@ Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Parallel iterative linear solvers for multistep Runge-Kutta methods
E. Messina, J.J.B. de Swart and W.A. van der Veen
Department of Numerical Mathematics

NM-R9619 1996

Report NM-R9619
ISSN 0169-0388

CWwiI

P.O. Box 94079

1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.

SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Parallel Iterative Linear Solvers for Multistep Runge—Kutta Methods

E. Messina 1, J. J. B. de Swart 2 and W. A. van der Veen 2

1 Dipartimento di Matematica e Applicazioni ”R. Caccippoli”,
University of Naples " Federico 11",
Via Cintia, 1-80126 Naples, Italy,

2 CWI, P.O. Box 94079, 1090 GB Amsterdam, the Netherlands

Abstract

This paper deals with solving stiff systems of differential equations by implicit Multistep Runge-Kutta (MRK)
methods. For this type of methods, nonlinear systems of dimension sd arise, where s is the number of Runge-
Kutta stages and d the dimension of the problem. Applying a Newton process leads to linear systems of the
same dimension, which can be very expensive to solve in practice. Like in [HS96], where the one-step RK
methods were considered, we approximate these linear systems by s systems of dimension d, which can be
solved in parallel on a computer with s processors. In terms of Jacobian evaluations and LU-decompositions,
the k-step s-stage MRK applied with PILSMRK on s processors is equally expensive as the widely used k-step
Backward Differentiation Formula on 1 processor, whereas the stability properties are better than that of BDF.
If both methods perform the same number of Newton iterations, then the accuracy delivered by the new

method is also higher than that of BDF.

AMS Subject Classification (1991): Primary: 65L05. Secondary: 65F05, 65F50.

CR Subject Classification (1991): G.1.7, G.4

Keywords €5 Phrases: numerical analysis, Newton iteration, Multistep Runge—Kutta methods, parallelism.
Note: The research reported in this paper was partly supported by STW (Dutch Foundation for Technical

Sciences).

1. INTRODUCTION
For solving the stiff initial value problem (IVP)

y'(t) = f(ty(t), y(to)=wo, v, fERY to<t<t,, (1.1)

a widely used class of methods is that of the Backward Differentiation Formulae (BDF's)

yn = (K7 @ D)y + b BF (yn)-
Here, ® denotes the Kronecker product and the vector 31 is defined by (y_,,...,yL)7,
where yJT approximates the solution at ¢ = ¢; and k is the number of previous steppoints that
are used for the computation of the approximation in the current time interval. The stepsize
tp+1 — ty, is denoted by h,,. The scalar § and the k-dimensional vector £ contain the method

1. Introduction 2

parameters. They depend on h{™), which is the vector with k previous stepsizes defined by
R = (hn_k41,---,hn)T. In the sequel, I stands for the identity matrix and e; for unit
vector in the ith direction. The dimensions of I and e; may vary, but will always be clear
from the context.

For example, the popular codes DASSL [Pet91] and VODE [BHB92| are based on BDFs.
However, a drawback of BDF's is the loss of stability if the number of steppoints & increases.
As a consequence of Dahlquist’s order barrier, no A-stable BDF can exceed order 2. Moreover,
BDFs are not zero-stable for k£ > 6.

A promising class of methods that can overcome these drawbacks of BDF's are the Multistep
Runge-Kutta (MRK) methods, which are of the form

Yo = (T ® Dy + hp(al @ DF(Y,), (1.2)
where Y, is the solution of the equation
R(Y,) =0, R(Y,):=Y,—(GRDy™ " - h,(A®I)F(Y,). (1.3)

Here, Y, is the so-called stage vector of dimension sd, whose components Y,,; represent approx-
imations to the solution at ¢ = ¢,_1 + c;hy,, where ¢ := (c1,...,cs)? is the vector of abscissae
and s is the number of Runge-Kutta stages. The vector F(Y},) contains the derivative values
f(Yn;:). The arrays «, x, A and G contain method parameters and are of dimension s X 1,
kx1, sxsand s X k, respectively. These parameters and the abscissae ¢; depend on h(™).
We remark that a way of circumventing this dependence on R(™ ig interpolating the previous
steppoints, so that they are equally spaced. However, this strategy adds local errors and does
not allow good stepsize flexibility, see [Sch94, p.68].

Stability has been investigated for fixed stepsizes in the literature. Even for large values of
k, these methods have ”surprisingly” good stability properties [HW91, p.296]. For example,
MRKs of Radau type with s = 3 remain stiffly stable for £ < 28 and have modest error
constants [Sch94, p.13].

A drawback of using MRKs is the high cost of solving the non-linear system (1.3) of
dimension sd every time step. Normally, one uses a (modified) Newton process to solve this
non-linear system. This leads to a sequence of iterates Yn(o), YTSI), .- ,Yn(m) which are obtained
as solutions of the sd-dimensional linear systems

where J,, is the Jacobian of the function f in (1.1) evaluated in ¢,, the starting vector v, {0
is defined by some predictor formula, and ngm) is accepted as approximation to Y,. If we
use Gaussian elimination to solve these linear systems, then this would cost %s3d3 arithmetic
operations for the LU-decompositions.

In order to reduce these costs, one can bring the Newton matrix I — A ® h,J, to block
diagonal form by means of similarity transformations [But76] resulting in

1. Introduction 3

(I-T AT @ hp)XY —xU7Y) = —(@'o@DREI™Y), (15)
v9 = cenx¥, j=12,...,m. '

Here, T~'AT is of (real) block diagonal form. Every block of T~'AT corresponds with an
eigenvalue pair of A. If the eigenvalue of A is complex, then the block size of the associated
block in T~ AT is 2, if the eigenvalue is real, then the block size is 1. The LU-costs are now
reduced to %d?’ and %d:; for the blocks of size 1 and 2, respectively. Hairer & Wanner used
this approach in their code RADAUS [HW95]. The blocks of the linear system (1.5) are now
decoupled, so that the use of o processors reduces the effective costs to %d?’, where o is the
number of blocks in T~ AT . Notice that pairs of stage values can be computed concurrently,
i.e. it is possible to do function evaluations, transformations and vector updates for pairs of
stages in parallel if o processors are available.

By exploiting the special structure of the 2d-dimensional linear systems in (1.5), it is possible
to reduce the costs of solving these systems (see e.g. [Bin85]). Let ¢; & in; be an eigenvalue
pair and assume that the matrix of the corresponding linear system is of the form

I- gjthn _njhn!]'n
. 1.6
(njth'n I- gjhn!]n ()
One easily checks that the inverse of (1.6) is
— I- é-h'an nthn
(IeI™ (—nj-thn I Sj-thn) ;D =T1-2hadn+ (& +n)h2 T2 (1.7)

Using o processors, the O(d3) costs of this approach are §d3 (2d2 for the computation of J?2
and %d3 for the LU-decomposition of I'). On o processors, an MRK using this implementation
strategy is 4 times more expensive in terms of O(d®) costs than a BDF, for which we only
have to solve linear systems with a matrix of the form I — h,3.J,,.

In this paper we reduce the implementational costs of MRKs to a further extent by following
the approach of [HS96]. Here, the matrix A is approximated by a matrix B with positive
distinct eigenvalues and the iterates YTSJ) in (1.4) are computed by means of the inner iteration
process

(I~ B@haJ) (V) — Y™y = (I - A@ha)V ™) + V7, (1.8)
Y = (I-A@hJ)YI V- RyY). '

The index v runs from 1 to 7 and Yn(j ™) is accepted as the solution Y,Sj) of the Newton process
(1.4). Furthermore, Y90 = ¥ 9=V Since the matrix B in (1.8) has distinct eigenvalues,
applying a similarity transformation) that diagonalizes B, i.e. BQ = QD where D is a
diagonal matrix, leads to:

(I = D@ hndn)(XPY) = X9D) = —(1-Q71AQ ® hp) XP¥ ™

: 1.9
+(Q_1®I)C,(Lj_l), v=1,...,r. (1.9)

2. Construction of MRKs 4

The system (1.9) consists of s decoupled systems of dimension d which can be solved in
parallel. Every processor computes a stage value. The costs for the LU-decompositions are
now reduced to %d3 on s processors. Notice that in order to ensure the non-singularity of
the matrix (I — D ® h,J,) the positiveness of the eigenvalues of B is required. In analogy
with [HS96] we will refer to (1.8) as PILSMRK, Parallel Linear System solver for Multistep
Runge-Kutta methods. The combination of modified Newton and PILSMRK will be called
the Newton-PILSMRK method.

We will discuss several strategies to choose B such that the inner iterates in (1.8) converge
quickly to the Newton iterates in (1.4). Experiments show that, if we apply more than
2 Newton iterations, then only 1 inner iteration suffices to find the Newton iterate. This
means that in terms of LU-decompositions and Jacobian evaluations a k-step, s-stage Newton-
PILSMRK on s processors is as expensive as a k-step BDF on 1 processor, whereas the stability
properties of Newton-PILSMRK are better. If both methods perform the same number of
function evaluations, then the accuracies delivered by Newton-PILSMRK are also higher
than that of BDF. It turns out that the convergence behaviour of the inner iteration process
becomes better if k£ increases. In particular, the inner iteration process for MRKs converges
faster than that for the one-step RK methods proposed in [HS96].

The outline of the paper is as follows. § 2 briefly describes how to determine the MRK
parameters. In § 3 we investigate the convergence of the inner iteration process for several
choices of the matrix B, and we consider the stability of the overall method in § 4. Numerical
experiments in § 5 show the performance of the proposed methods on a number of test
problems. Finally, we draw some conclusions in § 6.

2. CONSTRUCTION OF MRKS

A large class of multistep Runge-Kutta methods consists of multistep collocation methods,
which were first investigated by Guillou and Soulé [GS69]. Later, Lie and Ngrsett [LN89]
considered the MRKs of Gauss type and Hairer and Wanner [HW91] those of Radau type. In
the useful thesis of Schneider [Sch94] on MRKs for stiff ODEs and DAEs a lot of properties
of MRKs and further references can be found.

For convenience of the reader we briefly describe here how one can compute ¢, G and
A. Alternative ways of deriving these parameters can be found in [HW91] and [Sch94].
In a multistep collocation method, the solution is approximated by a so-called collocation
polynomial. Given y(™, h(™ and ¢, we define the collocation polynomial u(t) of degree
s+k—1by

u(t;) = vy, j=n—k+1,...,n,
Wty + cihy) = f(u(ty, + cihy)), i=1,...,s.

The stage vector Yy, is then given by (u(t, +ci1hn)?,. .., u(tn+cshy,)?)?. In order to compute
u(t), we expand it in terms of polynomials ¢; and ; of degree s + k — 1, given by

2. Construction of MRKs 5

@i(T5) 0ij, i=1,...,k, i=1,...,k,
¢;:(CJ) = O’ j = 1’ e ’S’ Z‘ = 7 7k7
1»bi(’rj) = Oa | =) ',k, 1= ’ » S,
wé(cj) = 5i]7 j = 17"'757 Z' = b 75'
Here, &;; denotes the Kronecker tensor, 7 is the dimensionless coordinate &%= and 7; =
W, =1,...,k. In terms of these polynomials the expansion of u(t) is given by
k
u(tn + Th) Z T)Yn—k+j + bn Z% "t + cjhn)
k
Z T)Yn—kij + hn Z;/;] utn + cjhn)), j=1,...,s.

Clearly, the MRK parameters read G;; = ¢;(c;), Aij = (), aj = ¢;(1) and x = ;(1).
Notice that the order of the approximations u(t, + ¢;hy), the so-called stage order of the
MRK, is s + k — 1.

To construct the polynomials ¢;(7) and 1;(7), we expand them as

s+k—1 s+k—1
= Y di™ and gi(r)= > dh™
m=0 m=0
Substituting the first expression into the defining conditions yields
1 2 . Tf+k71
. . de.
1 e 72 1 ... T,j+k_1 o
9 s+k—2 = €;. (21)
0 1 2 3¢ ... (s+k—1)q s
: : : : ds+k—1,z
0 1 2 3¢2 ... (s+k—1)cth2

The matrix of order s+ & in (2.1) will be denoted by W. For the polynomials ¢;(7) we derive
analogously

dff,i
w . = €k+4i-
di‘p—kk 1,
To compute the A and the G, we evaluate ¢;(7) and ¢;(7) in 7 = ¢; for j =1,...,s, yielding
(;51'(6]') = (1 Cj ... C;-_Hc_l) w1
’l,bi(cj) = (1 Cj ... C;-_Hc_l) Wﬁleﬂ_k.

Introducing

3. Convergence of the inner iteration process 6

s+k—1
1 ¢]
v=| 1 C |

1 ¢ ... cSthl
the matrices G and A are respectively given by
G=VW Yey,...,ex) and A=VW epi,. ., epys)

We now construct the abscissae vector ¢ such that we have superconvergence in the step-
points. Only stiffly accurate Multistep Runge-Kutta methods will be considered, i.e. ¢; = 1.
This means that we can omit steppoint formula (1.2) and obtain y, 1 from 3,11 = (el ®1)Y,,.
A well known subclass of stiffly accurate MRK methods are the multistep Radau methods,
which are A(a)-stable. Their set of collocation points ¢y, ..., cs—1 is given (see [HW91, p.294])
as the roots in the interval [0,1] of

1 s 9 .
ZC'— + Z C-_c-ZO’ Z=17"',S_1-
=197y AT
J#

We call the order of approximation y, 1 to y(t,+1) the steppoint order or, more loosely, the
order of the MRK. This choice of ¢ leads to steppoint order 2s + k — 2.

The appendix to this paper lists the MRK parameters for s € {2,4} and k € {2, 3}.

3. CONVERGENCE OF THE INNER ITERATION PROCESS

We now discuss the choice of the matrix B in (1.8) such that the inner iteration process
converges rapidly. If we define the inner iteration error by e,(zj) = Y,gj V) _ Yéj), then (1.4)
and (1.8) yield the recursion

€9V = Z(hp)9V Z(hpdy) == (I — B® hnJy) (A = B) @ hnJy).
Applying the method to Dahlquist’s test equation

=Xy, AeC, (3.1)
this recursion reduces to

V) = Z(2,)e0 D 2, = by (3.2)

Let p(-) be the logarithmic norm associated with the Euclidean norm, which can be expressed
as 1(S) == $Amax(S + ST), where Amax(-) denotes the algebraically largest eigenvalue of a
matrix (see e.g. [HNW93, p.61]). For dissipative problems p(J,,) < 0. The following lemma
states that the inner iteration process converges for dissipative problems at least as fast as for
the ‘most unfavourable’ linear test equation. For the proof of this lemma we refer to [Nev85].

3. Convergence of the inner iteration process 7
Lemma 1 If u(J,) <0, then | Z(hnJn)||2 < max{||Z¥(z,)||2 : Re(zn) < 0}.

In § 3.1 and § 3.2 we treat two choices for the matrix B that make Z(z,) ‘small’ in some
sense. To measure Z(z,) we use the following quantities:

e pl9)(z,), the (averaged) rate of convergence after j iterations in z,, defined by

P (zn) = /11 Z(2n) 2.
()

® ps , the stiff convergence rate after j iterations, defined by

@ = /N Z&ll2s Zoo = lim_Z(z,) = (I - B~ A).

Zoo will be referred to as the stiff amplification matriz.

e pl9), the maximal convergence rate after j iterations, defined by

() .—)
p Rer(ggfso{p (2n)}-

Notice that because of the maximum principle and the fact that p(9)(z,) is symmetric with
respect to the real axis, pl/)(z,) takes its maximum at the positive imaginary axis:

() .— ¢
A

Since A depends on h(™, B also depends on h{™). Consequently, the procedure for con-
structing B has to be carried out every time k(™) changes and should not be too expensive.

3.1 Constructing B: Crout decomposition

Let L be the lower triangular matrix of the Crout decomposition of A, i.e. L is lower triangular
such that L™'A is upper triangular with ones on the diagonal. As proposed in [HS95], we
choose B = L. The stiff amplification matrix takes the form I — L~!A, which is strictly upper
triangular. Consequently, p(o]c.)) =0 for j > s. For reasons that will become clear in § 3.2, we
will refer to this inner iteration process as PILSMRK(L,I).

Table 1 lists the values of pU) for a few PILSMRK(L,I) methods for the case with constant
stepsizes. As a reference we included the one-step Radau ITA methods. From this table we
see that, for the worst-case situation, the convergence of the MRKs is better than that of the
one-step Runge-Kutta methods.

In practice, the rate of convergence in other points of the complex plane is also of interest.
Figure 1 shows pU)(z,) along the imaginary axis z, = iz, £, € R for PILSMRK(L,I) with
(k = 3,5 = 4) method with constant stepsizes for j = 1,2,3,4 and j = oco. From this figure
we clearly see that p(oi,) =0 for j > s.

In order to see the effect of variable stepsizes on the convergence rate, we define

3. Convergence of the inner iteration process 8

Table 1: Values of p{9) for several PILSMRK(L,I) methods with constant stepsizes.

k Order |j=1 j=2 j=3 j=4 ... j=o0
1 3| 024 021 020 019 ... 0.18
2 41 019 017 016 0.16 ... 0.15
3 5| 017 0.15 0.15 0.14 ... 0.14
4 1 7| 059 0.54 053 052 ... 0.51
2 8| 054 0.50 049 048 ... 0.47
3 9| 052 048 047 046 ... 0.44
8 1 15| 1.03 094 091 090 ... 0.86
2 16 | 098 092 089 088 ... 0.84
3 17| 097 092 089 087 ... 0.82
0.5 : 1
1
/_:\ - —
g
=
QU
0.1 1
Jj=o00
| | |
2 0 4 8

Vlog(z,) —

Figure 1: p\Y)(iz,,) for PILSMRK(L,I) with k = 3,5 = 4.

wi=h;/hi 1 for i=n—-k+2,...,n

and plotted p\¥) as function of w; for several PILSMRK methods. Here, w; € 0.2, 2], since in
an actual implementation, a reasonable factor by which subsequent stepsizes are multiplicated
lies in this interval. These plots revealed that the influence of variable stepsizes on the rate
of convergence is modest. E.g., for k = 2, s = 4, p\9) € [0.45,0.58], V4, and for k = 3, 5 = 4,
P € [0.495,0.525], V5.

3. Convergence of the inner iteration process 9

3.2 Constructing B: Schur-Crout decomposition

Before approximating the matrix A by the lower factor of the Crout decomposition, we first
transform A to ‘a more triangular form’, the real Schur form. In the usual eigenvalue problem
the eigenvalues and eigenvectors are unknown. However, the problem with which we are faced
here is computing a real Schur form, given the eigenvalues and eigenvectors of A. Below we
specify precisely how we do this. We remark that this construction is not developed to be
cheap, but such that we are able to exploit the freedom in the real Schur form.

Let « be the vector with eigenvalues of A, and £ and 7 be the real and imaginary part of
7, respectively, i.e. v = & + in. Order the components of v as follows (we will motivate this
choice later):

m7 /&l = |3 /€] for i > j. (3.3)

In addition, if [n?/&| = |n2,,/&+1], then 5; > 0. This sequence is such that real eigenvalues
have the lowest index in v and complex eigenvalues are ordered in conjugated pairs by in-
creasing value of 77]2- /&, while the eigenvalue with positive imaginary part comes first within
a pair. The matrices A treated in this paper have at most one real eigenvalue, so that we do
not have to sort real eigenvalues.

Let €} + ieij be the eigenvector belonging to v;, such that [|e} + ieij||2 =1 and e}l = 0. For
all matrices A that are of interest here, this scaling turns out to exist. Define

_ r i r i r i
E = (€1 €1 €3 €3 - €s1 €s1)

_ r r i i
E=(e € e, € € ... e € 1)

if A has one real eigenvalue with eigenvector e”. One easily verifies that the matrix E~1AFE
is block diagonal with 2 x 2 blocks

(éj 773')
- &)’

and one block equal to &; if 51 = 0. We orthonormalize the columns of £ by a Gram-Schmidt
process, i.e. we construct a lower block triangular matrix K such that FK is orthogonal.
This matrix EK transforms A to a matrix H:

H:= (EK) 'A(EK) = K Y(E'AE)K. (3.4)

Since K is lower triangular and E~'AFE is block diagonal, it is clear that H is lower block
triangular. Notice that H is a real Schur form of A.

We now rotate the diagonal blocks of H by means of a matrix © such that @ 'HO is ‘more
suitable’ to be approximated by its lower Crout factor. Define

3. Convergence of the inner iteration process 10

cosf; sind;

© = diag(0;), 0, = (—sinf; cos@;
7 J

)) 61:1 if 771:07

and S = ©~'HO. Here, j € {2,4,...,s — 1} if gy = 0and j € {1,3,...,s — 1} if 51 # 0.
The lower factor of the Crout decomposition of S is again denoted by L. Remark that the
stiff amplification matrix I — L™'S is block diagonal with 2 x 2 blocks containing only one
non-zero entry. One easily verifies that this entry is given by

—S;,5+1/ 55,4, (3.5)
where

1 :
Sjj = 5((Hjg—Hjs1,j41) c08(20;) — (Hjjra+Hjp,j) sin(20;) + (Hjj+Hj,541),

1 .
Sjj+1 = 5((Hj+1,j+Hj,j+1) cos(20;) + (Hjj—Hjy1,5+1) sin(20;) + (Hj j11+Hjt1,5)),

and the diagonal blocks of H and S are of the form

(Hjj; Hjjn) and (S Sig+l) .

Hjwj Hjti+ Sjt1g Si+1+1

We choose 8; such that the absolute value of (3.5) is minimized. By using Maple [CGG191]
we established that this is done for

HjjHjy15+ Hyj i Hyg g+ \/det(H)(| H|[% — 2 det(H))

f; = arctan mod,

2 2
Hj sy + Hipyj — det(H)
where || - || denotes the Frobenius norm. The matrix B with real eigenvalues that approxi-

mates A is thus given by B = ULU”, where U := EKO© is an orthogonal matrix. Applying a
similarity transformation @ such that BQ = QD, we again arrive at scheme (1.9). The linear
system solver resulting from this Schur-Crout approach will be referred to as PILSMRK(L,U),
where the U indicates that we have transformed A before approximating it by L.

We now illustrate the idea that moved us to sort the eigenvalues as in (3.3). For simplicity
of notation, we assume here that s = 4. If the first order expansion of Z(z,) for small z, is
given by

Z(zp) = znZy + O(zi),

then Zy = A — B. It can be verified that for the Schur-Crout approach Zj is of the form

0 ¢z 0 0
z=v| " 20 Vg

0 (32 0 C(aa

0 Ca2 0 Caua

3. Convergence of the inner iteration process 11

Table 2: Values of p{4) for several PILSMRK(L,U) methods with constant stepsizes.

k Order |j=1 j=2 j3j=3 j=4 ... j=o0
1 3| 024 021 020 019 ... 0.18
2 4| 018 0.16 016 0.15 ... 0.15
3 5| 015 014 013 013 ... 0.13
4 1 7| 055 049 047 047 ... 0.44
2 8| 050 045 043 043 ... 0.41
3 9| 047 042 041 040 ... 0.39
8 1 15| 091 078 074 072 ... 0.65
2 16| 088 0.76 0.72 0.70 ... 0.62
3 17| 0.8 074 070 0.68 ... 0.61

where

G2 | Sa1 1oy
=v , U= ———
Ca2 Sa1 So1 &1

In order to keep the lower triangular part of Z; as small as possible, the best we can do is
sorting the eigenvalues such that those with the smallest value of 77 /& come first.

Table 2 and Figure 2 are the analogues of Table 1 and Figure 1 for PILSMRK(L,U).
The worst-case p()-values in Table 2 are smaller than those in Table 1. The difference
between PILSMRK(L,I) and PILSMRK(L,U) becomes larger in favour of PILSMRK(L,U)
as s increases. This can be understood by realizing that for the Crout option, we approximate
the matrix A with s? parameters by a matrix B with s(s + 1)/2 entries, whereas for the
Schur-Crout case, the matrix UT AU with s(s + 1)/2 + | nonzero entries, where [is the
number of complex conjugated eigenvalue pairs, is approximated by UT BU with s(s + 1)/2
parameters. In addition, the advantage of PILSMRK(L,U) over PILSMRK(L,I) is that the
stiff convergence rate pg)) vanishes for j > 1, which is confirmed by Figure 2. The extra price
that we have to pay is the construction of the real Schur decomposition of A every time w;
changes for some j. Since in practice s < d, we do not consider this as a serious drawback.

Remark 1 There is freedom in the choice of the transformation matrix @) that diagonalizes B.
If X is a matrix with eigenvectors of B and 3 and P are diagonal and permutation matrices,
respectively, then for every matrix) of the form

Q= XXP, (3.6)

we have that BQ = @QD. Starting with a fixed matrix X, we determined ¥ and P in (3.6)
such that the elements of Q and Q™! are not too large. O

Remark 2 Another approach for finding a suitable matrix B, based on rotations that mini-
mize p(), can be found in [HM96]. O

4. Stability 12

—

P (izn)

0.1

Olog(z,) —

Figure 2: pU)(iz,,) for PILSMRK(L,U) with k = 3,5 = 4.

The matrices D and) that result from the Crout and Schur-Crout approaches are given
in the appendix to this paper for several values of k£ and s.

4. STABILITY
In this paragraph we investigate the stability of the corrector formula (1.3) and the PILSMRK

method (1.8) for test equation (3.1) solved with constant stepsizes h. We only consider stiffly

accurate methods, i.e. y, = eSTYém’T).

Following [Sch94] we write (1.3) in the form
N
(™) — M(2)y™ D M(z) = := hA
Y (Z)y) (Z) (EZ(I _ ZA)ilG)) z)

where the (k — 1) X k matrix N is given by

The stability region is defined by

4. Stability 13
S:={ze€C|p(M(z)) <1}, (4.1)

where p(-) denotes the spectral radius function. We use the quantity D(™7) to measure the
stability region (see [HW91, p.268]), where

D := —inf{Re(2) | z ¢ S}.

In practice, the PILSMRK method will be used to solve the corrector only approximately.
Therefore we do not attain the stability of the corrector. For conducting a stability analysis
for the PILSMRK methods we assume that in each step m outer and r inner iterations are
carried out. In addition we assume that the predictor is only based on the stage vector in the
previous steppoint,

Y00 = (PoD)Y™", (4.2)
where P is an s X s matrix. From (3.2) and (1.3) we derive a recursion in v:
YUV = Z(2)Y,0v=Y 4 (I — 2B)~LGy" Y.
An elementary manipulation, in which we use Yrsj 0 — Yn(j _1’T), leads to a recursion in j:
YUr) = Z7 ()Y, U5 4 (I — Z7(2))(I — zA)~'Gy™D.
Substituting (4.2) yields the following recursion in time:

Ym0 = 2 () PY 4 (1 — 2™ () (I — 2A) Gy ™Y, (4.3)

which we write in the form

(v) =M<mr><z>(v) M<mr>(z):(M1§§:<z> M))
Y Yoi My (2) My ’(2)

n—1
From (4.3) we see that
M (2) = (I - 2™ ()T — 24)7'G, M%) (2) = 2™ (2)P.

Since we restrict ourselves here to stiffly accurate methods,

(mr) _ N (mr) _ Ok—l,s
Mll - (eTMz(Im-))) M12 - < eTM2(£m“)) 3

where O;; denotes an i X j zero matrix. Notice that this linear stability analysis does not
distinguish between outer and inner iterations. In analogy with (4.1) we define the stability
region after mr iterations by

4. Stability 14

Table 3: Values of D(™") for PILSMRK(L,I) with k steps and s stages.

s kilmr=1 mr=2 mr=4 mr=6 mr=8 mr=10 mr=20 mr=o0
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0.0094 0.0823 0.0838 0.0838 0.0838 0.0838 0.0838
4 0 0.3435 0.4601 0.4610 0.4610 0.4610 0.4610 0.4610
4 1 * * 0 0 0 0 0 0
2 * * 0 0 0 0 0 0
3 * * 0 0 0.0006 0.0021 0.0025 0.0025
4 * * 0 0 0.0120 0.0180 0.0192 0.0192
8 1 0 0 0.0677 0.0480 0.0239 0.0103 0 0
2 0 0 0.0624 0.0405 0.0188 0.0076 0 0
3 0 0 0.0590 0.0363 0.0162 0.0064 0 0
4 0 0 0.0565 0.0335 0.0145 0.0057 0.0004 0.0003

S0 = {2 € C | p(ME™)(2)) < 1}
and the stability measure

D) .= —inf{Re(z) | z ¢ S(™)}.
It is clear that

lim D™ = D.
Table 3 and 4 list D(™™)_values for the k-step s-stage MRK of Radau type for k € {1,2,3,4}
and s € {2,4, 8} with PILSMRK(L,I) and PILSMRK(L,U), respectively. For s < 4, we used
the predictor that extrapolates the previous stage values, i.e. we determined P in (4.2) such
that YYSO’T) has maximal order. Since extrapolating 8 stages leads to very large entries in
P, the predictor for the 8-stage methods was chosen to be the last step value predictor. If
D) > 4. then this is indicated by .

The D(™)_values for BDF are independent of mr, because for the linear test problem the
corrector equation is solved within 1 iteration. For k¥ = 1,2,3 and 4 these values are 0, 0,
0.0833 and 0.6665, respectively.

From these tables we see that for s < 4 the stability of PILSMRK(L,I) is better than that
of PILSMRK(L,U). For s = 8 the D-values are comparable. Relatively to its order, the
stability of PILSMRK is much better than that of BDF. As expected, we see that increasing
s and decreasing k improves the stability of MRK. If we solve the corrector equation only
approximately, then sometimes the stability of the resulting method is even better than that
of MRK. For s = 4 and mr < 2, the method is not stable, due to the extrapolation predictor,
which is very unstable as stand-alone method. Notice that the D()_values are the values for
the underlying MRK corrector.

4. Stability

Table 4: Values of D(™) for PILSMRK(L,U) with k steps and s stages.

s kilmr=1 mr=2 mr=4 mr=6 mr=8 mr=10 mr=20 mr=o0
2 1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0.0216 0.0827 0.0838 0.0838 0.0838 0.0838 0.0838
4 0 03762 0.4605 0.4610 0.4610 0.4610 0.4610 0.4610
4 1 * * 0.2214 0 0 0 0 0
2 * * 0.2239 0 0.0001 0 0 0
3 * * 0.2784 0 0.0031 0.0030 0.0025 0.0025
4 * * 0.3474 0.0001 0.0169 0.0194 0.0192 0.0192
8 1 0 0.1060 0.0636 0.0254 0.0212 0.0101 0 0
2 0 0.1056 0.0557 0.0227 0.0179 0.0080 0 0
3 0 0.1051 0.0510 0.0210 0.0161 0.0075 0 0
4 0 0.1046 0.0477 0.0199 0.0152 0.0075 0.0003 0.0003

To get an idea of the shape of S(™"), Figure 3 shows S"") for PILSMRK(L,U) with 3 steps

and 4 stages, where mr € {3,5,00}.

25

15F

10F

-25

Figure 3:

S(mm) for PILSMRK (L,U) with k = 3,5 = 4.

40

15

5. Numerical experiments 16

Table 5: Results of PILSMRK(L,I) on test problems.

HIRES Ring Modulator
rim=1 m=2 m=3 m=4 m=10|m=1 m=2 m=3 m=4 m=10
2 1 3.3 3.7 4.2 4.7 4.9 * 2.8 3.9 3.8 3.8
3.2 3.8 4.3 5.0 4.9 * 3.6 3.8 3.8 3.8
10 3.2 3.8 4.3 5.0 4.9 * 3.6 3.8 3.8 3.8
3 1 3.3 3.7 4.2 4.6 5.2 * 3.0 4.1 4.2 4.3
3.2 3.8 4.3 4.8 5.2 * 3.8 4.2 4.3 4.3
10 3.2 3.8 4.3 4.8 5.2 * 3.8 4.2 4.3 4.3
4 2 1 * 4.6 4.8 5.1 7.3 * * 6.1 6.5 8.2
2 * 4.3 4.9 5.3 7.9 * * 5.8 6.5 8.2
10 3.7 4.4 4.9 5.4 7.9 * * 5.8 6.4 8.2
3 1 * 4.6 4.8 5.1 7.2 * * 6.1 6.5 8.1
4.3 4.9 5.3 7.8 * * 5.8 6.5 8.1
10 3.7 4.4 4.9 5.4 7.8 * * 5.8 6.4 8.1

5. NUMERICAL EXPERIMENTS

In this paragraph we compare several Newton-PILSMRK methods with BDF. We also inves-
tigate how many inner iterations PILSMRK needs to find the Newton iterate. Although in
practice one would use variable stepsizes and variable order, for these purposes it is sufficient
to conduct experiments with fixed stepsize and fixed values of s and k.

Two problems from the ‘Test Set for IVP Solvers’ [LSV96] are integrated. Our first test
example is a problem of Schifer (called the HIRES problem in [HW91, p.157]) and consists of
8 mildly-stiff non-linear equations on the interval [5,305]. (We adapted the initial condition
here such that the integration starts outside the transient phase.) We used stepsize h = 15.
The second test problem originates form circuit analysis and describes a ring modulator.
We integrate this highly stiff system of 15 equations on the interval [0,1073] with stepsize
h =2.5-10"". Horneber [Hor76] provided this problem.

For s > 1 we implemented the extrapolation predictor as defined before, i.e. based on
the previous stage vector. For BDF we used the last steppoint value as predictor. We
tried extrapolation of more steppoints, but this did not give satisfactory results for both test
problems. The starting values y1,¥2,--.,yx_1 were obtained using the 8-stage Radau ITA
method, in order to be sure that the integration is not influenced by some starting procedure.
In the implementation of BDF we solved the non-linear equation of dimension d with modified
Newton, using m iterations per time step.

In the tables we list the minimal number of correct digits cd of the components of the
numerical solution in the endpoint, i.e. at the endpoint, the absolute errors are written as
10~°?. Negative cd-values are indicated with *. The numbers of stages, steps, inner and outer
iterations are given by s, k, » and m, respectively.

The tables clearly show that the PILSMRK iterates for 7 = 1 are (almost) of the same
quality as the Newton iterates, provided that we perform more than 2 Newton iterations. We

5. Numerical experiments 17

Table 6: Results of PILSMRK(L,U) on test problems.

HIRES Ring Modulator
rim=1 m=2 m=3 m=4 m=10|m=1 m=2 m=3 m=4 m=10
2 1 3.3 3.8 4.2 4.8 4.9 * 2.8 3.9 3.8 3.8
3.2 3.8 4.3 5.0 4.9 * 3.6 3.8 3.8 3.8
10 3.2 3.8 4.3 5.0 4.9 * 3.6 3.8 3.8 3.8
3 1 3.3 3.8 4.2 4.7 5.2 * 3.1 4.1 4.3 4.3
3.2 3.8 4.3 4.8 5.2 * 3.8 4.2 4.3 4.3
10 3.2 3.8 4.3 4.8 5.2 * 3.8 4.2 4.3 4.3
4 2 1 * * 4.9 5.1 7.2 * * 5.8 6.3 8.2
2 2.6 4.4 4.9 5.4 7.9 * * 5.8 6.4 8.2
10 3.7 4.4 4.9 5.4 7.9 * * 5.8 6.4 8.2
3 1 * * 4.9 5.2 7.2 * * 5.8 6.3 8.1
3.6 4.4 4.9 5.4 7.8 * * 5.8 6.4 8.1
10 3.7 4.4 4.9 5.4 7.8 * * 5.8 6.4 8.1

Table 7: Results of BDF on test problems.

HIRES Ring Modulator
k rim=1 m=2 m=3 m=4 m=10|m=1 m=2 m=3 m=4 m=10
2 1 2.9 3.5 3.1 3.0 3.0 1.1 1.1 1.1 1.1 1.1
3 1 2.8 3.7 3.6 3.4 3.3 1.6 1.5 1.6 1.6 1.6
4 1 2.8 3.4 4.4 3.8 3.6 1.8 1.9 1.9 1.9 1.9
5 1 2.7 3.3 4.2 4.1 3.8 2.4 2.9 2.9 2.9 2.9
6 1 2.8 3.4 4.1 3.9 3.7 2.4 * 2.9 % 29

also see that Newton-PILSMRK reaches higher accuracies than BDF for the same number of
Newton iterations. However, if we want to solve the corrector equation entirely, one would
have to perform more Newton iterations for Newton-PILSMRK than for BDF, since the latter
is of lower order. Solving the ring modulator, BDF suffers from stability problems for k£ = 6,
whereas the methods with k£ < 4 give cd-values, that might be too low in practice. For the 4-
stage Newton-PILSMRK, the k = 3 results are not better than the k¥ = 2 results. Performing
not more then 10 Newton iterations, which is not sufficient to solve the corrector equation, is
responsible for this. Experiments confirmed that using more than 10 iterations for the 3-step
4-stage MRK yields higher accuracies than for the 2-step 4-stage method. A comparison of
Table 5 with Table 6 shows that the performance of PILSMRK(L,U) is comparable to that of
PILSMRK(L,I). Although PILSMRK(L,U) converges faster than PILSMRK(L,I), the latter
has better stability properties for s < 4. Apparently, these effects neutralize each other for
these test problems. However, Tables 1-4 indicate that PILSMRK(L,U) can become better
than PILSMRK(L,I) for s > 4.

In order to show how the Newton-PILSMRK method performs on an s-processor computer,
we implemented the 3-step 4-stage Newton PILSMRK(L,I) on the Cray C-98/4256 at SARA
and integrated the ring modulator, using again 4000 constant integration steps. The Cray

6. Summary and conclusions 18

Table 8: Speed-up factor of 3-step 4-stage Newton-PILSMRK(L,I) for ring modulator.

Actual speed-up 3.3 3.3 3.2
Optimal speed-up 3.9 3.9 3.9

C98/4256 is a shared memory computer with four processors. Table 8 lists the speed-up
factors of the runs on four processors with respect to the runs in one-processor mode. Since
we did not have the machine in dedicated mode during our experiments (on the average we
used 2.5 processors concurrently), we used a tool called ATExpert [Cra94b] to predict the
actual speed-up factors on four processors. In practice these values turn out to be very reliable.
Denoting the fraction of the code that can be done in parallel by fp, the optimal speed-up on
N processors according to Amdahl’s law is given by the formula 1/(1— fp+ fp/N). ATExpert
produces these optimal speed-up values, based on estimates of the parallel fraction fp. These
values are also listed in Table 8.

We compiled the codes using the flags -dp, -ZP and -Wu"-p". The environment variables
NCPUS and MP_DEDICATED were valued 4 and 1, respectively. We refer to the Cray C90
documentation [Cra94a] for the specification of these settings.

From Table 8 we conclude that the Newton-PILSMRK methods have a satisfactory parallel
performance.

6. SUMMARY AND CONCLUSIONS

In this paper we proposed the Newton-PILSMRK method, which is a combination of a Newton
process applied to a Multistep Runge-Kutta method with a Parallel Iterative Linear System
solver. The non-linear equations that arise in an MRK are usually solved by a modified
Newton process, in which we have to solve linear systems of dimension sd, where s is the
number of Runge-Kutta stages of the MRK and d the dimension of the problem. PILSMRK
computes the solutions of these linear systems by means of an inner iteration process, in
which we solve s decoupled systems of dimension d. To achieve this decoupling, we have
to approximate a matrix A with complex eigenvalues by a matrix B with positive distinct
eigenvalues. It turns out that

e the most efficient parallel implementation of an MRK with a Newton process is 4 times
more expensive than Newton-PILSMRK on s processors in terms of O(d?) costs.

e if we apply more than 2 Newton iterations, then in practice PILSMRK with only 1
inner iteration often suffices to find the Newton iterate,

e in terms of Jacobian evaluations and LU-decompositions, the k-step s-stage Newton-
PILSMRK on s processors is equally expensive as the k-step BDF on 1 processor,
whereas the order is higher and the stability properties are better than that of BDF,

Appendix 19

e for the same number of function evaluations, Newton-PILSMRK delivers higher ac-
curacies than BDF, although Newton-PILSMRK did not solve the corrector equation

entirely,

e increasing the number of previous steppoints k, leads to a better convergence behaviour
of PILSMRK, but worse stability properties of the MRK,

e in a linear stability analysis, performing more than 3 iterations (inner or outer) suffices
to attain at least the stability of the MRK corrector, if s < 4.

e of the two options proposed here for choosing the matrix B, Crout and Schur-Crout,
the latter has a better convergence behaviour, but its stability properties are worse for
s < 4.

ACKNOWLEDGEMENTS
The authors are grateful to Prof. dr. P.J. van der Houwen for his careful reading of the

manuscript and for suggesting several improvements.

APPENDIX

In this appendix we list the parameters ¢, G and A in (1.3) for the k-step s-stage MRK
method of Radau type for k € {2,3} and s € {2,4}. Moreover, we provide the PILSMRK
parameters § and @, where § =diag(D) and D, @ are the matrices in (1.9), for both the
Crout approach (i.e. PILSMRK(L,I)) and the Schur-Crout approach (i.e. PILSMRK(L,U)).

s=2, k=2
gL = [0.39038820320221 1.00000000000000 |
c - —0.04671554852736 1.04671554852736
o —0.02010509586877 1.02010509586877
4 = 0.40044075113659 —0.05676809646175
0.77072385847003 0.20917104566120
Crout:
§T = [0.40044075113659 0.31843196932797 |
B 1.00000000000000 0
Q = 9.39806495685529 1.00000000000000
Schur-Crout:
§T = [0.36028586267747 0.35392212182843 |

0.06418485435680 0.05604152383747
Q = 0.99793802636797 0.99842843890084

Appendix
s=2, k=3
I =
G =
A =
Crout:
T =
Q =

§T =

Crout:

§T =

Q:

Schur-Crout:

&7 =

[

0.42408624230810

0.01290709720739
0.00354588047065

0.38745055226697
0.77239469511979

0.38745055226697

1.00000000000000
7.19743219492460

0.33129449207677

0.08083975113162
0.99672711141866

0.09878664634426

0.00087353889029
0.00062121019919
0.00032939714868
0.00003663563426

0.11996670457577
0.26010642038045
0.23561500946812
0.24141835002666

0.10617138884400

0
0
0
1.00000000000000

0.17879165196884

—0.05047735457027

0.17096598389037
—0.15139062605533
—0.97226722014607

1.00000000000000

—0.10843463813621
—0.04623386039657

—0.04598475368028
0.18846320542493

0.28013523838816

0
1.00000000000000

0.32761955124138

0.07616492879483
0.99709523297510

0.43388702543882

1.00087353889029
0.99937878980081
1.00032939714868
1.00003663563426

0.03384322082318
0.20159324902943
0.41088455735437
0.38984924120599

0.27770096849016

0
0
0.38896861370956
0.92125100681023

0.15567835604316

—0.05698986733483

0.17933373843615
—0.08731023751861
—0.97824766174222

1.09552754092881
1.04268797992593

0.80169299888049

0.01835753398261
—0.03956525951247
0.17597260265111
0.31101721961059

0.27497060030028

0

0.00220678551539
—0.38581432071631
—0.92257381278026

0.18725864804630

0.04780729735701
—0.16592112501907
0.17251778528806
0.96975370911955

1.00000000000000

—0.00656791028123
0.01237382574059
—0.02110856774179
0.05767855352250

0.11996670457577

0.01481904140434
—0.02486729636785
0.05312025222596
0.99816844890362

0.18660124038403

0.04801402184956
—0.16634392504346
0.17091936180350
0.96995408348419

20

]

]

REFERENCES 21

s=4, k=3
g = [0.10504182884419 0.44825417107884 0.80977028814179 1.00000000000000]
r 0.00007487445528 —0.00195646912651 1.00188159467123
c - —0.00007345206497 0.00148038414152 0.99859306792346
o 0.00003966973124 —0.00083011136249 1.00079044163125
L 0.00000077039880 —0.00008665832447 1.00008588792568
- 0.12388725564952 —0.03052720746880 0.01502960651127 —0.00515454606376
4 - 0.27600575210564 0.19832624728391 —0.03534802573852 0.01060367743938
- 0.24659262259186 0.41336961213203 0.16850574024079 —0.01944845872291
0.25397302181219 0.39037260118042 0.30064393200968 0.05492532747083
Crout:
§T = [0.09980104557325 0.26112476902731 0.26633715617793 0.12388725564952]
0 0 0 0.01885332656568
0 = 0 0 0.00429974732457 —0.03652952061848

0 0.38485479574542 0.39111661588660 0.09232717942550
1.00000000000000 0.92297713199827 0.92033108442036 0.99487981090186

Schur-Crout:

§T = [0.17281106755693 0.15348751145786 0.18030166423062 0.17980311756297 |
—0.03747602767829 —0.04253832729434 0.03538720965186 0.03552524964325
0.15438230915055 0.16281308949598 —0.14969201305536 —0.15002487334226
Q —0.16907928673314 —0.11582715575719 0.18786790085145 0.18664755906307
—0.97271467798559 —0.97891085323893 0.97007509938672 0.97025418458887
REFERENCES
[BHB92] Peter N. Brown, Alan C. Hindmarsh, and George D. Byrne. VODE: A
variable coefficient ODE solver, August 1992. Available via WWW at URL
http://www.netlib.org/ode/vode.f.
[Bin85] Zhou Bing. A-stable and L-stable block implicit one-block methods. Journal of
Computational Mathematics, 3(4):328-341, 1985.
[But76] J. C. Butcher. On the implementation of implicit Runge-Kutta methods. BIT,

16:237-240, 1976.

[CGGT91] B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan, and S. M.

[Cra94a]
[Cra94b]

[GS69]

[HMY6]

Watt. Maple V Language Reference Manual. Springer-Verlag, New York, 1991.
Cray Research, Inc. CF77 Commands and Directives, SR-3771 6.0 edition, 1994.

Cray Research, Inc. UNICOS Performance Utilities Reference Manual, SR-2040
8.0 edition, 1994.

A. Guillou and J. L. Soulé. La résolution numérique des problémes différentiels aux
conditions initiales par des méthodes de collocation. R.I.R.O., R-3:17-44, 1969.

P. J. van der Houwen and E. Messina. Parallel linear system solvers for Runge—
Kutta—Nystrom methods. Technical Report NM-R9613, CWI, Amsterdam, 1996.
Submitted for publication.

REFERENCES 22

[HNW93]| E. Hairer, S. P. Ngrsett, and G. Wanner. Solving Ordinary Differential Equations

[Hor76]

[HS95]

[HS96]

[HW91]

[HW95]

[LN8Y)

[LSV96]

[Nev85]

[Pet91]

[Sch94]

I: Nonstiff Problems. Springer-Verlag, second revised edition, 1993.

E. H. Horneber. Analyse nichtlinearer RLCU-Netzwerke mit Hilfe der gemischten
Potentialfunktion mit einer systematischen Darstellung der Analyse nichtlinearer
dynamischer Netzwerke. PhD thesis, Universitat Kaiserslautern, 1976.

P. J. van der Houwen and J. J. B. de Swart. Triangularly implicit iteration methods
for ODE-IVP solvers. Technical Report NM-R9510, CWI, Amsterdam, 1995. To
appear in: STAM Journal on Scientific Computing, 18(1), January 1997.

P. J. van der Houwen and J. J. B. de Swart. Parallel linear system solvers for
Runge-Kutta methods. Technical Report NM-R9616, CWI, Amsterdam, 1996. To
appear in: Advances in Computational Mathematics.

E. Hairer and G. Wanner. Solving Ordinary Differential Equations II: Stiff and
Differential-algebraic Problems. Springer-Verlag, 1991.

E. Hairer and G. Wanner. RADAUS, September 1995. Available via WWW at
URL ftp://ftp.unige.ch/pub/doc/math/stiff/radau5.f.

I. Lie and S. P. Ngrsett. The stability function for multistep collocation methods.
Numer. Math., 57:779-787, 1989.

W. M. Lioen, J. J. B. de Swart, and W. A. van der Veen. Test set for IVP solvers.
Report NM-R9615, CWI, Amsterdam, 1996. WWW version available at URL
http://www.cwi.nl/cwi/projects/IVPtestset.shtml.

O. Nevanlinna. Matrix valued versions of a result of Von Neumann with an appli-
cation to time discretization. J. Comput. Appl. Math., 12 & 13:475-489, 1985.

L. R. Petzold. DASSL: A Differential/Algebraic System Solver, June 1991. Avail-
able via WWW at URL http://www.netlib.org/ode/ddassl.f.

S. Schneider. Intégration de systémes d’équations différentielles raides et
différentielles-algébriques par des méthodes de collocations et méthodes générales
linéaires. PhD thesis, Université de Genéve, 1994.

