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Abstract
If the nonlinear systems arising in implicit Runge-Kutta methodsthikeRadaullA methodsareiterated
by (modified) Newton, then we have $olve linear systemswhosematrix of coefficientsis of the form
I - AOhJwith A the Runge-Kuttamatrix andJ an approximationto the Jacobiarof the righthandside
function of the system of differentiglquationsFor larger systemsof differential equationsthe solution
of these linear systems by a direct linear solver is very costly, magcgusef the LU-decompositions.
We try to reduce these costs by solving the linear systems by a second (inner) iteration process. This inner
iteration process is such that each inner iteration again requirsslthsn of a linear system.However,
the matrix of coefficientsin thesenew linear systemsis of the form | - BOhJ whereB is similar to a
diagonalmatrix with positive diagonalentries.Hence,after performinga similarity transformation,the
linear systems are decoupled into s subsystems, sththedstsof the LU-decompositiorare reducedto
the costsof s LU-decompositionof dimensiond. SincetheseLU-decompositioncan be computedin
parallel, the effective LU-costs on a parallel computer system are reducdeddiyras. It will be shown
that matricesB canbe constructedsuchthat the inner iterationsconvergewheneverA and J have their
eigenvaluesn the positive and nonpositive halfplane, respectively. The theoretical results will be
illustratedby a few numericalexamples.A parallel implementationon the four-processoiCray-C98/
4256 shows a speed-ugngingfrom at least2.4 until at least3.1 with respecto RADAUS appliedin
one-processor mode.
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1. Introduction
Suppose that we integrate the IVP

d
(L1)JF =f(y). y(to) =yo, y,fORd

by animplicit step-by-stepnethod.In generalthis requiresin eachstepthe solutionof a nonlinear
system of the form

(1.2)R(Yn) =0, R(Y):=Y - h(ADNF(Y) - Wp-1,
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where A denotes an s-by-s matrix (assumed to be nondefectivéeldidy-d identity matrix, Wn-1

containsinformationfrom precedingsteps,h is the stepsizey, - th-1, andJ denotesthe Kronecker
product. It will alwaysbe assumedhat A is nondefectiveand hasits eigenvaluesn the positive
halfplane.The s componentsY i of the sd-dimensionakolution vector Y, represents numerical
approximations to the s exact solution vectdts1 + gh); herec = (¢j) denoteghe abscissavector
whose components are assumed distinct. Furthermore, for any vextpr (Yni), F(Yy) contains
the derivativevalues(f(Yni)). In the following, we shall usethe notationl for any identity matrix.

However, its order will always be clear fraire context. The solutionY, of (1.2) will be calledthe

stage vector, y,, thestep point value, s thenumber of stages, and A theRunge-Kutta matrix.

Usually, the nonlinearsystem(1.2) is solved by modified Newton iteration. This leadsto linear
systems whose matrix of coefficients is of the form [3h with J arapproximationto the Jacobian
of the righthand side functidn The solution of these systems may be extremely costlyexample,
if a direct solver is used, then in genetad LU-decompositiorrequires% s3d3 arithmeticoperations
which is considerable, even for moderate valuas @ayd = 10). Moreover,thereis only a limited

intrinsic parallelism in building the LU decomposition of the matrix [3hA.

1.1. Reduction of computationa costs

We briefly surveywariousapproacheso reducethe computationakostsassociatedvith the solution
of the Newton systems using parallel computer systems. Firstly, one may Iepedmlmethodsin
which A is a triangular matrix with positive diagonalentrieslike the DIRK type methods.Then,
confining our considerations to the costs of the LU decomposition, waatde effective LU-costs
ONn S processors reduce3z‘tcoj3 operations, a factoBess than those needfat the Newton process.
However, these DIRK type methodsalso have disadvantagesln the case of one-stepDIRKs
available in the literature, theteppoint orderis at most4 andthey havea relatively low stageorder
which may be a disadvantagen certain classesof stiff IVPs. Higher step point ordersand stage
orders can be obtained in the class of multistep RK method3uichgeand Chipman[3]), butthey
have the disadvantage of quite large abscissae val(raaah larger than 1).

More sophisticatedthan the DIRK methodsare methodscharacterizedoy matricesA with only
positive eigenvalues such as the one-step RK methods of Ngrsett [16], BurrageQt¢ldad]. By
performing a similarity transformation(or Butcher transformation[5]), the linear systemscan be
decoupled into s subsystems of dimension d. Again, the effective LU-costs redufzetoy €8, and
moreover, the stage order and step point order are mghkbrthanfor DIRK methods.However,a
possible disadvantage of these methods is the lack of superconvergence at the step points.
Finally, one may choose the classical RK methods possessing both a high stagadadegh step
point order, butlsoone or more complexeigenvaluesAgain, applyinga similarity transformation,
the Newton systemis transformedto block-diagonalform with (real) diagonalblocks, eachblock
corresponding to an eigenvalue of A. If an eigenvalue isttealthe associatedliagonalblock is of
orderd, otherwiseit hasorder2d. The LU-costsof theseblocks are reducedto % d3 and 1?6 d3
operations, so that effectively the LU-costs-]§§r®3 operationsjrrespectivethe value of s (the code
RADAUS of Hairer and Wanner [7] uses such a transformation).



1.2. Iterative solution of the linear systems

Insteadof using direct solution methods,one may also look for iterative linear solvers, such as
GMRES or preconditioned GMRES (see e.g. Burrage [2] where further references are given).
In this paper,we shallfollow an approachthatis a mixture of an iterative anda direct approach It
allows A to havecomplexeigenvaluegin the positive halfplane),so that the superconvergenRK
methods like the Radau IIA methods are included. The linear syatesimgyin the modified Newton
method are solved by an iterative method (the inner iteration process), which needsitself LU
decompositions of matrices, but these matrices are only of dimeshsiorfact, the linear systemdo
be solved have a matrix of coefficiemtsthe form | - BOhJ whereB is similar to a diagonalmatrix
with positive diagonalentries.Hence,after performinga similarity transformationthe effective LU
costs ar% d3 operationdike the methodsof Burrageand Orel. We shall refer to this inner iteration
process by PILSRK (Parallel Iterative Linear System solver for RK methods). The combination of
modified Newton and the PILSRK method will be called the Newton-PILSRK method.

There are several options for choosing the matrix B. The most simple approach éheoSeshere
D is adiagonal matrix (with positive entries),so that the sd-dimensionasystemcandirectly be split
into s uncoupledsubsystem®f dimensiond which can be solved concurrently.In fact, we can
employ the same matrices D as usethe ParallelDiagonal-implicitly IteratedRK methods(PDIRK
methods)analysedn [10]. The PDIRK methodis also an iterative method,but unlike the PILSRK
methodit is a nonlinear systemsolver and directly iterateson the nonlinearsystem(1.2). Using
results derived by Lioen [13] for PDIRKatrices,t canbe shownthatfor the first eight RadaullA
correctors, the PILSRK methods are A-convergent, that is, it convergeasitd eigenvaluesn the
nonpositive halfplane. Furthermore, these PDIRK matrices have the property that the stiff
components are removed from tkerationerror within s iterations.However, a disadvantagef the
PDIRK matrices is the poor convergence (or even divergence) of the PILSRK nrethedirst few
iterationswhich is worseas the numberof stagesof the underlyingRK correctorincreasesSucha
convergencdehaviouris highly undesirablef we want to apply step-paralleliteration, where the
iteration process is already started at the next step peiftefore the iterates at have convergedd
poor initial convergencemplies that no accuratepredictorvalueis availablefor startingthe iteration
processat th+1. A substantiaimprovementin the initial phaseof the convergenceof the PILSRK
method is obtained by employing the matrices L usdtie Parallel Triangular-implicitly IteratedRK
methods(PTIRK methods)constructedn [11] (like the PDIRK methods,the PTIRK methodsare
nonlinear systemsolvers).The PTIRK matricesL aredefinedby the lower triangular factor of the
CroutdecompositiorLU of the RK matrix A. By virtue of resultsobtainedby Hoffmann and De
Swart[8], it can be shown that for all RK correctorsthat are basedon collocationwith positive,
distinct abscissaethe matrix L has positive diagonalentriesand that the PILSRK methodis A-
convergentFurthermorelike the PDIRK matrices the PTIRK matriceshave the property that the
stiff components are removed from the iteration error within s iterations. gdtésrminga similarity
transformation, the effective LU-costs are reduced by a factor s3. A preliminary parallel
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implementation of the Newton-PILSRK method based on the one-step 4-stage Radau I1A émchnula
usingthe PTIRK matrix showedon the four-processoiCray-C98/ 4256 speed-upfactors ranging
from at least 2.4 until at least 3.1 with respect to RADAUS in one-processor mode (cf. [11]).

1.3. Quitline of the paper

The aim of the present paper is to find matrices B that are still more effectiva¢fAfIRK matrices
L. Our startingpoint is the representatio = QTQ?1 with T a lower triangularmatrix with positive
diagonalentriesand with Q a nonsingulartransformationmatrix suchthat Q1AQ is lower block-

triangular. It will be shown that matrices T and Q exist such that:

(i) B is nondefective and has positive eigenvalues,

(i) the PILSRK method is A-convergent whenever A has its eigenvalues in the positive halfplal
(i) the stiff components are removed from the iteration error in the second iteration,

(iv) the spectral radius of the iteration-error-amplification matrix is minimized in the left halfplane

The difficult part is the construction of matrices Q such that the iteration-error-amplification haegrix
a sufficiently small norm. In this paper, we construct transformation masiicsit Q- 1AQ is block-
diagonal (in a forthcomingpaper,we shall dealwith alternativefamilies of transformatiormatrices).
For the 4-stageand 8-stageRadaullA correctors,matricesQ will be constructedsuch that the
Euclidean norm of powers of the iteration-error-amplification matrix are satisfactorily small.

As soonas T and Q, and henceB, are obtained,we can computethe diagonalizing similarity
transformation, to obtain a highly parallel linear system solver.

In this paper, we have restricted our analysis of the Newton-PILSRK migttioelcasewhere(1.2)
representghe class of one-stepRadaullA methods,that is, A is the RadaullA matrix and
W1 := (EON)Yp-1 with E =(0, ... ,0, €), e being ans-dimensionalectorwith unit entries.These
methods are of particular interest because of their high stepgodenp = 2s-1 and high stageorder
g = s, their stiff accuracy and their excellent stabpitgperties.The Newton-PILSRKmethodswere
applied to a few problems taken frdhe literature. The resultsshow a considerablemprovementof
the convergencen the first few outer iterations. Recalling that a parallel implementationof the
Newton-PILSRK method usintpe PTIRK matricesalreadyshowsa speed-ugdactor of atleast2.4
with respectto RADAUS, we expectthat using the new matricesB = QTQ? will yield a further
speed-up. The parallel implementation of the new methods will be subject of future research.
Finally, we remarkthatit may well be that the classof multistep RK methodsof Radautype (cf.
Hairerand Wanner[7, p. 293]) is a betterchoicefor the correctorequation(1.2) than the one-step
Radau methods. Faronstiff IVPs, Burrageand Suhartantd4] haveinvestigatedhe useof parallel
iteration methodsfor suchcorrectorsandthey reportpromisingresults.This indicatesthat applying
the PILSRK approach dghis paperto the Newton systemsarisingin multistepRadaumethodsmay
lead to quite effective parallel IVP methods.



2. The pardld iterative linear system solver
Consider the modified Newton iteration scheme for solving the corrector equation (1.2):

2.1) (1- ADRY (YO - YGD) =-R(YGD), j=1,2, .., m,

where J = 0f/dy is evaluatedat tn.1, Y(©) is the initial iterate to be provided by some predictor
formula, and wher¥ (M) is adopted as the solutidfy, of the correctorequation(1.2). Eachiteration

with (2.1) requiresthe solution of an sd-dimensionalinear system for the Newton correction

Y () - Y(-1). As already observed, direct solutiontiois Newton systemcan be extremelycostly and
transformation to block-diagonal form reduces computational costs considerably. In order toachier
still greater reduction of the computatioaimplexity we follow an alternativeapproachby applying
aniterative linear solverto the Newton systemsn (2.1). This solveragainrequiresthe solution of
linear systems but thesesystemsare only of dimensiond. It is tunedto the RK structureof the
systemsn (2.1) and possesses lot of intrinsic parallelism.This Parallel Iterative Linear System
solver for RK methods (PILSRK method) is defined by

(1 - BOnY)(YGEv) - YGv-D) = - (1 - AORI) Y (VD) + CG-D),
(2.2) v=1 2, ..,T1,
cl-D) = (1- ADRI)Y (D) - R(YG-D),

whereY(:0) = Y(-1.1) and wherey (M) is accepted as the soluti¥R of the corrector equatioft..2).
The matrix B is assumedo be nondefectiveandto havepositive eigenvaluesNote that Cl-1) does
not depend om, so that theapplicationof the inner iteration processrequiresonly one evaluationof

the function R. The processeg2.1) and (2.2) may be consideredas the outer and inner iteration
processes.

In order to construct a suitable matrix\Be observethat the condition on the spectrumof B implies
thatwe canwrite B = QTQ1 with Q an arbitraryreal, nonsingulamatrix and T a lower triangular
matrix with positive diagonal entries. Hence, by performing the transformétish= (QDI)?(JEV) ,

we obtain

2.3) (1- Ton) (YGV) -YG6v-D) =-(1-A0h)YGv-D) +(@Qloncid, v=1,2, ..,

where A = Q1AQ andY(.0) = (Q101)Y(-D). If for agivenj, the transformednner iteratesy (.v)
convergeto a vector Y (i) , then the Newton iterate defined by (2.1) can be obtained from
Y() = (QUI)Y () . Given the matrix A, the PILSRK method(2.3) is completelydefined by the
matrix pair (T,Q) and will be denoted IBILSRK(T,Q). The representatiorf2.3) will be the starting
point for the construction of the matrix B.

Before discussingthe computationalcosts of the actual implementationof the Newton-PILSRK
method {(2.1),(2.3)}, we should specify timeatrix B. This will be the subjectof Section3. Details
on the computational complexity can be found in Section 4.2.
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Remark 2.1. In the first Newton iterations, it seems a waste to perform many ibenationswith the
PILSRK method,becausehereis no pointin computinga very accurateapproximationto Y (@), as
long as Y () is itself a poor approximationto Y . Likewise, in later outer iterations,we expectthat
only a few inner iterationssuffice to solve Y() from (2.1). In the extremecase,only one inner
iteration is performedin eachouter iteration. In such an iteration strategy,the Newton-PILSRK
iteration method {(2.1),(2.2)} simplifies to

2.4)  (1-B80R)(YD - YD) =-R(YGD), j=1,2, ... m

However, this processmay convergevery slowly in the first few outer iterations, and it is
recommendeckitherto use highly accuratepredictor formulasfor Y(©) or to introducea dynamic
iteration strategyso that when necessarysufficiently many inner iterationsin the first few outer
iterations are performed.

Notice also that the iterativ@ethodobtainedfrom (2.1) by usinga splitting of A into B andA-B is
identical with the iteration method (2.4).

3. Construction of the matrix B

Given the matrix A, the PILSRK method (2.2) is completely determined by the BatriQTQL. In
the constructionof B, the region of convergenceand the averagedamplification factors for the
iteration errors play a central role.

3.1. Convergenceregion of thePILSRK method
In order to analysethe region of convergenceor the PILSRK method, we considerthe error
recursion

(3.1) YV - Y0 = M(YGv-D-v®), M:=(1-Bon)2((A - B)DN).

We have convergence if the power® M the amplification matrix Mendto zeroasv - o, thatis,
if the spectral radiug(M) of M is less tharl. The eigenvalue®f M aregiven by the eigenvalueof
the matrix

(3.2) Z(2) := z(l - zB)'1 (A - B), Z:=h,

where runs through the eigenvalues of J. We Ealk {z: p(Z(z)) < 1} theregion of convergence
of the PILSRK method. Thushe methodconvergesf the eigenvalue®f hJlie in . If ' contains
the whole nonpositive halfplane, then the method will be callechvergent.

We shall call Z(z) the amplification matrix at the point z and p(Z(z)) the (asymptotic) amglification
factor at z. The maximum g#(Z(2)) in the left halfplane Re(& 0 will be denoted byp.

In [10] and [11] wherethe PDIRK and PTIRK methodswere analysed,t turnedout that strong
dampingof the stiff error componentsthat is, small amplification factors for error components
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corresponding to eigenvectors of J with eigenvalueklargemagnitudejs crucial for a fast overall
convergence. This leads us to require the matrix B to be sugh(#fed)) = p(l - B-1A) vanisheslf
we succeedh finding suchmatricesB, thenZ%(e0) = O, so thatwithin s iterations,the components
corresponding tf\| = o are removed from the iteration error (tban be verified by consideringthe
Schur decomposition of%»)).

As an example, let Q =l and let T be a diagonal matrigd@hatB = D. Lioen [13] showedthat for
the s-stage Radau IIA correctors witk 8, it is possibleto constructdiagonalmatricesD satisfying
p(l - D'IA) = 0 suchthatthe generatedPILSRK(D,l) methodis A-convergent.Thesematricesare
also used in the PDIRK methods studied in [10], and will therefore be called PDIRK matrices.
The nexttheoremdefinesa family of PILSRK(T,Q) methodsautomaticallysatisfying the condition
p(1 - B-1A) = 0.

Theorem 3.1. Let Q be an arbitrary, nonsingularmatrix and let B = QTQ1, whereT is the lower
triangular factor in the Crout-decomposition of:A Q1AQ. Then, the asymptotic amplification factor
vanishes at infinity.

Proof. Let TU representthe Crout-decompositiorof A . Then Q1z(x)Q = | - Q1B1AQ =
| - T-1A =1 - U is strictly upper triangular. Hencg{Q-1Z()Q) = p(Z(«)) = 0.4

The matrix B in the PILSRK methods characterized by this theorem does not necessarily have pos
eigenvalues and henadgesnot automaticallygenerateA-convergenimethods.This requiresspecial
transformatiormatricesQ. Let us againconsiderthe casewhere Q = |. Then, B equalsthe lower
triangularfactor in the Crout-decompositioof A, thatis, B equalsthe PTIRK matrix L derivedin
[11]. In [8], Hoffmann and De Swart were able to prdvatthe PTIRK matrix L possessepositive
diagonal entries for all collocation-based RK correctors with positive, distinct abscissas Bbdsat
positive eigenvaluesas required. Furthermore,numerical computationsin [11] showed the A-
convergence for a large number of RK correctors based on Gaussian quadrature formulas.
The aim of this paper is to derive A-convergent methods p(ith B-1A) = 0 for more generalpairs
(T,Q) thanthe PTIRK pair (L,I), andto find pairs(T,Q) suchthat we can a priori prove both the
positiveness of the eigenvalues of B and the A-convergence of the generated iteration method.
Let us choose Q such that 4 QlAQ = (; k|) is a (real) o-by-o lower block-triangularmatrix, of
which the diagonal blocks A kk are either one-by-oneor two-by-two matrices.If {k is a real
eigenvalue of A, therT,Qk =&k, and iféy + ink is a complex eigenvalue pair of A, then

~ & bk
(3-3)Akk:gck 28, - a B, b = - acl(a? - Zgac+ok?), =0, ok =VE2 + N2,

wherea and ck are free parametersin the following, K will denotethe set of integerswith the
property thatjx # 0 whenever kI K.
A natural choice for T now is
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Ou 0 O
21 T2 O O ... L o ._ 7 O ifk 0K, Tik=E&k otherwise,

%Zsl Zaz T3z O % OVk Wi

where y, vk and vk are free parameters witlh and vk assumed to be positive.

(3.4a) T:=

Theorem3.2. Let A have its eigenvalues in the positive halfplaneTIelzﬁQlAQ = (; k|) be lower
block-triangular, let the diagonal blocks be defined by (3.3) and let §)-b&(defined by (3.4a) with
(V2 - D)a - 2y%&k + 2ya Ok

(3.4b) uk =yak, W = 0Ok , W= —
y(ak? - 2&kak + ak?) y

wherey is a positive parameter. Then, for alleand ¢ the following assertions hold:

(i) The asymptotic amplification factor vanishes at infinity.
(i) B has positive eigenvalues ang # 1 it is nondefective.
(i) The PILSRK(T(),Q) method is A-convergent with= max{|1 - 2/(y2 + 1y1&kakl]: k O K}.

Proof. Let

3.5)2(2) =QZ@)Q=z(1-zT) (A -T), z:=h.

If T is of the form (3.4a), thenthe value of p(Z(z)) = p(Z(z) ) equalsthe maximumof the spectral
radiusp(Z kk(2)) of the diagonal blocks

(3.6) Z Kk := Z(l - ZT|<|()'1 (K Kk - Tkk)

of Z . Here, z kk vanishesif the underlying eigenvalueof A is real. Hence,in orderto achieve
p(Z()) = 0, we choosethe Tk with k 0 K suchthat the spectralradius of the corresponding
diagonal blocks §(z) vanishes at infinity.

We derive from (3.3) and (3.6) that the eigenvaljyesf Z kk satisfy the characteristic equation

O(ak-uk)z - Ck(1-zuk) bz E
(3.7) detg - =0
O (ck-vk)Z +lkvkz  (28k-ak-Wk)Z - (k(1-zwk) O

It is easily verified thafk = (k(z) vanishes at infinity if i vk and vk are defined according to (3.4b).
Hence,p(z kk(2)) vanishes at infinity which proves part (i) of the theorem.

Sincethe eigenvalueof B aregivenby (uk, wg) for k 0 K andby ¢k for k 0 K, andbecauseve
assumed/ > 0, (3.4b) alsoimplies that B haspositive eigenvalueand if y # 1 it is nondefective,
proving part (ii).

The characteristic equation (3.7) is solved by
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o) thatp(f(z) ) equalsthe maximumof the values|k(z)|. Since {k(z) is regularin left half plane
(provided that wand vk are positive), its maximum itine left halfplaneRe(z)< 0, to be denotedby
Pk, IS assumed on the imaginary axis. It is easily verified that

|28 - uk - wi] Y|
V(1 + wy2)(1 + w2y?)

(3.9) p(Z ki(iy)) = 12k(iy)] =

assumes an absolute maximum at y=y(uxwk)1/2 and that thenaximumvalue px of p(Zkk(iy))
is givenby px = |1 - 2&k(uk + wi) | = |1 - 2v(y2 + 1) %&kakl|, which is lessthan 1 whenever
Yék > 0. This proves part (iii) of the theorew.

The asymptoticamplification factor p is minimized for y = 1 and assumesthe minimal value
p = max{l - &kl k O K}. However, thenthe matricesTyk are defective (becauseux = wg).

Hence, T cannot be diagonalized, atitioughthe effective LU-costsarestill reducedby a factor s,

the Newton-PILSRK(T(1),Q) method shoubé consideredas a o-processomethod,ratherthanan
s-processor method. Fortunately, the asymptotic amplification factor géoiely with y, so thatwe

canremovethe defectnes®f T at the cost of a slight increaseof p. For example,for the method
defined by (3.4) we find foy= £ ,

(3.10) p=ma{1- 1 feakl kO K},

which is only slightly largerthanthe minimal value. For a detaileddiscussionof the computational
complexity of an implementation of the Newton-PILSRK{IT®) method, we refer to Section 4.2.

Remark 3.1. Whenfacedwith the problemof choosinga matrix T suchthat the eigenvaluesof the
matrlx Z(z) are of small magnltude it is temptingto minimize the magnitudeof the matrix factor
A-T occurring in the matrix @) defined by (3.5). Since

- o~ ~ ~ Oax-uk bk O
A -T:dlag(A 11- T11, ..., Aoo'Toc)’ Akk-Tkk = [ U
OCk-Vk 2&k-ak-Wk [

and because for givep,ahe magnitudeof the entry bk = - cc1(a? - 28kak + ak?) canbe madeas
small as we want, we are led to zero ttteer threeentriesof A kk - Tkk by settinguk = ak, Vk = Ck
and w = Xy - &. This still leavesjaas a free parameter which canusedto minimize by for given
Ck, to obtain @ = &k andby = -nk2ckl. However, substitutionof the parametersik, vk, Wk, & and
by into the characteristic equation (3.7) reveals that the nonzero eigenvalue is given by
Uk = €2 - axd)z2(1 - Zx) 2, which assumes the extreme vai(igx&k1)2 at infinity. Thus, we have
no A-convergencavhen A haseigenvaluesvhoseimaginarypart exceedsts real part. Since many
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RK methodsbasedon Gaussiamuadraturedo haveimaginary parts that exceedthe real parts, the
approach of minimizing the magnitude of AT is the wrong way to g¢.

Remark 3.2. The family of matrices T defined by (3.4) contains the special case where T is dgfined
the lower triangular factor in the Crout-decomposition of-AQ1AQ (see Theorem 3.1):

n& O
(3.11) Twk:=0O N0 if kOK, Tkk=&k otherwise.
Ock okl O

This expression is also obtained from (3.4) by seftingxok 1. ¢

We conclude this section with listing valueggffor a few Radau llAcorrectorsandfor the iteration
strategy PILSRK(T(7/8),Q) defined by Theorem3.2. In addition, we list the values of p for
PILSRK(D,I) with the PDIRK matrix D and for PILSRK(L,I) with the PTIRNMatrix L. The figures
in Table3.1 showthat on the basisof the asymptoticamplification factors, the PILSRK(T(7/8),Q)
approach is superior to PILSRK(D,l) and PILSRK(L,I).

Table3.1. Values ofpk for Radau IIA methods.

Iteration k s=2 s=3 s=4 s=6 s=8
PILSRK(D,I) - 0.26 0.40 0.52 0.72 0.90
PILSRK(L,I) - 0.18 0.37 0.51 0.70 0.86

PILSRK(T(7/8),Q) 1 0.19 0.35 0.45 0.57 0.64
2 0.06 0.21 0.33
3 0.03 0.12
4 0.02

3.2. Averaged amplification factors

Becausdhe matrix M in (3.1) is not expectedto be a normal matrix, the asymptoticamplification
factorp discussed in the preceding section only gives an indication of the speed of convergence af
quite large number of iterations and does not give insightietoonvergencdehaviourin the initial
phase of the iteration process. In fact, for largee have the estimate |VN| < k(S) [p(M)]V, where
S represents theigensystenof M, k(S) := |[§]| ||S'1|| is the conditionnumberof S, andwherewe
assumed that M has eigenvalues of multiplicity 1 (cf. Varga [20]). In order to analysentlergence
rate inthe first few iterations,one may useto the pseudo-eigenvaluanalysisof Trefethen(seee.g.
[18]). Alternatively, we mayesortto a well-known theoremof Von Neumann We shall follow the
latter approach.

Let the logarithmic matrix norm p[S] associatedwith the Euclidean norm be defined by
u[S] = % Amax(S+37), where SH is the complex transposedof S and Amax.) denotesthe
algebraically largest eigenvalue. Then, we have:
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Theorem3.3. If p[J] < 0, then|| MY|| < maxX || 2V(z)||: Re(z)< O} .

Proof. The proof is basedon a generalizatiorof a theoremof Von Neumann.Von Neumann's
theoremstatesthat, given a matrix J and a rationalfunction R of z which hasa boundedmaximum
norm || R || in the left halfplane, then [|R(H]|| R ||, provided thap[J] < O (seee.q. [7, p.179]). A
matrix-valued version of VohNeumann'sheorem,applyingto the casewhereR(z) is a matrix with
entriesthat are rational functionsof z, was provedby Nevanlinna[15] (seealso[7, p.356]). Since
MV can be considered as a matrix-valued function of J (see (3.1)), we apply the matrixveadiu
of Von Neumann's theorem with R(z) :=Vk), where

(3.12) M) =[(1-BOz) (A -B)D2)]" = 2201, z=H.
This leads to the assertion of the theogem.

This theorem motivates us to define libeal averaged amplification factor at the point z = hA andthe
global averaged amplification factor by

(3.13a) pV)(z2) := v\/" 2@ p() := max p(V)(2): Re(2)< 0}.

Note thatp(V)(z) approximates the asymptotic amplification fagt#(z)) asv — . Sincein the left

halfplane p(V)(z) assumes its maximum on tineaginaryaxis, we may restrictour considerationgo

the imaginary axis, so thaf¥) := max p(V)(iy): y = 0} .

Theorem 3.3 indicates that we mexpectfasterconvergencesp(V) is smaller.However, for small
numbersof iterations(say v < 5), p() will give a rather conservativeestimateof the speedof

convergencebecausdan somesenseit is a 'worst case'estimate.In orderto get insight into the
amplification of individual error componentspne may usethe local amplificationfactor p(V)(z). Let
us considererror component®f the form a [ v, wherea is an s-dimensionalectorandv is an
eigenvector of J with eigenvalie By observing thaMV(a 0 v) = (ZV(hA\)0OI) (a O v), it follows

that p(V)(hA) characterizeshe averagedtonvergencef the error componentorrespondingvith hi

andthatonly for largervaluesof v, whenthe error componentwith maximal p()(hA) has become
dominant,p(V) yields a quantitative estimateof the averagedconvergencerate. In the first few
iterations,whenall error componentplay their part, the L, norm of the local amplification factor
p(V)(z) providesmore realistic estimateghanthe Lo, norm. This suggestdo define a secondglobal
amplification factor:

-
@.130) 0 = | [pWy)]2 dy))™?
=0

y

We did not succeed in finding an approach which really miningi#@sHowever, byconsideringthe
estimate
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3.14) 12°@)| = 10z @ <x@QIZ @),

we seethat p(V)(z) < (K(Q)" Z (z) I v , which suggestshe separateminimization of the factors
K(Q) and|| Z (z) | . We distinguish twapproachesin the first approachwe chooseQ orthogonal,
so thak(Q) = 1. This carbe achievedby deflnlngA = Q1AQ by thereal Schurdecompositiorof
A, leading to a =&k and & = Nk (see e.qg. [6]). In a future paper, wleall elaborateon this case.In
the present paper, we analyse a second approach whelté%ﬁ(sn) ||is minimized and ther(Q). We
shall do this for the case whereia block-diagonal.

3.3. The block-diagona case

In the remainder of thisection,we shall analysethe casewhereA := Q1AQ is block-diagonaland

we shall use the still free parametersiad g for reducing the magnitudaf || V@) | However,we

first justify our choiceof a block-diagonarnatrix:& by consideringthe dampingof the stiff error
components. The following theorem presents a result on the amplification of the stiff iteration error

Theorem3.4. Let the conditions of TheoreB12 be satisfiedandlet A := Q1AQ be block-diagonal.
Then, the averagedamplification factor p(v)(z) = O(z(1-V)V) asz - o« and the averagedglobal
amplification factoro(V) is finite if v > 2.

Proof. For z » oo, it follows from (3.2) that
2(2) = (1- z18-1) 1 (I - B1A) = Z(w) + z1B-1Z(e0) + O(z2), Z(e0) = | - BLA

(B may be assumedo be nonsingularbecausat is requiredto have positive eigenvalues) More
generally, we have that

2’@) =5 (2()) "V oz,

i=1

where for any real x, ceil[x] denotes the first mteger greaterdzhmqualto X. We first showthatall
integer powers of 2¢) greater than Yanish. Sincez’ = QZ Q 1, we haveto showthatall integer
powers of - 4) greater than 1 vanlsh BecauséA® is block- dlagonal it follows frong3.4) that T

is block- dlagonalandfrom (3.5) that Z(z) is block-diagonalHence Z(oo) is block- dlagonaIW|th
dlagonal blocks | 4k (). Since by virtue of Theorem 3.2, these blocks have a zero spectral (Zdlus,
kk(°°)) vanishedor v > 2 (this caneasily be verified by consideringtheir Schur decompositions).
Consequently?i’ (o) itself, and henceVZ(oo), vanishedor v > 2. From the expansiorof ZV(z) we
now immediatelyobtainZV(z) = O(z1V) asz - . Substitutioninto (3.13) yields the resultof the
theorem ¢
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From this theoremit follows that the stiff error componentsnay be consideredas being removed
from the iteration error within two (inner) iterations.

If we only know that Z(«) hasa zero spectralradius, as in the caseof the PDIRK and PTIRK
matrices D and L, thenVf») vanishes fov > s. Hence,by virtue of (3.14) it is seenthatfor v > s
we have 2(z) = O(z1-ceil V/(s-1)]) as z-. «, sothatp()(z) = O(z(1-ceil [V(s-1))V) asz . e and
o) is finite only if A1 - ceily / (s-1)) / v is less than -1, i.e. ifs 2. Thus, by virtue of the block-
diagonalityof the matrix A , the PILSRK(T,Q) hasa much better stiff initial convergencehan the
PILSRK(D,l) and PILSRK(L,l) methods.

3.3.1. Reduction of || z V(2 || in the Ieft hafplane. We derive an estimatefor the maximumnorm of
UZV(Z)" in the left halfplane by using the inequal.14). SinceA := Q1AQ is block-diagonal Z
(2) is also block-diagonal with diagonal blockﬁkf(z) given by

z n (ax-Ui) (1-wic2) bi(1-wiz) 0
(1-wz)(1-Wz) O (ak-uk)Vkz + (a-Vk)(1-Ukz) brvkz + (Zk-ax-wk)(1-uz) O°

(3.15) Zk(2) =

Here, the parametersuk, vk and wg satisfy (3.4b). We first minimize the magnitude of
|2 ka(z)". Note that this canbe doneindependenthyof Q. Having found Z ik, we determineQ by
minimizing K(Q). The representation (3.15) suggests setiirgw and & = v, to obtain for K1 K

(2y€k - y2ay - ag)z
(1 -yakz)(y - akz)

Y- akZz

(3.16) Zk'@ =% @ P KT, %2 = @) =ad

Note that settingig= u in (3.4b) implies g = v.

Theorem3.5. Let the conditions of Theorem 3.4 be satisfied, let wy, |&| = y1(1 + y2)ak. Then,
with respectto the maximum norm, the averagedamplification factor satisfiesp(V) < [k(Q)]Vp,
wherep = max{|L - 2(y2 + 1y %ok 1|: k O K}.

Proof. Let for any matrix M(z) dependingon the complexvariablez, || M || denotethe maximum
norm of the functiofM(z) ||in the left halfplane, wherf. || denotes thenaximummatrix norm. It is
easily seen that

2y€k - Y20k - Ok ||2ka-v20(k-0(k |-kDK}

@17) IZ = maq | 2R -

By choosing |d = y1(1 +y2)0(k,~ we find lhat l z \J|| equalsthe asymptoticamplificationfactor p as
given in Theorem 3.2. Hej‘ﬂﬁz V||| <|IZ |||V =p . Obviously, we can never has#ict ineguality,
so thatwe concludethat || Z "||| = pV. Finally, it follows from (3.14) that ||| ZV|| = k(Q)[| Z V||| =
K(Q)pY. Thus, the averagedamplificationfactor p(v) is boundedby [k(Q)]Vp. This completeshe

proof of the theoreng.
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We remark that fov — o, we have the estimapéV) < p max[ k(S(2))]V: Re(z)< 0}, whereS(z)
representshe eigensystenof Z(z) and wherewe assumedhat Z(z) has distinct eigenvaluesThe
advantage of the estimate in Theorem 3.5 is that it holds fer all

3.3.2. Thetransformation matrix Q. In this subsection, wassumehatthe PILSRK methodsatisfies
the conditionsof Theorem3.5. In orderto obtainsmall amplificationfactors(p(V), a(V)) asdefined
by (3.13), we shall usethe freedomleft in choosingthe transformationmatrix Q. We specify our
approach for the case where all eigenvaligessing of A are complexrfi # 0), so that = s/2. Then,
the column vectorg; of Q are defined by

(3.18) (d2k-1. azk) = (Bioxk + By, -Bioxk + Bryk) Q. k=1, ... % s,

where Bk and &g are free parametersand xx = iyk representthe normalized eigenvectorsof A
correspondingwith §x * ink such that the first componentof yix vanishes.Here, Qg is a
transformation matrix satisfying (cf. (3.3))

y(y2ak - 2y&k + ai) []
~ U O ~ D YOk
(3-19a)Akk=Q(1DEk QKDQK,AkaZD 142 1+y? [].
Hk sk O O =Toc  2&k-vak ]
It can be verified that the matrix
(3.19b) Q . g v ° 5
. k = U U
V(Y2ak - 2v8k *+ ak) (1 +y2)(yak - £k) Y(v2ak - 2yEk + ak) [

satisfies (3.19a). By means of (3.18) and (3.19) it is easily verified that wietaia the matrix A =
Q1AQ. The advantage of this approach is that the resulting matrix Q has real entries.

For a given value of, the equations (3.19) ar{d@.20) determinea family of transformatiormatrices
Q with free parameters vectdds= (Bk), d = (k) andc = (&), where |g| = y1(1 +y2)a.

Table3.2. Global amplification factorp(V) for PILSRK methods.

4-stage Radau IIA corrector 8-stage Radau IIA corrector
V  PILSRK(D,l) PILSRK(L,)) PILSRK(T,Q)| PILSRK(D,l) PILSRK(L,)) PILSRK(T,Q)

1 3.60 0.59 1.95 19.83 1.03 3.51
2 2.48 0.54 0.98 11.52 0.94 1.88
3 1.64 0.53 0.76 7.74 0.91 1.30
4 1.16 0.53 0.66 5.55 0.90 1.19
5 0.96 0.52 0.61 4.08 0.89 1.09
9 0.72 0.51 0.53 1.86 0.88 0.87
10 0.69 0.51 0.52 1.72 0.88 0.85
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By a numerical search, we found in the case of the 4-stage and 8-stage Radau IIA corrqct(%“s for
the values (3.20) yielding a sequence of satisfactory small amplification fatiisee Table 3.2):

s=4B=(5-4), 5=(-1-5), a= £ (a1, a2 ,c=-22 a,

56
(3.20)
s=88=(-09, -2, -2, 1.1), = (L1, 0.3 03, -1.9),
_7 — 113
a= § (a11a21a3la4) ’ C_'R a.

Table 3.2 also listamplificationfactorsp(V) for the PILSRK(L,l) and PILSRK(D,|) methodsThis
table clearly shows that in termsof p(V) values, the PILSRK(T,Q) methodsare superiorto the
PILSRK(D,l) method.With respecto PILSRK(L,I), the p(v) valuesof PILSRK(T,Q) are smaller
only for large numbersof inner iterations.In fact, they becomeless than those associatedwith
PILSRK(L,!) only if v is greaterthan about 10. However, in terms of the o(V) values, the
PILSRK(T,Q) methodsare also superiorto the PILSRK(L,l) methodfor small numbersof inner
iterations, because in the case of PILSRK(Ta®», becomes finite fov > 2, whereasPILSRK(L, )
has infiniteo()-values for alv.

4. The Newton-PILSRK iteration process

In actual application of the Newton-PILSRK iteration process{(2.1),(2.2)}, the inner iteration
process will not always be iterated to convergence, so that the Newton iterately agproximately
computed.This will affectthe convergenceand stability behaviourand the computationalcosts of

integration method.

4.1. Overdl convergence and stability

The overall convergence of tivewton-PILSRKprocesss determinedoy the total numberof inner
iterationssummedover all outer iterationsin one step, that is, the effective amplification factors
associateavith the total iterationerror Y (V) - Y, are approximatelygiven by p() ando(), wherei
denotes the total number of inner iterations needed to corpiit® i.e. i = (j-1)r + v, andwherer
denotes the number of inner iterations per outer iteration. In order to see this, we define

(4.1) Y60 := Y(-10, G(A) :=F(Y +A4) - F(Y) - (103, N :=(I - AOhI)-LADI).

By a simple manipulation we find that

4.2) YGV) - Y = Mv(YGLD - Y) + h(l - MONG(YGLD - Yy),  j=1,..,m,

where M is defined in (3.1). Ignoring second-order terms, we may(¥6t1") - Y,)) =0, to obtain

(4.3) Y0V - Y = Mi(YOD-Y,), i:= (-1)r +v.
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From this relation,we seethatin a first approximationthe convergencdehaviourof the Newton-
PILSRK iteration processis approximately characterizedby the amplification factors. As a
consequence, Table 3.2 applies if we replabg i.

A secondfeatureof the overall performanceof the integrationmethodis its stability if the Newton
iteratesare not exactly computed.This aspecthas beendiscussedn [12], where the number of
iterations needed to achieve sufficient stability was computed. The values ofwni¢brthe method
becomesand remainsL-stabledependson the predictorused.For the extrapolation(EPL) predictor
defined byY (0) = (PO1)Y .1, where P is such thit0) has maximal order q = s-1, and the four-stage
and eight-stage Radau IlA corrector, these stable mr-vatedisted in Table4.1. In the caseof the
four-stagecorrector,the stablemr-valuesare acceptabldor all threeiteration strategiesput for the
eight-stagecorrector,only the Newton-PILSRK(T,Q)methodpossessean acceptablestable mr-
value.

Table4.1. Stable values of mr fo;:% :

Iteration method s=4 s=8
PILSRK(D,) 7 > 61
PILSRK(L,!) 4 > 43
PILSRK(T,Q) 5 14

Summarizing, we conclude that with respiecthe Newton-PILSRK(D,I)-basedhtegrationmethod,
the Newton-PILSRK(T,Q) method always generatesan integration method that has a superior
convergenceand stability behaviour.With respectto the Newton-PILSRK(L,I)-basedntegration
method, we conclude that the Newton-PILSRK(T,Q) method:

() damps the stiff error components much stronger for i < s (Theorem 3.4),
(i) bhas a better overall convergence for larger values of i (Table 3.2ywidplaced by i),

(i) is much more stable for the 8-stage corrector (Table 4.1).

4.2. Computationa costs
In an actualimplementationof the linear solver (2.2), we diagonalize(2.2) by a transformation
Y (V) = (Sa1)X(:V) to obtain

(4.4) (1 - $1BSOR) (X0W) - X(v-D) =- (I - STASThI)XGVv-1) + (S1O1CED),

where the matrix S'1BS is diagonal.For the PILSRK(L,l) and PILSRK(T({y#1),Q) methods,the
matrices SIBS and S corresponding to the 4-stagd 8-stageRadaullA correctorsaregivenin the
Appendixto this paper.In this Appendix,we also give a computer-prograntype descriptionof the
Newton-PILSRK iteration process {(2.1),(2.2),(4.4Hhd a specificationof the computationatosts
of the most important steps of the algorithm. Here, we present in Table 4.2 thwestéaler stepfor
s-stage correctors where s is even. In this talan@ G denote the average costsone component
of f and its Jacobian J, respectively.
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Table4.2. Total computational costs per step.

PILSRK(L)) | sd(5 o2 +‘1 Cy+d +2s) 2d(2 d? +‘1 Cy+d+2s) d(% o +‘1 Cy+d + 25)
& + 4mrsc¥(1 + =) + 8mrd2(1 + =) + 4mrd2(1 + <)
PILSRK(T(y#1),Q) + msd(s + ¢€- 2d) +2md(2s + (f:- 2d) +md(s+ @G- 2d)

sd(% a2 +4 cJ+d +2s)d(2 2+ +2d+4<,)d(3d2+‘1 cJ+d + 25)
PILSRK(T(1),Q) + 5mrsch(1 +25 ) + 10mrc?(1 + 2 + 8mrd(1 + )
+ msd(2s + €- 2d) +2md(2s + €- 2d) + md(2s + ¢- 2d)

The following conclusions can be drawn:

(i) Newton-PILSRK(L,l) andNewton-PILSRKT(y#1),Q) are equally expensive,

@) Ifmrisfixedandd>s %— G, then the costs are minimized forr =1,

(i) Newton-PILSRK(L,I) andNewton-PILSRKT(y#1),Q) are to be preferred aprocessors,
whereas Newton-PILSRK(¥=1),Q) is to be preferred on one or arprocessors.

5. Numericdl illustration

In this section, we compare the new Newton-PILSRK(T{/8),Q) method with the Newton-
PILSRK(L,I) method. In our experiments, we use the EPL predictor definteé precedingsection
and either the 4-stage or the 8-stage Radawdifectorwith constantstepsizesWe integratedthree
test problems taken frothe CWI testset[14]. In theseproblems,theinitial conditionwas adapted
suchthatthe integrationstartsoutsidethe transientphase.The first test problemis provided by a
problem of Schéfer (called the HIRE®oblemin [7, p.157]). It consistsof 8 mildly stiff nonlinear
equations on the interval [5,305]. Thecondtestexampleis the Pollution problemof Verwer [20].
The ODE system consists 20 highly stiff nonlinearODEson the interval [5,60], originatingfrom
an air pollution model. Outhird testproblem,the Ring Modulator originating from circuit analysis,
is a highly stiff system of 15 equations on the interval [§]18nd is due to Horneber [9].

The tablesof resultspresenthe minimal numberof correctdigits cd of the componentof y atthe
end point of the integrationinterval (i.e. at the end point, the absolute errors are written as
10cd). Negative cd-values are indicated with *. Table 5.1 leads us to the following conclusions:

() For fixed values of iz 3, theNewton-PILSRKmethodsalwaysconvergeand usuallyfind the
Newton iterate with high accuracywithin two inner iterations (in the case of the 4-stage
corrector, we even have convergence far ).
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(i) Comparing results for fixed values of mr reveals thatlris usually preferable(however,in an

actual implementation, m and r should both be determined dynamically, see also Remark 2.1)

(i) For r < 2 the Newton-PILSRK(T,Q) method is more robust than Newton-PILSRK(L,I),
particularly for the eight-stagecorrector,and approximatesthe Newton iterate usually much
better (the better cd-values produced by Newton-PILSRK(L,I) in the Pollution problers fr r
andm = 3, 4 is dueto 'overshoot'and doesnot meanthat Newton-PILSRK(L,I) producesa
better approximationto the corrector solution). The divergent behaviour is due to the
development of instabilities for small values of mr (see Table 4.1).

Finally, we remark that for the relatively difficiRing modulatorproblem,a parallelimplementation
of the Newton-PILSRK(L,I) methodon the four-processoiCray-C98/ 4256 shows a speed-up
ranging from at least 2.4 until at least 3.1 with respect to RADAUS in one-processor mgti#]{cf.
SinceNewton-PILSRK(T{#1),Q) is equally expensiveas Newton-PILSRK(L,1), the samespeed-
ups are expected for Newton-PILSRKY#1),Q).

Table5.1. Newton-PILSRK applied to HIRES with h = 15.

4-stage Radau llA corrector 8-stage Radau IlIA corrector
Solver r m=1 m=2 m=3 m=4 m=10 m=20 m=1 m=2 m=3 m=4 m=10 m=20
PILSRK(L,)) 1 * 30 48 51 73 79 * 8.2 99
PILSRK(T,Q) * 45 49 53 7.7 79 * 9.3 10.8
PILSRK(L,)) 2 * 43 49 53 81 79 * * * * 9.2 101
PILSRK(T,Q) 39 44 49 54 82 79 * 5.5 9.3 10.8
PILSRK(L,) 10 38 44 49 54 82 79 * 5.6 0 94 103
PILSRK(T,Q) 38 44 49 54 82 79 * 56 7.0 9.3 10.8

Table5.2. Newton-PILSRK applied to Pollution problem with h = 11.

4-stage Radau IIA corrector 8-stage Radau IIA corrector
Solver r m=1 m=2 m=3 m=4 m=10 m=20 m=1 m=2 m=3 m=4 m=10 m=20
PILSRK(L,)) 1 20 3.7 63 7.0 109 10.9 * 10.3 10.3
PILSRK(T,Q) 1.1 53 6.9 7.3 109 10.9 6.7 12.0 12.6
PILSRK(L,)) 2 46 57 75 85 109 10.9 * * * 8.0 10.3 10.7
PILSRK(T,Q) 49 57 6.7 79 109 109 * 2. 6 7.8 126 12.3
PILSRK(L,) 10 46 57 6.8 79 109 109 48 6.7 7.8 11.0 10.9
PILSRK(T,Q) 46 57 6.8 79 109 109 48 6.7 7.8 125 125
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Table5.3. Newton-PILSRK applied to the Ring Modulator with h = 3@k

4-stage Radau IIA corrector 8-stage Radau IIA corrector

Solver r m=1 m=2 m=3 m=4 m=10 m=20 m=1 m=2 m=3 m=4 m=10 m=20
PILSRK(L,)) 1 * 57 7.8 85 10.2 10.2 * * * * 86 9.1
PILSRK(T,Q) * 7.3 84 9.7 10.2 10.2 * * * 10.5 10.8 11.1
PILSRK(L,) 2 55 7.5 8.7 10.2 10.2 10.2 * * * 8.9 9.4 9.3
PILSRK(T,Q) 57 74 8.8 10.0 10.2 10.2 * 8.5 104 109 105 11.3
PILSRK(L,) 10 58 7.4 8.8 9.9 10.2 10.2 * 85 9.0 8.9 9.0 9.2
PILSRK(T,Q) 58 7.4 8.8 9.9 10.2 10.2 * 85 104 11.1 11.3 10.6
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A. Appendix: Costs of PILSRK

In this appendix we specify the costs of the implementations of PILSRK(L,I) and PILSRK(T(v),R). In
both methods the iterates satisfy the recursion

(I - 57'BS @ hJ)(XU) — X0y = (1 - $7'AS @ hJ)(XUr~D — XU™D)
XU 4 y(STTAQ DF(YY™D) 4 (E® )X,

Here, X, 1 = (S7'®@1)Y,_1, X0 = X010 xO) = (§-1xT)P(Y,_1), XU) = XU Y, = (SxI)X(™),
P(-) denotes the predictor operator, m the number of outer iterations and r the number of inner iterations.
For PILSRK(L,I) and PILSRK(T(y # 1),Q), the matrix S~!BS is diagonal, for PILSRK(T(1),Q), it is
block diagonal, with 2 x 2 lower triangular blocks containing identical diagonal entries.

We implemented this recursion as:

Yo=(e® Dy, Xo=(ST'®I)Y,
forn=1,2,...,N

(s1) LU = I — diag(S7'BS) ® hJ
Y(©) = P(Y,_1)
(s2) XO =(S-teny®
forj=1,2,...,m
(o1) R=XU"1_nS A NF(Y\U )~ (E® )X
(02) XY = x0Y _ (L)' R; (for ¢ odd)
(03) X = x0T _ (L)Y (R — by hJX D) (for i even)
forv=23,...,r
(i1) H=(1-S58"4S®hJ)(XU»-1) — X(G-D)_R
(i2) x0 = x0v=Y _ (LUt H; (for i odd)
(i3) X0 = x0r=Y _(LU) Y (H; — by hJXIY))  (for i even)
end
x) = x@r)
(04) Y@ =(S@ )X
end

Y, = Y(m), X, = X (m)

end

Here, N is the number of integration steps. The Jacobian is assumed to be updated every time step.
Notice that for PILSRK(L,I) and PILSRK(T(y # 1),Q) the matrix S~ BS is diagonal, so that one can
omit (03) and (i3) for this case, if one performs (02) and (i2) for all i. For PILSRK(T'(1),Q) we only need
o processors to perform the LU-decompositions in parallel, where ¢ is the number of complex conjugated
eigenvalue pairs. Here we assume that s is even, so o = s/2.

The following tables list the costs of the most important steps of this algorithm. As before, d is the
dimension of the problem. The average costs of one component of the right-hand-side function f and one
entry of its Jacobian J are denoted by C¢ and Cj, respectively. The Jacobian is assumed to be full. In the
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first column the computation that has to be performed is listed. The second column gives the number of
floating point operations required for this computation if only one processor is available. The sequential
costs of the compuation on ¢ and s processors can be found in the third and fourth column, respectively.
For reasons of simplicity, we did not exploit the lower triangul form of the matrix S in PILSRK(L,TI), nor
the block diagonal form of the matrix S~1AS in PILSRK(T(v),Q).

PILSRK(L,]) & PILSRK(T(v # 1),Q):

Computation Costs (flops)
on 1 processor on o pProcessors On § Processors

(s1) sd?(3d+1Cy+1) 2d%(2d+1Cy+1) P(Ed+105+1)

(s2) 2s2d 4sd 2sd

(o1) sd(2s + Cy) 2d(2s + Cf¢) d(2s + Cy)

(02) (Vs) 2sd? 442 2d2

(i1) 2sd(d + s) 4d(d+ s) 2d(d + s)

(i2) (Vs) 2sd? 4d? 2d2

(04) s2d 4sd 2sd

Total per time step | sd(2d? + £ C; + d+2s) | 2d(2d*> + £ Cy +d +2s) | d(2d? + £ C; + d + 2s)

+sdm(2d + 3s + C¢ +2dm(2d + 4s + Cs +dm(2d + 4s + Cy
+(r — 1)(4d + 2s)) +(r —1)(4d + 2s)) +(r — 1)(4d + 2s))

PILSRK(7(1),Q):
Computation Costs (flops)
on 1 processor O 0 ProCessors On § Processors
(s1) sd?(3d+1Cy+1) 2d?(Ld+ 1 Cy+1) PEd+10+1)
(s2) 2s2d 4sd 2sd
(o1) sd(2s + Cy) 2d(2s + C¢) d(2s + Cy)
(02) sd? 242 2d?
(03) 2sd? 4d? 4d?
(i1) 2sd(d + s) 4d(d + s) 2d(d + s)
(i2) sd? 2d2 2d2
(i3) 25d? 4d? Ad?
(04) 25%d 4sd 2sd
Total per time step | sd(3d? + ¢ Cy+d+2s) | 2d(d® + £ Cy +d+2s) | d(2d® + ¢ Cy + d + 2s)
+sdm(3d +4s + Cy +2dm(3d + 4s + C¢ +dm(6d + 4s + Cy
+(r — 1)(5d + 2s)) +(r — 1)(5d + 2s)) +(r — 1)(8d + 2s))
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B. Method parameters

In this appendix we specify the method parameters of the PILSRK(L,I) and PILSRK(7'(7/8),Q) methods
for s = 4 and s = 8. We list the matrices S™'BS and S, which are needed for the implementation of
formula (4.4). As additional information we provide B, the matrix that approximates A.

PILSRK(L,I):
s=4
diag(S™'BS) = ( 0.1130 0.2905 0.3083 0.1176 )

1.0000 0 0 0

s — —1.3205 1.0000 0 0

- 2.1594 —27.2263 1.0000 0

—119.8988 —66.8265 2.3158 1.0000

0.1130 0 0 0

B — 0.2344 0.2905 0 0

- 0.2167 0.4834 0.3083 0

0.2205 0.4668 0.4414 0.1176

s=28
diag(S_lBS) = ( 0.0288 0.0865 0.1345 0.1624 0.1654 0.1427 0.0976 0.0308)

1.0000 0 0 0 0 0 0 0
—1.0694 1.0000 0 0 0 0 0 0
1.0486 —3.2354 1.0000 0 0 0 0 0
g - —1.0718 7.7636 —8.1101 1.0000 0 0 0 0
- 1.1852 —19.0240 62.0182 —88.1175 1.0000 0 0 0
—1.4887 62.7656 —0.1720e4 —0.1141e4 11.3694 1.0000 0 0
2.4708 —908.4889 —0.9526e4 —0.4070e4 39.2573 4.7028 1.0000 0
—88.2154 —2.0073e3 —1.5590e4 —0.6097e4 58.3751 7.4699 2.0027 1.0000
0.0288 0 0 0 0 0 0 0
0.0617 0.0865 0 0 0 0 0 0
0.0553 0.1553 0.1345 0 0 0 0 0
B — 0.0583 0.1424 0.2261 0.1624 0 0 0 0
- 0.0567 0.1483 0.2106 0.2619 0.1654 0 0 0
0.0575 0.1454 0.2171 0.2471 0.2572 0.1427 0 0
0.0571 0.1467 0.2144 0.2522 0.2460 0.2124 0.0976 0

0.0573 0.1463 0.2151 0.2510 0.2483 0.2073 0.1338 0.0308



PILSRK(T(7/8),Q
s=4
diag(S™'BS) = (  0.1521 0.1986
2.9526 0.3159
s —7.2663  —0.8756
a 3.4202 0.9493
34.8970 4.3753
0.1096  —0.0430
B 0.2085 0.3064
- 0.2484 0.0823
0.2596  —0.0515
s=28
diag(S™'BS) = (  0.0679 0.0886 0.0768 0.1003
0.1430 0.0149 0.0051  —0.0013
—0.2667 —0.0284 —0.0306  —0.0006
0.4848 0.0540 0.0915 0.0083
5 _ —0.8881 —0.1065 —0.0372  —0.0099
- 1.1326 0.1628  —0.9048  —0.0996
1.6603 0.1105  —0.2681 0.0933
—5.9025  —0.7539 7.6108 1.0254
—8.9828  —0.9978 14.1609 1.6360
0.0507 —0.0264  —0.0147  —0.0077
0.0295 0.0856 0.0153 0.0162
0.0513 0.1372 0.0952  —0.0314
B 0.1601 0.0455 0.0662 0.1458
- 0.2072 0.0253 0.0569 0.0462
0.2495  —0.0151 0.0590 0.0185
0.2568  —0.0281 0.0923  —0.0159
0.2653  —0.0325 0.0873  —0.0924

):

0.1737

1.5325
—1.0553
—10.7997
—42.9039

0.0268
—0.0671
0.2573
0.4219

0.0823

—0.0208
0.0195
—0.0050
0.0975
0.2347
—1.0125
—T7.3467
—14.1886

0.0061
—0.0104
0.0170
—0.0342
0.1460
0.1461
0.0405
0.1092

0.2269 )

0.0276
—0.3113
—2.1349
—5.8960

—0.0080
0.0211
—0.0142
0.0780

0.1074

—0.0029

0.0034
—0.0010

0.0101
—0.0050
—0.2481
—1.0128
—1.6730

—0.0034
0.0059
—0.0096
0.0201
—0.0312
0.0202
0.0418
0.0499

0.0849

0.0180
—0.0182
0.0205
—0.0112
—0.1102
—1.3834
—6.3367
—12.2810

0.0022
—0.0037
0.0059
—0.0127
0.0131
0.0634
0.2095
0.2190

0.1109 )

—0.0001
—0.0002
—0.0008
—0.0072
—0.0522
—0.2826
—0.8981
—1.4897

—0.0008

0.0014
—0.0022

0.0048
—0.0034
—0.0262
—0.0688
—0.0340

24




