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Waveform Relaxation Methods for
Implicit Differential Equations

P.J. van der Houwen & W.A. van der Veen
CWI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

We apply a Runge-Kutta-basedvaveform relaxation method to initial-value problems for implicit
differential equations. In the implementation of smeéthods,a sequencef nonlinearsystemshasto be
solved iteratively in each step of the integration process. The size ofkistemsincreasedinearly with
the number of stages of the underlying Runge-Kutta metiesd]tingin high linear algebracostsin the
iterative process for high-order Runge-Kutta methénsur earlierinvestigationsof iterative solversfor
implicit initial-value problems,we designedan iteration methodin which the linear algebracosts are
almostindependenbf the numberof stagesvhenimplementedon a parallel computersystem.In this
paper, we use this parallel iteration process in the Runge-Kutta waveform relaxation meglaoticufar,

we analysethe convergenceof the method. The theoreticalresults are illustrated by a few numerical

examples.
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1. Introduction
Consider the initial-value problem (IVP) for the implicit differential equation (IDE)

L1t y,y) =0, bst<tens Y, @OR%

It will be assumed that the initial conditiof@ y(tg) andy'(tg) areconsistentandthatthe IVP hasa
unique solution. Furthermore, defining the Jacobian matricesd (t,u,v) andJ := - @y(t,u,v), it
will be assumed that in the neighbourhood of the solution, the charactegjistitondefAK - J) = 0
associatedvith the linearizationof (1.1) hasonly zerosin the nonpositivehalfplane. The pair of



matrices{K,J} will be saidto be a stable pair if they satisfy this requirement.In the convergence
analysis of iteration methoder solving the numericaldiscretizationof (1.1), the propertyof matrix
pairs will play a central role.

A large class of numerical discretizations of (1.1) is defined by

(1.2)yn = (&' Y, ®(etn.1 +ch,(hIA-101)(Yn - (EONYn-1), Yn) =0.

Here,yn is the numericalapproximationto the exactsolution value y(tn), A and E denotes-by-s
matrices,es is the sth unit vector, h is the stepsizety, - th-1 (to be assumedonstantin the analysis
presented in this papef),denotes the Kronecker product, dnid the d-by-d identity matrix (in the

following, we shall use the notation | for any identity matrixgditmensionwill alwaysbe clearfrom

the context). The somponentsy i of the sd-dimensionastagevectorY ,, representpproximations
to the exactsolution valuesy(th-1 + cih), wherethe ¢; are the componentsf the abscissavector

¢ = (¢) andwherecs = 1. Furthermorefor any pair of vectorsY 'y = (Y'n-) andYp = (Ym), we

define the function

(1.3) ®(et +ch,Y'nYp) = (ot + GhY'r,Y ni)).

The method(1.2) is completelydefined by the triple {A,E,c}. We remarkthat (1.2) reducesto a

(stiffly accurate) RK method for IDEs if A equals the Butcher matrix of the RK methedAe, and

E :=(Q.,...0,€), e being the s-dimensional vector with unit entries (see [4]).

In [8], parallel iteration methods for solving the stage vexipirom the nonlineasystem(1.2) have
been proposed.In this paper,we want to combine these parallel iteration techniqueswith the

waveformrelaxation(WR) approachThe resultingnumericalsolution methodshavea considerable
amountof intrinsic parallelism. However, the price to be paid is a decreaseof the speed of

convergence of the iteration methodihis paperstudieshow the convergencef the WR methodis

influencedby the numberof WR iterations,the number of modified Newton iterations, and the

number of inner iterations (for solving the linear Newton systems).The theoretical results are

illustrated by a few numerical examples.

2. WR methods
The derivation of WR methods starts with representing the IDE (1.1) in the form

DYt Y.y, y,y) =0, b<St<tend Yy ¢ ORY,

where Y(t, u', v', u, v) is a splitting function satisfying Q(t, u’, u’, u, u) = @, u', u). This
splitting functionis chosensuchthat the JacobiarmatricesK™ := dy/du’ and J* = - a/du havea
simple structure, so that, given an approximationy(k-1) to the solution y of (1.1), a next
approximatiorny(®) is more easily solved from the system



2.2) Y(t, y'®, y'k), y®, ykD) =0, g<t<teng yK,ykD, gy ORY

thany is solved from (1.1)Here, k = 1, 2, ..., q, andy(0) denotesaninitial approximationto the
solution of (1.1). The iteration process (2.2) is catledtinuous WRteration with WR iteratesy(K).
Such iteratiorprocessesvereintroducedin Lelarasmed9] andLelarasmeeRuehli & Sangiovanni-
Vincentelli [10]. For linear problems, its convergence has been extensively studied in [11].

In the caseof explicit differential equations(i.e. K = K* = 1), a popularchoicefor the splitting
function is such that the matriX s o-by-o block-diagonal (block-Jacobi WR method). Theach
iteration of the WR method(2.2) requiresthe integrationof o uncoupledsystemsover the interval
[to.tend (note that these integrations can be done in parallelmocessors). In the IDE case £),
we obtain a block-JacoM/R methodif both J* andK* are o-by-o block-diagonal As an example,
we consider the case where (2.2) is of the form

Pa(t, u'®), y'k-D), u®), ykD) =0, p<t<teng u®,pp ORI,
(2.2')
Wo(t, v, y'kD) v, y(k-1) =0, p<t<teng VK, pp ORI

Here, d + dp = d andy = (uT,vT)T. Obviously,K* andJ* areboth 2-by-2 block-diagonal More
generally, wheneverKand J areboth o-by-o block-diagonalwe find a setof o subsystemsvith
the generic form

(2.3) Y(t, 0, x(k1), y(9, x(k-1)) =0, 1<t teng

wherex(k-1) is definedby the o subsystemsolutionsof the precedingWR iterationandy(k) is the
new subsystem solution. For further details we refer to [2, p.276 ff.].

The convergencef the continousWR iteration (2.2) is faster as the integrationinterval [to,tend is
smaller. In fact, for ordinary differential equations (ODESs) which aris&ferl, andfor sufficiently
smooth splitting functiong), we have the well-known estimate

100 -y 150 max jpyop -y |,

where L is a constant depending on $ipétting function (for example for the standardestequation
defined byp =y' - Ay with splitting function) = u' - Av, we havelL = |A|). This estimateindicates
that convergence is improveddh- to is small. Therefore we do not apply the WR methodon the
whole interval [p,tend, but successively on a number of smaller subintervals (also eatddws of
lengthwh wherew is a usually small integer and h the stepsize.



2.1. DiscreteWR iteration
Let us integrate th&/P for (2.2) numericallyby the step-by-stepnethod{A,E,c} definedin (1.2).
Introducing the residual function

(2.4a) R(U,V,X) := W(etn.1 + ch,(h-2A-101)(U - (EONV),(h1A-101)(X - (EDN)V),UX),

anddividing [to,tend into subintervals(or windows) [tk .tk w+w], We obtain on [tke,tkw+w] the
scheme

(2.4b) for k=1toq
Y ko® 1= Y@
for n =kw+1 to Kwtw
solve Yn( from R(YnK),Yn1K),Y k1) =0,
set  ypK = (esTONY K.

Here,yn(, Y(K), andW¥ arethe analoguef y,, Y, and® occurringin (1.2). The scheme(2.4)
will be called thediscrete WR iteration processth (discrete) WR iterategn(K) andyn(K).

If (2.4) convergeson all windows as q — o, then Yn(@ convergesto the solution Y, of
R(Yn,Yn-1,Yn) =0, that is, to the stage vectdp, defined in (1.2). Asa consequencegs'0I1)Y (@)
approximateghe solution of (1.1) at t, with orderp in h, p beingthe order of accuracyof the
underlying method (1.2).

The iteration scheme(2.4) has a certain amount of intrinsic parallelism, becausefor a given
subinterval [fe,tkw+e] and given k, theo iterates{ Y xo+1(K), Y21, ..., Y kre®H1-®} can
be computed in parallel (parallelism across the steps within a window,gsd&4] and[1]). Hence,
effectively, the subinterval[ty ),k w+w] doesnot require the computationof qw iterates,but only
g+w-1 iterates, so that the numberedfiective(or sequentigl WR iterationsper stepis 1 + w1(g-1).
Here, each iterate has dimension sd. Note that this holds for any splitting fupction

There is an additional amount of intrinsic parallelism if the splitting funafios suchthat J* andK*
areo-by-o block-diagonal. In such cases, the IVP can be decoupled into acsstibbystem®f the
form (2.3) eachof which can be integratedby the method{A,E,c} definedin (1.2). Sincethese
integrations can be done concurrently, the strategy described above can be applibdubsystem.
Thus, the effective costs per step reduce to the computation @fi{gq+1) WR iteratesof dimension
sd', where d is the maximal dimension of the subsystems.

2.2. TheNewton iteration process

In an actualapplicationof (2.4), eachtime steprequiresthe solution of Yx(K) from the (nonlinear)
systemR (Y n(K),Y n-1(K), Y ,(k-1)) = 0. Given the WR iterationindex k andthe time stepindex n, we
shall use the following iteration process:



(2.5) Y *O =y kM,

forj=1tom
solveY ki) from  No(Y pki) - Y p(ki-1)) = - h(AOI) R(Y ptki-1)Y 1(K)Y (k-1,m)),

where N is the (modified) Newton matrix
(2.6) Ng := IOK* - AOhJ.

Here, the Jacobian matrice$ &nd J of the splitting function ) are both evaluatedat the steppoint
th-1. The modified Newton process (2.5), will be assumed to be convergent.

The combination of the WR iteration method (2.4) #r@modified Newton method{(2.5),(2.6)} is
a nestediteration processcontaining four loops with indicesk, k, n andj. The three iteration
parameters), w, and m determinethe rangeof the indicesk, n andj. The number of effective
modified Newton iterations (i.e. linear system solves) per step in {(2.4),(2.5)} is given by
m(1 +wl(g-1)).

Remark 2.1. In practice,it may be an efficient strategyto performonly a few Newton iterations,
because the WR itera¥g,(K) may still be far awayfrom the solutionY ,, of (1.2). Hence,it seemsa
waist to perform many Newtoiterationsfor computinga closeapproximationto Y n(K), which itself
is a poor approximation té,. In the extreme case where m = 1, the method {(2.4),(2.5)} reduces tc

(2.7)for k= 1to q
YooK =Y ko@D
for n =kKw+1 to Kw+w
solveY n(K) from  No(Y (K - Y(k-1)) = - h(AOI) R(Y n(k-1),Y 1KY n(k-1))
set WK = (esTONY K.

A comparisonwith{(2.4),(2.5)} showsthat in (2.7) we have a more frequentupdating of the
righthand side, so that it is expected tfa¥) showsa betteroverall convergencehan{(2.4),(2.5)}
with m > 1, thatis, for constantgm, the accuracyis expectedto be bestfor m = 1. However, it
should also b@bservedhat small m implies more frequentcommunicationwvhenimplementedon a
parallel computer system, so that givtaa numberof WR iterationsq, the effectivecostsfor m =1
and m = 2 or m = 3 may well be compara#le.

Let us considerthe casewhere the matricesKk™ and J° are o-by-o lower block-triangularmatrices
(K*ij) and(J'jj). In order to see the amount of parallelism inheterthe resultingmodified Newton
matrix we reorderthe rows and columnsin Ng. Let the partitioning of the vector y in (1.1)
corresponding to the blocK&*j;) and(J"jj) be denoted by = (uT,vT, )T and let us replacethe

sd-dimensional vector§ in (2.5) by permuted vectows = PY := (UT,VT, )T whereP is such



thatU, V, ... are stage vectors associated witl, ... in the sameway asY is associatedvith y.
Then the permuted version of the linear system in (2.5) becomes

(2.5 No(¥ ok - ¥ nki-D) = - RhADNR(Y n*iD,Y 1100, Y okLm), Ng:= PNoP-L

It is easily verified that for any matrix C and any o-by-o block matrix M = (Mij), the matrix
P(CDM)Pl becomes a-by-o block matrix with entries OM;;. Hence,

_ ElDK*ll-ADhJ*ll O E
(2.6") No:=(0K") - (ADTj) = 510K 21 - ADhS 21 10K 22- ADKT 22 ... -
0 .0

This expression shows that solving (2.5) hyiract methodrequiresthe LU decompositiorof the o
diagonal blocksIK"ji - AOJ'ji. Hence, there are LU decompositionso be performedwhich can
all be donein parallel. The maximal dimensionof the matricesto be decomposeaqualssd’, d*
denotingthe dimensionof the largestblocksin K* and J*, so that the effective LU costson ¢
processors is (fsd)3), each time the matrixg\n (2.5) is updatedApart from these LU costgach
modified Newton iteration requires the evaluation of the function R and a forward/backward
substitution. The evaluation B can again be distributed ow@iprocessors.

2.3.Iterative solution of the Newton systems

The LU decompositionsieededn the modified Newton processmay be costly if d* is still large.
Therefore, the linear Newton systemg2.5) will be solvediteratively by an inner iteration process
(in this connection, we may interpret the Newton process {(2.5),(2.6)} astaniterationprocess).
We shall use the iteration method

(2.8) UO) := v k-1
Cki) := NoY n(ki-1) - h(ADO1) R(Y nki-1),Y .1(K), Y (k-1,m)

forv=1tor
solveUM) from  N(UW) - U(v-1))= - NgU(-1) + ki)

wherethe iterationmatrix N is chosensuchthat the linear systemfor the inneriterateU(V) is easily
solved and where r is chossnchthat U(") is an'acceptableapproximationto Y (k). Evidently, if
(2.8) converges as o, thenU() converges tdhe solutionY h(ki) of (2.5) irrespectivethe choice
for N. However, as wavill seein the experimentsit is possibleto chooseconvenient'matricesN
such that in amctualcomputationone or two inner iterationsare sufficient (seeSection4). In fact,
we shall define N by

(2.9)N := IOK* - TOhJ,



whereT is lower triangularwith positive diagonalentries(cf. [7], [8]). In orderto seethe intrinsic
parallelism of the inner iteration process, we proceed as in the preceding Fegaiorassuminghat
K* and J are both lower block-triangular, we obtain the (permuted) iteration matrix

_ ElDK*ll-TDh\Tll @) %
(2.9 N :=(10K%) - (TOT) = G10K* 21 - TOhT 21 10K 22- TOhT 22 ... -
0 .0

Hence, (2.8) requires the LU decompositafrthe o matricesl JK*jj - TOJ"ji. But, sinceT is also
lower triangular, the LU decompositionof each of these matrices falls apart into the LU

decompositiorof the s matricesK™j; - TjjJ*ii, j =1, ..., s, which canall be donein parallel. The
maximal dimension of the matrices to be decomposed edyais ttiat the computationacomplexity
is reduced to ({d*)3), providedthat so processorsre available(if only p processorsreavailable,
with p < g, then effectively, the computational complexity is abo(goP-1(d*)3)). Apartfrom these
LU decompositions, each inner iteration again requires a forward/backward substitution.
Furthermore, by diagonalizing T by a Butctemsformationthe forward/backwardsubstitutioncan
be distributed over s processors.If K* and J° are both block-diagonal then even the
forward/backward substitution can be distributed o@gprecessors.

3. Convergenceresults

In this section, we study the convergence of the inner iteration mgt&)cand, for linear IVPs, the
convergencef the (discrete)WR iterationmethod(2.4). We recall that the outer iteration process,
that is, the modified Newton process (2.5), is always assumed to be convergent.

3.1.Theinner iteration method
The convergence of (2.8) can be studied by deriving the error recursigtYfery n(k.), i.e.

(3.1) UMV - Y (ki) = My (U(V-1) - Y p(ki)), Mg := (IOK* - TOhT)-L((A-T)OhT).

For convergence, the spectral ragiiiél 1) of M1 should be less than 1. In [8], amplificatioratrices
of the type M have been analysed and led to the following definition and convergence theorem:

Definition 2.1. Let
(3.2)Z(z) =41 - zT) LA -T).

Then, B(A) is the set of lower triangular matrices T such thatspectrumof Z(z) is within the unit
circle for Re(zx 0.4

Theorem 3.1.Let N be defined as in (2.9)ith T O B(A). Then,theinneriterationprocesg?2.8)
converges for all h > 0 if, and only {fK*,J'} is stable#



For the construction of lower triangular matrices T that aB(/), we refer to [7].

3.2.The discrete WR iteration method

The convergence of discrete WR methods of RK type of the formh@sxtensivelybeenstudied,

in particularfor the ODE casewhereK = K* = | (seee.g. [5], [2], andthe referencesn [2]). For

linear problems,wheresecond-ordetermsin the error recursioncan be ignored, the convergence
analysisis quite straightforwardIn this section,we give a brief derivationof a few convergence
results.

From (2.4) and (1.2) it follows that for linear problems the WR iteration ¥g&} - Y, satisfiesthe

recursion

Yn®K)-Yn= MZ(Yn(k'l) } Yn) + M3(Yn-1(k) - Yn-l)y
(3.3)

Mz = Ng2(1IO0(K* - K) - AOh(J - J), Mz := NgX(ECK), Np:=IOK* - AOhJ.

This recursion is of a similar form as the error recursion of the PDIRKAS GS naathbgedn [6]
and can be represented as

M2 O O O ...

%kal(';)'YleE Uy, M, O O E

(3.4) e = GO, g = ko2l - Y2 o _Lyav, MgM, M, O g
My Ma2My MaMa Mj ...

K(A)+U)(k)'YK(L)+(A)E 3_ 2 3_ 2 3 2 _2 i

Hence,we haveconvergencdf the spectralradiusp(Q) of Q is lessthanl, i.e. if p(M2) < 1. An
estimatefor p(M2) can be obtainedalong the lines of a similar approachas in [8]. Theorem3.2
presentsconditionsfor convergenceusing the logarithmic matrix norm p[.] associatedwith the
Euclidean norm ||.|i,e. for any squarematrix S, we havep[S] = % Amax(S+31), whereSH is the
complex transposed of S ahglaxy(.) denotes the algebraically largest eigenvalue.

Theorem 3.2.Let the IVP (1.1)be linear, let the spectrumo(A) of A bein the positive halfplane,
and define (if K is nonsingular)

(3.5)K =(K*)1K, J:=(K*)1, T :=(K")LJ.

Then,the WR iterationprocesq2.4) convergesf one of the following threeconditionsis satisfied
foralla O o(A):

(3.6a) [[(K-K")-ah(-J)|| < -u[-K" +ahT],

- hpu[3*], K* nonsingular,

@60) (K - -and -3y < 22



Re()

al u[Jd*] <o, K* = K, K* and J nonsingular.
a

(3.60) || -q<

Proof. Let the eigenvectorsand eigenvaluesof M2 be denotedby allw and i , wherea is an
eigenvector of A with eigenvalwe Then,

(3.7) (K* - ah) {(K* - K) -ah(T - HYw = i w,
so that
p(M2) < [[K - K*) - ah(d - )| [|(* - ahd) |

By virtue of a property of the logarithmic norm, we have for any nonsingular, commgaiteix C with
H[-C] < 0, the estimatel|CY| < - (u[-C])-L. Hence,if u[- K* + ahJ] < 0, then||(K* - ahJ)}|| <
- (u[-K* + ahJ])-L. This leads to condition (3.6a). Note that hefdskallowed to be singular.

If K* is nonsingular, then we may write

p(M2) < |]@2 - h3*) Y| Jlo-X(K -1y - h@ - 3]}

Proceeding as above, we derive (3.6b).
Finally, we consider the case whereé K K andwhereboth K* andJ* arenonsingular.From (3.7)
we derive the inequality

p(M2) <[|( - ah3*)H(ah3")|| [1O(@) ™3 - ]|

In this case, we use a theorem of Von Neumann. Von Neuntaeolemstatesthat, given a matrix
X with u[X] < 0 and a rational function R of z whichtisundedin the lefthandhalfplaneRe(z)< 0,
then with respect to the Euclidean nothe value of ||R(X)||is boundedby the maximumof {|R(z)|:
Re(z)< 0} (see e.g. [4, p.179]). Thus, assuming q.hze{ﬁ *] < 0, condition (3.6¢) follows from

(- aha®)H(ahd %)< T8, Jza(d - )] Re@)

Let us comparethe convergenceonditionsof this theoremfor the particular casewhere K* = K.
Then (3.6) simplifies to

1
(38.7a) ||3-J|| < h_|0(| u[-K + ahJ],

Re(@)
hla[?
Re()
o]

(3.7b) ||K13-3)|| <

-u[K-1J], K nonsingular,

(3.7¢) || )1 - | < , U[K-1J] <0, KandJnonsingular.



1C

The conditions (3.7a)3.7b) and (3.7c) respectivelyprovide an absoluteestimate a scaledabsolute
estimate and a relative estimate for the difference between) .aNdte that condition (3.7c) implies
unconditional convergence with respect to h. For example, for the four-stagelRadawrector,we
haveunconditionalconvergencsf || (J*)'lJ - I'|| < 0.56. If A hasits eigenvaluesn the positive

halfplane, then condition (3.7b) shows that unconditional convergenceis also possible if
|| K- 3) || <-uKAT].

4. Numerical experiments

The crucial aspectof the iterationprocess{(2.4),(2.5)}, is the convergencéehaviourfor splitting
functionsy for which the matrix Ng allows a fast solution of the associatedinear systems Equally
crucial is the effect of the number of inner and outer iterations r and m, and the windovedength
In this section, we illustrate the performance for a few test problems.

For the predictor we chogbe 'last steppoint’ formula Y (©) = eyn.1, andwe usedthe four-stage
Radau IlA corrector whose Butcher matrix is (within 14 digits) given by

11299947932316-.04030922072352 .02580237742034 —.0099046765073

_ %23438399574740 .20689257393536 - .04785712804854 .01604742280652

- E21668178462325 .40612326386737 .18903651817006 —.02418210489983 |
122046221117677 .38819346884317 .32884431998006 .06250000000000

A

Following [7], we choosefor the matrix T the lower triangularfactor L of the Crout decomposition
LU of A, i.e.

11299947932312 0 0 0
ANT=L= 23438399574745.29050212926461 0 0 E
4DT=L= 21668178462320.48341807916606.30825766001501 0 E

122046221117877.46683683945825.44141588145851.1176470588235

This choice implies that the amplification matrix Z(z) defined in (2.1) becomes strictly wigpegular
atinfinity, i.e. Z() = I - T-1A = | - U. As a consequencehe stiff iteration error componentsare
strongly damped in the iteration process. Moreover, we verified numerically that the Thgitven in
(4.1) lies inB(A). Hence, it follows from Theorem 3.1 that for each k ptite inner iteratesU(V) in
{(2.8)} unconditionally converge as - o whenever the pa{fK*,J'} is stable. Note that therern®
needto give the entriesof T with extremeaccuracy.As long as T lies in B(A), convergencds
ensured (see Definition 2.1).

In all experiments, constant stepsizes have been used (if needsdhptedhe initial conditionsuch
that the integration starts outside trensientphase),andthe matricesKk andJ were updatedin each
step. We recall that per update, the effective LU costs are O((d*)3), where d* is the maximal
dimension of the diagonal blocks in the matricésakd J.
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For given numbersf WR iterationsq, outeriterationsm, inner iterationsr, andgiven window size
w, the tables of results present the minimal numbepbokctdigits cd of the component®f y at the
end point t =dnqof the integration interval (i.e. the absolute errors are written-6@.1¥e recall that
the total number of effective inner iterations per step is givegay= mi(1 + w1(g-1)), which may
serve as an estimate fibre effective coststhat are additionalto the LU-costs. For the small window
sizes used in practice and the usually large number of WR iterations nesdéaetthe IVP, we may
approximately setdia1= mrowL.

4.1. HIRES problem of Schafer

Ouir first testproblemis providedby the HIRES problemgivenin [4, p.157] which originatesfrom
Schéafer[12] for explaining the 'High Irradiance Responses'of photomorphogenesi¢see also
Gottwald [3] andthe CWI testset[13]). This problem was integratedover the interval [5,305].
Writing the system ag =f(y), we may define the block-Jacobi splitting function

(4.1a) @(u'vi,u,v) =u'-f(u) + 0.035(g-vs)ez + 0.69(y-Vva)es,

with the associated Jacobian splittinyKK = | and

0 000[] Mmoo 0 [
J*_DJllom J_j_DOlem Jl_D 0 000[ J_)_Dooo+o.69D

" 00 k20 T Ok1OD *2T pgrooss000g ¥1T gooo o O
O o ooo00 ooo o O

The resultsin Table4.1ashow that the outer iteration processconvergesquite fast and that evena

single outer iteration already producesa relatively high accuracy.The inner iteration process
convergesequallyfastandtwo inner iterationsusually sufficesto find the modified Newton iterate.

However, the WR iteration process requires relativelyny iterationsto reachthe correctorsolution,

particularly onlargerwindows. Furthermorenotethatfor a constantotal numberof effectiveinner

iterations fotq) = Mmraw1, the accuracyrapidly decreaseas m increasegcf. Remark2.1). Thus, the

best iteration strategy seems to be one outer iteration and one or two inner iterations.

The performance of the WR iteration can be improved if we apply block-Gauss-Seidel splitting:

ooy _ 1100 _ O %2y
(4.1b) Y(u'Vv',u,v) =u'-f(u) + 0.035(g-vs)e3, J = b1 Joo0 J-3= o0

Table 4.1b presents the analogue of Table 4.1a and clearly shows the increased rate of converge

4.2. The transistor amplifier
Our second test problem is the semi-explicit representafitime transistoramplifier givenin [13]. It
is a nonlinear, eight-dimensional problem of index 1 on the interval [0,0.2] given by
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(4.2)U(t) =f(u,v),g(u,v) =0, u,fOR®v, gORS

so that

_nl O _ofu fv O
K‘EOOE’ J_Dgu Qv O

The structure of K and J suggests the use of a block-Gauss-Seidel splitting with

. _ _ofu O
K=K J=1gy gv O

which reduces the effective costs of each LU-update by a faif3r=84.
The results in Table 4.2 show the same trends as in the preceding tables.

Table 4.1a.WR method {(2.4),(2.5),(2.8)} applied to HIRES with
block-Jacobi splitting (4.1a), h=15andr =1\ 2.

W m o= o= o= o=9 =11 =13 g=15 O
1 1 14\19 26\36 37\57 49\62 6.1\70 78182 79\79 79
2 18\19 36\38 53\61 71\78 78\79 79\79
3 19\19 38138 59\61 77\78 79\79
2 1 10\12 20\26 30\41 40\61 51\64 64\79 74180
2 12\12 25\26 40\42 55\60 7.1\76 7.8\79 79\79
3 12\12 26\26 42\42 59\60 75\76 7.8\79
4 1 07\08 14\17 22\28 30\40 39\56 49164 6.116.9
2 08\09 17\17 28\28 40\41 52\54 66169 7.6\7.8
3 09109 17\17 28\28 41\41 54\54 69169 78\78
Table 4.1b.WR method {(2.4),(2.5),(2.8)} applied to HIRES with
block Gauss-Seidel splitting (4.3b), h=15andr=1\2.
w m =3 =5 o= o=9 =11 =13 =15 O
1 1 32138 42\47 51\55 58\63 66\72 75182 79\79 79
2 42\51 6.1\6.6 80\80 79\79 79\79 79\79
3 51\59 79\80 79\79
2 1 31\36 41\46 49\54 56\62 64\70 72\81 79\79
2 41\52 58\63 74\82 79\79 79\79 79\79
3 53\47 7.1\82 79\79
4 1 31\35 37\43 46\51 52\58 59166 66\74 7.4\79
2 42\42 52\57 67\72 79\79 79\79 79\79 79\79
3 41\40 6.0\65 79\79
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Table 4.2. WR method {(2.4),(2.5),(2.8)} applied to the Transistor
amplifier with the splitting (4.2), h=1g%4andr=1\2.

W m =3 =5 o=/ o=9 =11 =13 g=15 >
1 1 09\* 10V17 18\33 28\148 38\59 49\73 6.0\87 97
2 08\14 27\30 47\51 57168 75183 93195 96\9.38
3 14\12 27\27 47\44 68\68 82181 96\96 9.7\97

2 1 03\04 02\03 03\06 05\10 07\1.7 09\23 12\21
2 06\08 27\18 26\28 27138 32149 38\58 43\65
3 03\03 09\15 20\20 22\31 31\43 51\51 45\76

4 1 *10.2 0.7\04 04\06 05\09 06\1.2 07\16 09\20
2 2.1
3 3.1

5. Summary and concluding remarks

The numericalntegrationmethodproposedn this paperis basedon a Runge-Kuttatype integration
formula (1.2) which is solved iterativelyy threenestedteration processesthe discreteWR process
(2.4), the modified Newton processor outeriteration procesy2.5), andthe linear systemsolver or
inner iteration proces®.8). It aimsat the solutionof IDEs of which the JacobiarmatricesK andJ
are approximated by lower triangutaiby-o block matricesk™ andJ*. On wos processorsthe total
effective costs per step approximately consists of carryinggytrmrow ! inner iterations. Hereyp
is the window length and g, m and r respectively denote the nuwhbeR iterations,outeriterations
and inner iterations. Each Jacobianupdate or change of stepsize requires s concurrent LU-
decompositions of matrices of maximal dimensidywhere d is themaximalblocksizeoccurringin
K* and J, that is,effectively only O((d")3) operationsper update Furthermore gachinner iteration
requiresa forward/backwardsubstitutionof dimension< sd” which can be distributed over s
processors, that is, only(@ya(d”)2) operations per step.

The numerical experiments with the method {(2.4),(2.5),(2.8)} presented in Section 4 clearly shov

(i) The better the approximations kind J, the faster the convergence of the WR iterates.
(i)  One or two inner iterations are sufficient, i.&. 2.
(i)  For constantyta), the accuracy is best if only one outer iteration is performed, i.e. m = 1.

In an actualimplementationthe valuesof g, m andr shouldbe determineddynamically during the
integration process. At present, the full method {(2.4),(2.5),(2.8@stedon a sequentiacomputer
system and only the case where r = 1 and K = K* £+ J (and hence q = hasbeenimplemented
on the four-processor Cray-C98 / 4256. The results reported in [7] showitihaiespectto the code
RADAUS of Hairer and Wanner [4], to be consideestbne of the bestsequentiatodes,the speed-
upsarein therange[2.4, 3.1]. Implementatiorof the full method{(2.4),(2.5),(2.8)} on the Cray-
C98 / 4256 will be subject of future research.
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