trans-
formation

Tyr, sinf cosfcosAr g FceosOsinAp g Ty g
TL|R2 = 0 :l:SiIlAL|R COSAL|R T2L|R
TyR, cosf@ —sinfcosAp g EsinbsinApg 0

where T}, , and T, , denote the creep forces with respect to the local reference frame of the con-
tact point and =+ stands for the left and right side, respectively. The creep forces are approximated

by

GCHC2
T := —uNjp gtanh 6
1pr 22 LIR an (/LNL|R V1 ( )
GC2202 G02363
T: := —uNjp gtanh
27 r KN R tan (NNL|R vy + iNL R ¥ (7)

and corrected by
if T2+ T3> (uN)? ,then

- T - T:
T 1 2

-  uN and T = —=— uN
JTEr2 " T

The constant parameters

1, G,C11,C22,C23

(friction coefficient, glide modul, Kalker coefficients) are listed below. For the computation of ¢
(size of contact ellipse) and for alternative creep force models see [Jas87].
The normal forces N are given by

NL _ COSAR —sinAR bl,l b1,2 )\1
( NR ) o ’)’( —COSAL —SiIIAL ) ( b2,1 b2,2 ) ( )\2 >
1
sin A cos Ag +sinAgcosAp

where v :=

Ap|r denotes the contact angles and is defined as

tan A (R'(€L) cosp — sinpcos ) cos @ + sin 4y, sin §
an = .
£ —R!(&L) sin @ — cosy, cos p ’
(R'(€r) cosp —sinp cosg) cos @ + sintg sin 0

+R!(ERr) sin p + cos g cos p

tanAp =
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For the creepages we have the relations

1
v = (sin 6v,1 + cosBv,3)
Vroll
1
vy = (cosf cos A gr1Esin Ap gveg — sinf cos Ap gur3)
VUroll
1 .
w3 = (q: sin Ap|g(w + B — vo k sina) + cos Ap (6 — vo K,cosa))
Uroll

where v,1 9 3 (relative velocity at the contact point) and v.ou (rolling velocity) are given by (cor-
respondingly for the right side)

vy = & —0(R(EL)(sinsin g cosvp 4 cosfsinhy) + £ sin 6 cos p)

—@cosO(&r singp — R(Er) cos p cosr,)

+(wo + B)R(&L)(—sin B cospy, — sin g cosOsiny,)

+vok cos a(R(€L ) (sin O sin ¢ costpr, + cosOsinr) + £r, sin B cosp — 2)
Vs = G+ @(Es cosp+ R(E)sin posvr) + (wo + B)R(EL) cos psin v

+vok sin a(z — & sinf cos p — R(Er)(sin O sin pcos g, + cosfsin ey ))
U3 = Z+ v+ vok(zcosa —ysina)

—6(& cos B cos @ + R(EL)(cos B sin @ cosy, — sinBsinpy,))

+@sin (& sinp — R(€L) cosp cosyr)

+(w+ B)R(EL)(sin @ sin psin, — cosf cos )

—vpk sin a(€, sinp — R(EL) cos p cos )

+vg cos a(€r, cos @ cos p + R(EL)(cos @ sin pcostpy, —sinfsiny,))

and
1 —2& + 2vgKz cos Vp1
Vpoll = 2 —29 — 2ugkzsin a + Vpo
—2% — 2vg — 2vgk(z cos @ — ysin @) Vp3 )

11.2.2 Constraints

The index-3 constraints g; read

( G(€L) —y —Ersing + R(€L) cos pcos g ) 0
G(€r) —y — Ersing + R(Eg) cos p cos Y
with profile functions R (wheel) and G (rail),see Fig. 1,

R(&) = po+tanéy (ao — [€]) for ag — Aa < |€] < by;

~ ~ 2 ~
G(§) \/p%— (|§|—a0—plsin60) — po — cos &g p1 for e; < €| < ca.

§ stands for the left or right coordinate £, respectively, and é is defined by

{AL‘R =2+ &g pcosfcosp + R(EL|R) (cosGsincpcosd)Lm - sin05in¢L‘R) .
The index-1 constraints go read

G'(€L) (R'(€L) sin ¢ + cos p cos L) + R'(£L) cos @ cos ¢
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2

po
po : nominal rolling radius ao : nominal gauge/2
p1 : radius track b1,b2 : wheel boundaries
6o : angle of wheel cone/ 2 c1,ca : track boundaries

Figure 1: Profile functions (left side)

—cosBsinpcosy, + sinfsinyy,

R'(&1) sin 6 cos p — sin @sin @ cos 1, — cos @ sin 1y,
G'(€R) (R'(€r) sin ¢ + cos p cos Yr) + R'(Er) cosf cos @
—cosfsin pcostr + sinfsin g

R'(€R) sinf cos ¢ — sin @ sin ¢ cos g — cos @ sin g

where G'({f ) := T G(€rr), R'(ELiR) = ﬁR(ﬁL\R)-

EL|R

11.2.3 List of parameters

11-5

(10)

The following data is according to [Jas90] where a hardware bogie model scaled 1:4 is investigated.

Parameter Unit

mass wheelset kg 16.08
gravity constant m/s? 9.81
nominal velocity m/s 30.0
propulsion force N 0
propulsion moment kg m? 0
nominal angular velocity 1/s vo/po
lateral moment of inertia kgm?  0.0605
vertical moment of inertia kgm?  0.366
mass of wagon body kg 0.0
height of wagon body m 0.0
spring constant N/m 6400.0
spring constant N/m 6400.0
width of wheelset /2 m 0.19
cone angle/2 rad 0.0262
nominal radius m 0.1
gauge/2 m 0.1506
radius track m 0.06
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&R

contact points

(b)

Figure 2: The wheelset and the track. (a) View from above, (b) lateral cross section.

7 friction coefficient 0.12

G glide modul N/m2?  7.92 -10'0
C11 Kalker coefficient 4.72772197
Cayy  Kalker coefficient 4.27526987
Cs3  Kalker coefficient 4.97203505

11.3 Origin of the problem

The motion of a simple wheelset on a rail track exhibits a lot of the difficulties which occur in
the simulation of contact problems in mechanics. The state space form approach for this class of
problems requires simplifications and table look ups in order to eliminate the nonlinear constraints.
The above example provides thus an alternative by using the DAE approach.

Figure 2 shows the mechanical model. The coordinates p denote the displacements and rota-
tions of the wheelset with respect to the reference frame which is centered in the middle of the
track. The wheelset is subjected to

e the gravity and centrifugal forces;
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P contact point

longitudinal cross section lateral cross section

Figure 3: Shift angle and coordinate of contact point on the left side

e creep forces in the contact points of wheel and rail;

e forces of the wagon body, which is represented by a frame connected to the wheelset via
springs and dampers and proceeding with constant speed wvy;

e constraint forces which enforce the contact of wheel and rail on both sides.

We are particularly interested in a complete and correct formulation of the nonlinear constraint
equations. An elimination of the constraints without severe simplifications or the introduction of
tables for the dependent variables is impossible. In this example thus a reduction to state space
form involves various obstacles, whereas the DAE-formulation is straightforward.

By means of the profile functions R and G which describe the cross sections of wheel and rail
depending on the contact points we first express the constraint equations as 0 = g;, see Figure 3.
This enforces that the contact points of wheel and rail coincide on both sides. Additionally, we
have to guarantee that wheel and rail do not intersect, which is accomplished by the conditions
0 = go. Note that 8g2/0q is regular, which means that we can apply formally the implicit function
theorem to eliminate the additional contact variables gq.

The constraint Jacobian follows from

For this class of contact problems, however, it can be shown that 8¢, /8q ¢ = 0 whence the expres-
sion for the constraint Jacobian simplifies to 8g; /0p. The equations of motion of the wheelset are
then derived by applying the formalism of Newton and Euler.

Remarks

e N(p,q,)) € R? denotes the normal forces which act in the contact points. They are necessary
to evaluate the creep forces.

e 3 € R denotes the deviation of the angular velocity and is given by an additional differential
equation.
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11.4 Numerical solution of the problem

11.4.1 Solution at the endpoint:

yi | 0.86355386965811- 10~ 2
y2 | 0.13038281022727- 104
ys | —0.93635784016818- 104
ya | —0.13642299804033- 10!
ys | 0.15292895005422- 102
vs | —0.76985374142666- 10!
yr | —0.25151106429207- 103
ys | 0.20541188079539. 102
yo | —0.23904837703692

yio | —0.13633468454173- 10!
y11 | —0.24421377661131

yie | —0.10124044903201 - 10!
yi7 | —0.56285630573753 - 102
yia | 0.37839614386969- 103
yis | 0.14173214964613

yi2 | —0.33666751972196 - 10~3
yi3 | —0.15949425684022

In the following, we investigate the dynamic behaviour of the wheelset model. Starting with an
initial deflection in lateral direction (z-direction), the motion of the wheelset is simulated when
running along a straight track. In [Jas90], a limit cycle was observed for this problem and the
model data given above. This type of limit cycle, the so-called hunting motion, is a well known
phenomenon in railway vehicle dynamics.

Fig. 4 shows the result of a simulation with DASSL applied to the index-2 formulation of the
problem. The results are in good agreement with those given in [Jas90] obtained by a state space
form approach and with measurements on a hardware model.

11.4.2 Statistic data of the simulation run

The runs were performed on a SGI workstation, an Indy with a 100 MHz R4000SC processor,
using the Fortran 77 compiler with optimization: £77 -0.

Solver: DASSL, latest release obtained from NETLIB, revised 910624.

atol=rtol=10° for A to exclude the Lagrange multipliers from error control.

Interval mode output after each At =0.1[s].

Initial conditions: corresponding to a lateral deflection of z = 1.49[mm)], see the Fortran routine.

A Jacobian of the problem is not supplied, DASSL used finite differences.

solver rtol  atol hO | scd steps accept #1f #Jac # LU CPU
DASSL 10~* 10~* 0.16 5107 4265 10414 1396 12.84
10~% 10°° 1.41 8671 7412 16237 1817 18.50
10=6 106 2.27 14190 12485 24939 2704 28.18

11.4.3 Work-precision diagram

In Figure 5 we present a work-precision diagram (cf. [HW91, pp. 166-167, 324-325]). The runs
were performed on a SGI workstation, an Indy with a 100 MHz R4000SC processor, using the
Fortran 77 compiler with optimization: £77 -0. We used: rtol = 10~(4+™/8) m = 0,...,16;
atol = rtol.
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Figure 4: Limit cycle or ‘hunting motion’ of wheelset.
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12 The two bit adding unit

12.1 General Information

The problem is a stiff DAE of index 1, consisting of 175 differential equations and 175 algebraic
equations. It has been contributed by M. Giinther [Giin95, Giin96].

12.2 Mathematical description of the problem

The problem is of the form

dy
E - f(t,.'E),

with
y(0) =yo, z(0)==z, y,z € R'™, 0<t<320.
The precise definition of the functions f(¢,z), g(z) and the initial values yo and zy can be found
in the code.
The differential-algebraic system is not very smooth: g is only a C!-function, while f is only

CO.

12.3 Origin of the problem

The two bit adding unit computes the sum of two 2-base numbers (each two digits long) and a
carry bit. These numbers are fed into the circuit in the form of input signals. As a result the
circuit gives their sum coded as three output signals.

The two bit adding unit circuit is a digital circuit. These circuits are used to compute boolean
expressions. This is accomplished by associating voltages with boolean variables. By convention
the boolean is true if the voltage exceeds 2V, and false if it is lower than 0.8V. In between
the boolean is undefined. Using CMOS technique, however, sharper bounds are possible for the
representation of booleans.

Digital circuits that compute elementary logical operations are called gates. An example of a
gate is the NAND gate of test problem 9. This circuit is used to compute the logical expression
—(V1 A V), where V; and V3 are the booleans that are fed into the circuit as input signals.

The two bit adding unit is depicted in Figure 1. In this figure the symbols ‘&’, ‘> 1’ and a little
white circle respectively stand for the AND, OR and NOT gate. A number of input signals and
output signals enter and leave the circuit. Each signal is described by a time-dependent voltage
and the boolean it represents. For these two quantities we shall use one symbol: the symbol of
this boolean variable. Which one of the two quantities is meant by the symbol, is always clear
from the context. With this convention, the input signals are referred to by the boolean variable
they represent.

The circuit is designed to perform the addition

A1 Ao+ B1 By + Cir, = C 51 So.

The input signals representing the two numbers and the carry bit C;, are fed into the circuit at the
nodes indicated by A0, A1, BO, B and Cin. They represent respectively the boolean variables Ay,
Ay, By, B; and C;,,. Here, a bar denotes the logical inversion. The output signals are delivered
by the nodes indicated by S0, S1 and C. They represent the boolean variables Sy, S; and C.

In Figure 1, a number of boxes are drawn using dotted lines. Each of them represents one of the
following gates: the NOR (first box to the left in the top-row), the ORANI gate (the box besides
S1), the NAND (the box besides the ORANI gate) and the ANDOI(the box at the bottom). The
circuit diagram of the NAND-gate is given in test problem 9. For the circuit diagrams of the NOR,
ANDOI and ORANI gate see Figures 2, 3 and 4. The logical expressions that are computed by
them are given below.
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Name logical expression # nodes # times
NOR (Vi Vv Va) 3:4+1=13 |3
NAND | «(Vi A V3) 3:4+2=14 |1
ANDOI | =(V; V (V2 A V3)) | 4-442=18 |5
ORANI | =(V4 A (V3 V V3)) | 4-442=18 |1

The fourth column lists the number of times the gate occurs in the big circuit. The third
column tabulates the number of nodes in the gate. These nodes consist of two types. The first
type of nodes consists of the internal nodes of the transistors due to the MOS transistor model
of Shichman and Hodges [SH68]. Each transistor has four internal nodes that are also the links
between transistor and the rest of the circuit. The second type of nodes comprises the usual nodes
that are used to link circuit components together. These nodes are indicated by a number placed
inside a square. To prevent any misunderstanding, we remark that the big dots in Figures 2—4 do
not represent nodes.

Qg

=

2

ME 1 ME 2

VBB

Figure 2: Circuit diagram of the NOR gate (taken from [Gin95])

The connection of a gate with the rest of the circuit consists of the input nodes and the output
node of the gate. The input signals enter the gate at the nodes with symbol Vi, V5 and V3. The
output signal leaves the gate from one of the numbered nodes. To ensure stability of the circuit,
such an output node is always connected to a capacitance (we refer to the Fortran driver: CLOAD
denoting the value of a load capacitance for the logical gates, and COUT for the output nodes Sy, Sy
and C). Finally, three enhancement transistors are coupled with the ANDOI gate at the bottom
for a correct treatment of C;,,. This yields 12 internal nodes and two additional nodes, because the
three transistors are coupled in series. Counting all nodes we have 3-13+1-14+5-1841-18414 =175
nodes.

Applying Kirchoff’s law to all nodes yields a system of 175 equations. This system is an integral
form DAE of the special form

A-4(V) = £, V).

The function ¢ is a generally nonlinear function of node potentials V', which describes the charges
stored in all charge storing elements [GDF96]. Assembling the charge flow at each node by an
incidence matrix A, the dynamic part A - ¢(V') equals the contribution of static currents denoted
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by f(t,V). If all load capacitances at the output nodes are nonzero, then the integral form
DAE has differential index 0. If only one of the load capacitances equals zero, the generalized
capacitance matrix A -9q(V)/9V is singular, yielding a system of differential index 1. This shows
the regularization effects by applying additional capacitances. In the code, we use CLOAD=0 and
COUT=2.0.

To make this problem suitable for DASSL and RADAUS5 the variable Q = A-¢(V) of assembled

charges is introduced leading to

Q f@,v),
0 = Q- AqV).

This transformation of the integral form DAE into a linearly implicit system raises the differential
index by one. However, in the case of singular load capacitances, no higher index effects are
detected in the sense of an appropriate perturbation index [Giin96].

Some of the 175 variables have a special meaning. These are the voltage variables of the nodes
that deliver the output signals. The output signals Sy, S; and C are given by respectively the
variables x49, 2130 and z14g8. Only these variables are of interest to the engineer.

D

Ll ME 2 .
Cia

Vv
D
ME 1
[
ME 3
V. V2
1
V3 ?

ks

Figure 3: Circuit diagram of the ANDOI gate (taken from [Gin95])

In the next section we shall see the two bit adder in operation. Every 10 units of time the
addition
A1 Ag + By By + Cin, = C 51 S0,

is carried out. The numbers that are added are represented by the input signals depicted in
the Figures 5-7. The outcome of the addition is represented by output signals given in Figure
8. Often the output signals need time to adjust to changes in the input signal. Therefore, only
during certain periods the sum is correctly represented by the output signals. The two bit adding
unit has been designed in such a way that after each 10 units of time the output signal represents
the sum correctly.

To see the two bit adding unit performing an addition let us see what happens at t = 200.
Then the input signals read:

J‘I():O, Alz]-; B(]:O:Blzoa C’inz]—’

and the output signals are B
So=1,5=0,C=0.
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Recall, that a bar denotes the logical inverse. Clearly, the addition 014+114+1=101 has been carried
out.

ME 2 l ME3 G=
V. C

Figure 4: Circuit diagram of the ORANI gate (taken from [Gin95])
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12.4 Numerical solution of the problem

M. Giinther provided the source code defining the problem. In applying DASSL and RADAUS5
the composite vector (y?(t),z7(¢))T is used.

Remark: M. Giinther also wrote a special purpose solver called CHORAL (CHarge-ORiented
ALgorithm, [Giin95, Giin96]) for integrating equations of the form

dy
E f(tam)a
0 = y—q(z).

Most equations occurring in circuit analysis are of this form. In these equations the variables y
and z represent respectively (assembled) charges and voltages. CHORAL is based on Rosenbrock-
Wanner methods, while the special structure of the problem is exploited. The code eliminates
the y variables, reducing the linear algebra work to solving systems of order 175 instead of 350.
Correspondingly, a step size prediction and error control based directly on node potentials and
currents is offered. For more information see

http://www.mathematik.th-darmstadt.de/guenther/Welcome.html.

12.4.1 Solution at t = 320

For the solution at t = 320 we refer to the code. The voltages of the output signals are given by:

Ta9 | 0.20404214956152
T130 | 0.49972184367837 - 10
z14s | 0.20390916167369
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12.4.2 Behaviour of the numerical solution

The two bit adding unit

In Figure 8, we give plots of the voltages of the output signals z49, 130 and x14s.
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0 50

1
100

150

1
200

x(130)
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300 350

IS
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200

x(148)

250
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0 50

Figure 8: The output signals Sy, S1 and C
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12.4.3 Run characteristics

1
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200
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300

To comply with the format of the standard drivers we applied DASSL and RADAUS5 using error
control for both the z and y. It would be more natural to use local error control only for the
x variable because they are physically relevant, whereas y was introduced to make the problem
suitable for DASSL and RADAUS. In computing the scd values only the output signals 49, 130

and z148 were considered.

solver rtol  atol  hO scd steps accept #1 # Jac # LU CPU
DASSL 1072 1072 2.42 1423 1246 3148 521 587.47
10-* 10~ 3.53 5465 5005 9526 892 1131.85
RADAU5 1072 102 10! | 3.68 1112 698 9722 692 1106 1320.04
1074 107* 1073 | 4.28 2189 1609 17645 1442 2138 2602.30

12.4.4 'Work-precision diagram

In Figure 9 we present a work-precision diagram (cf. [HW91, pp. 166-167, 324-325]). The runs
were performed on a SGI workstation, an Indy with a 100 MHz R4000SC processor, using the
Fortran 77 compiler with optimization: £77 -0. We used: rtol = 10~+™/8) m = 0,...,16;
atol = rtol; hO = 10 - rtol for RADAUS.
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13 The car axis problem

13.1 General information

13-1

The problem is a stiff DAE of index 3, consisting of 8 differential and 2 algebraic equations. It has
been taken from [Sch94]. Since not all initial conditions were given, we have chosen a consistent
set of initial conditions.

13.2 Mathematical description of the problem

The problem is of the form

The equations are given by:

dCEl
dt
dy,
dt
d.’l?g

it
dy2

dt

2 M du
2 dt
2 M dve
2 dt
2 M dvs
2 dt

2 M dvs
2 dt

0

0

Kv' = f(u,)),
0 = g(u
I - 5 - 3 z1 —p(t)
(fo = Vi = p()* + (o1 — 4(1) )\/(1131 —p(1))* + (31 — q(t))?
L — o T (o e 1 —q(t)
(o= Vi =2l + (i —aOP) e =y
(1o = /a3 + BB) ey = PON + 2ha(a1 = 22)
Ty 2
(o — \f73 + 1) ——2— — 22— q()h + 2001 — 12)

Vs + 3 2
p(t)z2 + q(t)y2
(1 —22)® + (y1 —y2)° — 17

The constants read

M=10, e=10"2% (=1, ly=0.5.

The functions p(t) and ¢(t) are defined by

q(t) = rsin(wt),

p(t) = VP —-g(1),

— 2)\2 (.’El — 182)

M
— 62? —2X2(y1 — ¥2)

where the constants are given by » = 0.1 and w = 10. The initial conditions were chosen to be

1 =1 z) = —0.5

zo=0 |a5=-05
y1=0.5|y; =0
Y2=05|yy =0
A1 =0 A =0
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Figure 1: Model of the car azis (taken from [Sch94])

13.3 Origin of the problem

The problem models the axis of a car as depicted in Figure 1. In this model, the left wheel (at the
origin (0,0)) rolls on a flat surface and the right wheel moves up and down in a sinusoidal way.
Denoting the coordinates of the right wheel by (p(t), ¢(t)), we suppose that

q(t) = rsin(wt),
p(t) = VP -1

Note that in Figure 1 the coordinates (p(t),q(t)) are denoted by (pi(t),¢1(t)). This parameteri-
zation describes the situation where the right wheel rolls over equidistant hills of height . The
movement of the lower axis between (0,0) and (p(t), g(t)) is carried over to the upper axis between
(z2,y2) and (z1,y1) by two massless stiff springs with Hooke’s constant 5% and length ly. The
movement of the mechanism has two constraints. First, the distance between (z1,¥1) and (z2,¥2)
must remain constant and second that the left spring remains orthogonal to the lower axis. The
equations for the motion of the points (z1,y1) and (z2,y2) are obtained by using Lagrangian
mechanics. Scaling the Lagrange multipliers by €2 yields the 10 equations given in the previous

section.
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13.4 Numerical solution of the problem

The code was run with RADAUS5 only. Other codes cannot handle the problem, because the index
is 3.

13.4.1 Solution at the endpoint

Y1 0.10417425246881 - 10
Y2 0.37391102581670

Y3 0.49345578498447 - 10~ ¢
Ya 0.49698946094432

Ys 0.17556820846051 - 10~1
Ys 0.77034106299374

yr | —0.77058369940007 - 10~!
Ys 0.74468523096869 - 102
Yo 0.47368244493243 - 102
Y10 0.11046501158750- 102

13.4.2 Behaviour of the numerical solution

The following plots show the motion of the upper car axis.

x(1) y(1)
1.05 0.7
0.6
1
0.5
0.95
0.4
0.9 0.3
0 1 2 3 0 1 2 3
x(2) y(2)
0.05 0.5
0.499
0 0.498
0.497

-0.05 0.496
0
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13.4.3 Run characteristics of RADAUS

We have refrained from supplying the Jacobian analytically, therefore RADAUS5 was run using a
finite difference approximation. The runs were performed on a SGI workstation, an Indy with a
100 MHz R4000SC processor, using the Fortran 77 compiler with optimization: £77 -0.

solver rtol atol hO scd steps accept #f #Jac # LU CPU
RADAU5 107% 107* 107* | 0.55 116 115 952 113 116  0.15
10°7 1007 1077 | 2.39 581 580 4015 557 576  0.68
10719 10719 10710 | 480 3189 3188 21431 2698 2821  3.49

13.4.4 'Work-precision diagram

In Figure 2 we present a work-precision diagram (cf. [HW91, pp. 166-167, 324-325]). The runs
were performed on a SGI workstation, an Indy with a 100 MHz R4000SC processor, using the
Fortran 77 compiler with optimization: £77 -0. We used: rtol = 10=(4+7/4) m = 0,...,24;
atol = rtol; hO = rtol.
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14 Fekete problem

14.1 General information

The problem is an index 2 DAE from mechanics. The dimension is 8 NV, where NN is an user supplied
integer. The numerical tests shown here correspond to N = 20. The problem is of interest for
the computation of the elliptic Fekete points [Par95]. The parallel-TVP-algorithm group of CWI
contributed this problem to the test set, in collaboration with W. J. H. Stortelder.

14.2 Mathematical description of the problem

The problem is of the form
dy
E = f(y)) y(O) = Yo; (1)
with
yeRSNa Oststend-

Here, tena = 1000 and M is the (constant) mass matrix given by

[ Iey O
w=(0)
where Igy is the identity matrix of dimension 6 N. Since the function f is too voluminous to be

printed here, we refer to the Fortran codes and the next section for its definition.
The initial vector yp is given by (yo,;), where

Yo,i = 0 for 1 =1,2

Y0,3 =1

Yo3(i-1)+1 = cos(2m(j —1)/(N —1))

Yo,3(i—1)+2 = sin(27(j —1)/(N —1)) for 7=2,...,N

Yo,3Gi-1)+43 = O

Yo,i = 0 for t=3N+1,...,6N

Y0,6N+j = L{p;(0), f;) for j=1,...,N

Yo,i = 0 for i=7N+1,...,8N.

Here,
Y3(j-1)+1 . fan+3(i-1)+1((2(0),0, . .. ,0)T)
pi=1| vsg—+2 |, Fi=| Fanvtsg-1)+2((0(0),0,...,007) |, (2)

Y3(j—1)+3 fant3(i—-1)+3((p(0), 00T

and p = (yl,yz, .- :yBN)T-

14.3 Origin of the problem

This problem is of interest for the computation of the elliptic Fekete points. Let us define the
unit sphere in R® by &2 and for any configuration z := (1, 2s,...,2x)7 of points z; € S?, the

function
V(@) := [T lei — jllo-
i<j

We denote the value of z for which V' reaches its global maximum by z = (Z1,...,Zx). The
points Z1,Zs,..., Ty are called the elliptic Fekete points of order N. For example, for N = 4, the
points of the optimal solution form a tetrahedron. But, in case of 8 points, intuition fails; the
elliptic Fekete points do not form a cube in this case. A cube where, for example, the upper plane
is rotated over 45° with respect to the bottom plane, gives already a larger value of V. It turns
out (see e.g. [Par95]) that Z is difficult to compute as solution of an global optimization problem.
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For reasons that will become clear later, we differentiate log(V') with respect to z and apply the
method of Lagrange multipliers to arrive at

Vs log(V (2) Z B B B (3)

Tk _331”2

where the (; are Lagrange multipliers.

We now discuss the Fekete points from another point of view. Consider on S? a number of N
particles. We invoke a repulsive force on the particles, by which the particles will start to move
away from each other. We compute the configuration of the particles as function of time, given
that the particles cannot leave the unit sphere.

We denote the position in Cartesian coordinates of particle ¢ at time ¢ by p;(t) and the con-
figuration of N points at time ¢ by p(t) = (p1(t),...,pn(t))T. If we impose an adhesion force on
the particles, then the particles will reach a stationary configuration at ¢ = tg,¢, which will be
denoted by p := (p1, D2, - - -, PN ), Wwhere D; := p;i(tstat)- The repulsive force on particle 7 caused by
particle j is defined by

Di — Pj
5= =mll W
Note that the choice ¥ = 3 can be interpreted as an electrical force working on particles with unit
charge. If we choose v = 2, then the energy of configuration p(t) is given by

= lm(®) = (5™

i<J

Since the energy has a local minimum in the final configuration p, we know that

VkEpp§
J

= &kPr, (5)
|k —PJ||2

where the £ represent Lagrange multipliers. Comparing (3) and (5) tells us that computing p
for v = 2 gives the elliptic Fekete points. For more details on elliptic Fekete points, we refer
to [Par95], [SS93] and [SSP96].

We now explain how the computation of p can be obtained as solution of an index 2 DAE.
The configuration p(t) p satisfies the equations

P = q (6)
d = g(pq)+GT(p)A, (7)
0 = ¢(p)a (8)

where ¢ is the velocity vector, G = 9¢/0p and A € RY. The function ¢ : R3N — RY is the
constraint, which states that the particles cannot leave the unit sphere:
$i(p) = Py + Pl + Pl — L.
The function g : R®Y — RV is given by g = (g;), i = 1,..., N, where
q) =Y Fij(p) + Ai(9),
j#i

where Fj; is given by (4). The function A; is the adhesion force working on particle 4, given by
the formula
Ai = —Qqg;.

Here, o is valued 0.5. Without this adhesion force, the particles would periodically oscillate.
The term GT(p)X in (7) represents the normal force which keeps the particle on S2.
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The equations (6), (7), (8) form a differential algebraic system of index 3. To arrive at a more
stable formulation of the problem, we stabilize the constraint (see [BCP89, p. 153]) by replacing

(6) by
P =q+ G (p)u, (9)

where p € RY, and appending the differentiated constraint

0 = G(p)g. (10)

The system (9), (7), (8), (10) is now of index 2; the variables p and g are of index 1, the variables
A and p of index 2. We cast the system in the form (1) by setting y = (p,q, A\, )T and f(y) =
fo,q, M 1) = (g+ G¥u, g+ GT X, ¢,Gq)T, where p; is in Cartesian coordinates.

The initial positions p;(0) are all located on the intersection of S? and the horizontal plane
through the origin, except for the first particle, which is initially in (0,0,1). Choosing ¢(0) = 0
yields x(0) = 0 and ¢}(0) = (2p;(0), ¢;(0)) = 0. Consequently,

(2p(0), 9:(p(0),¢(0)) + 2X:(0)p:(0))-
Requiring ¢! (0) = 0 gives

(o) = - PO 2 5:(0),1(6(0), 4 0).

For N < 20, tg. < 1000, therefore we chose teng = 1000.

14.4 Numerical solution of the problem

All the tests concern the case with N = 20. Solving the problem numerically leads to a phe-
nomenon that one might call numerical bifurcation. Assume that two particles p; and p; are
close to each other at time ¢; with p;1(t1) > p;,1(¢1). It may happen that the numerical integra-
tion method applied with error tolerance 7 computes a new stepsize h, such that p;1(t + h,) >
pj,1(t + h;), whereas this method applied with error tolerance 7 results in a stepsize h; for which
pia(t + hz) < pj1(t + hz). This means that for different error tolerances, the numerical inte-
gration method may compute paths of particles that differ significantly. The occurrence of this
phenomenon is irrespective of the scale of the error tolerance. However, modulo rotations, the final
configuration is the same within the accuracy of the numerical integration method for different
values of the error tolerance. This leads us to measuring the precision of the numerical solution
by computing the accuracy of the quantity V', defined by

V(y(®) = [T I = pillo.

i<j
Here, p; is the same as in (2). Consequently, the scd value stands for
SCd = - loglo((v(ynum(tend)) - V(yref(tend)))/V(yref(tend)))a

where Ynum is the numerical solution and ¥, the reference solution.

14.4.1 Solution at ¢t = 1000:

The value of V (yref) in teng reads 0.2862435499558360 - 1024,
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14.4.2 Run characteristics

The runs were performed on a SGI workstation, an Indy with a 100 MHz R4000SC processor,
using the Fortran 77 compiler with optimization: £77 -0.

solver rtol atol  hO scd steps accept #f #Jac #LU CPU
RADAU5 1072 1072 1072 | 5.73 63 53 632 50 63  60.93
1073 1072 1072 | 7.66 84 79 701 76 84  68.63
10-* 107* 10* | 8.23 146 138 1063 131 146 108.20

14.4.3 Behaviour of the numerical solution

The following plot shows the behaviour of V(yret(t)) on [0,20], as computed by RADAU5 with
rtol = atol = h0 = 10~19:

x 10%°

2.5

0.51-

14.4.4 'Work-precision diagram

In Figure 1 we present a work-precision diagram (cf. [HW91, pp. 166-167, 324-325]). The runs
were performed on a SGI workstation, an Indy with a 100 MHz R4000SC processor, using the
Fortran 77 compiler with optimization: £77 -0. We used: rtol = 10-(+m/16) = 0 ... 32:
atol = rtol; h0 = rtol.
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