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ABSTRACT

For implicit Runge—Kutta methods intended for stiff ODEs or DAEs, it is often difficult to embed a local
error estimating method which gives realistic error estimates for stiff/algebraic components. If the embedded
method’s stability function is unbounded at z = oo, stiff error components are grossly overestimated. In practice
some codes “improve” such inadequate error estimates by premultiplying the estimate by a “filter” matrix
which damps or removes the large, stiff error components. Although improving computational performance,
this technique is somewhat arbitrary and lacks a sound theoretical backing. In this scientific note we resolve this
problem by introducing an ¢mplicit error estimator. It has the desired properties for stiff/algebraic components
without invoking artificial improvements. The error estimator contains a free parameter which determines the
magnitude of the error, and we show how this parameter is to be selected on the basis of method properties.
The construction principles for the error estimator can be adapted to all implicit Runge—Kutta methods, and a
better agreement between actual and estimated errors is achieved, resulting in better performance.
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1. Introduction

We shall consider the problem of estimating the local error in a single step when an implicit Runge—
Kutta method (IRK) is applied to a stiff system of ordinary differential equations

y'=Ff);  y0)=y, t20, (1.1)
where f : R? — R?. Using standard notation, [HW96b], we write an s-stage IRK (A,b) in the form

Y = 19yn+h(AcDF(Y), (1.2)
Ynt1 = Yn+t h(bT ® I)F(Y) ,

where y,, approximates y(t,). Further, h is the stepsize, Y is the sd—dimensional stage vector whose
s component stage vectors Y; approximate y(t, + c¢;h). The abscissae are defined by ¢ = Al, with
1=(1,1,...,1)T. Finally, F stands for the component-wise evaluation of f, i.e.

F(Y)=(f(M)" f(¥2)h, ..., F(Y) 1)

By solving the nonlinear system (1.2) we obtain Y and compute y,4; from (1.3). (In this note we
leave the option of solving for the stage derivatives F(Y") aside.)

The primary means to control the accuracy of the computational process is to vary the stepsize. In
order to do this we need estimates of the error committed in each individual step, the local error. Let
9(t; 7,m) denote a solution to the differential equation with initial value y(7) = 7. Then the local error
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in Ynt1 is € = Ynt1 — §(tn+1; tn, yn). It is estimated by computing a second approximation, §,+1, to
J(tnt1;tn, Yn). In embedded IRK methods, this is obtained by taking another linear combination b of
the stage derivatives.

2. Error estimation in RADAUS5

Because of difficulties in finding b such that the order of the error estimate is suitable, one may have
to introduce extra parameters. Let us consider the widely used Radau ITa methods, [HW96b, p.123],
where the following formula for g, is used:

Gt = yn +h (bof(ya) + (7 © DF(Y)). (2.1)

Here by is a free parameter and b is an s—dimensional vector, which is determined such that ¢, is
of local order s + 1, i.e., b must satisfy the order conditions

Cb=(1-by,1/2,1/3,...,1/s)".

The s x s matrix C' has entries ¢;; = c;'-_l. Note that putting by = 0 in (2.1) would by the order

condition lead to the same formula as (1.3); hence bo # 0. Therefore at least one extra parameter is
necessary to obtain a nonzero error estimate.
The estimate € is now computed as

€=Ynt1 — Unt1, (2.2)

and y,11 is accepted as an approximation to y(t,+1) if ||€|| is less than the specified tolerance. As e
is dependent on the stepsize, its ratio to the tolerance is also used to compute the next stepsize.

Most IRKs are constructed in such a way that they are at least A—stable. However, the reference
formula (2.1) is normally not A-stable. Consequently, ||¢|| can be very large due to large stiff error
components. In practice this is typically the case, since IRK methods are indeed intended to solve
stiff problems or DAEs.

In RADAUS5, [HW96a], which is an implementation of the 3—stage Radau Ila method, Hairer and
Wanner use the following remedy, [HW96b, p. 123], which is attributed to Shampine [SB84]. A
modified error estimate € is constructed from

é=(I—~hJ) e, (2.3)

in which ¢,4; is computed from (2.1) with by = v, the single real eigenvalue of A. The matrix
(I —~hJ)™!is then available and factorized from the Newton iteration used to solve (1.2). To see the
effect of this transformation, consider the test equation ¥’ = Ay; we now have é - —1 as hA — oo,
as opposed to € — oco. The purpose of the premultiplication by (I —yhJ)~! is thus to keep the error
estimate bounded also for large values of h by filtering out stiff error components.

3. Case study: The implicit Euler method

The filtering technique has also been used in other contexts where it has a theoretical foundation in
terms of the map from a residual to the corresponding error. In the context above, however, it is a
trick—albeit a necessary one—in order to restore the full potential of the Radau Ila method.

In order to see where and how the filtering is justified, we consider the simplest Radau ITa method,
i.e. the implicit Euler method

Ynt+1 = Yn + hf(yn+1) . (31)

If we insert the local solution §(t; t,,y,) into this discretization, there results a defect, or local residual

6:
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G(tny1) = Yn + hf(G(tns1)) — 0. (3.2)

We find the local error € = yny1 — §(tnt1;tn,yn) by subtracting (3.2) from (3.1) and obtain an
algebraic relation between the residual and the error:

€ = hf(itner) +€) = R (§(tas1)) + 5. (3.3)

Linearizing and solving for € we obtain the error/residual relation,
e= (I —hJ)™'s. (3.4)

This equation is the mathematical justification of “filtering”. As is well-known, there is an important
conceptual as well as numerical difference between a residual and its corresponding error—the defect
and error are elements of different spaces. Although this equation is well established, [HNW93, p.
369], it is frequently overlooked. The reason seems to be an overemphasis on asymptotics; as hJ — 0
we have € = 4, i.e. in the nonstiff case it does not matter if one estimates € or §, but in the stiff case
the difference is known to be very significant. This observation has led to the view that a “poor” error
estimate can be improved by the premultiplication of a filtering matrix. Even if this works in practice,
such arbitrariness in error estimation ought to be replaced by a search for qualitatively correct error
estimates. Note that in embedded IRK methods, filtering is in principle never justified since one
normally estimates a local error, never a local residual. The situation may, however, be different for
defect estimation.

In the next section we suggest an error estimate which has an inherent damping of stiff error
components as a design criterion. No extra filtering is required or permitted (as it cannot be justified).
As a starting point we note that the poor asymptotic behavior of € as defined by (2.1) is caused by
(2.1) being essentially an explicit formula. Thus, §,+1 is computed from old data, the stage derivatives
and the explicitly calculated hf(y,). This turns the error estimator formula effectively into an explicit
method, and consequently all hopes for a proper behavior for large values of h are in vain.

4. An implicit error estimate

Instead of (2.1) we propose to use an implicit reference formula of the structure

Bt = U+ b (bof () + (BT @ DEY) +7f(nr)) (4.1)

where v is such that (I — vyhJ)~! is available from the (transformed) Newton process used to solve
for Y from (1.2). Solving §,+1 from (4.1) by a modified Newton process leads to the recursion,

0 = g =y = (boflyn) + 67 © DFY) +77GEL))
s = - (=T

() _

The natural starting value is ¢, /; = yn+1. Since we are computing an error estimate we do not need
(1)

high accuracy and may consider the first Newton iterate g, [, as the reference formula itself. This
yields

I = o + B =R T (7 =67) © DFY) +bof (yn) + 7/ (1)) -

(1)

In this formula, we determine b such that U,,+1 is of local order s + 1, which means that we require

Cb=(1-by,1/2,1/3,...,1/s)T —~1. (4.2)

The parameter by is free but required to be nonzero as taking bo =0 yields Jp4+1 = yn+1. For methods
with ¢, = 1 we have C711 = e, and
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3N = ynyr + (I — yhJ) ((_Boe{c—T ® DF(Y) + by f(yn)) . (4.3)
Consequently, the error estimator formula
€ = Yn+1 — 3721.21
= boh(I —vh) "t (7T @ DF(Y) = F(yn)) (4.4)

becomes a homogeneous function of bo. In other words, the choice of by determines the magnitude of
the error estimate.
In general, we define the error estimator formula by

€ = Yny1— 37&21
= (I —=hd) 7 (67 =6) & DF(Y) = bof(yn) =7/ (Gat1) ) - (4.5)
Now consider the test equation y' = Ay, for which
i = ROy, zi=hAL

The value of R(l)(oo) of the reference formula is known to be of relevance to the size of the estimated
error in the stiff components. Although this is not a matter of stability, it is desirable that R(l)(oo)
is fairly small. A straightforward derivation yields

RM(2) = R(z) +

— ((zST BT (I — zA) "M+ bo + ’yR(z)) , (4.6)

where R(z) is the stability function of the implicit Runge-Kutta method. If A is nonsingular, we thus

obtain

lim RO(z) = -2

z—00 "y

(4.7)

Thus the stiff error components are damped if |50/’y| < 1. This damping is desirable as the error
estimator will “see” a stiff error component from the previous step’s iteration error multiplied by
bo/7|-

For an s—stage Radau ITa method one can easily give an explicit formula for our new error estimator.
If we write R(z) = Pr(z)/Qr(z) and normalize Pr and Qg such that Qg(z) is monic (e.g. for s = 3
we have Qg(z) = 2% — 922 + 36z — 60), then by (4.6), R(z) — R (z) is a rational function with
denominator (1 — vz)Qgr(z). Thus the degree of the denominator is s + 1. By (4.7) the numerator
then has degree at most s+ 1. As the local order of the error estimator is s+ 1, however, the numerator
only contains a single power of z, viz. z°t1. It follows that

AW (o b2
R(z) — R\Y(2) A=72)0n(2) (4.8)
For the 3-stage Radau Ila, R(z) — R(")(2) thus has a four—fold zero at z = 0 and the same poles as
R(z) with the exception that z =1/~ is a double pole.

Remarks. Note that if b7 = el A, where e, is the s'!' canonical basis vector of R?, then (4.5) and
(2.3) differ only by a factor by/y. The condition b% = e A (“stiff accuracy”), holds for all Radau
ITa methods as well as for the Lobatto Illa and IIIc methods. For these methods our implicit error
estimator justifies filtering by providing an estimate with the same effect. For other methods, however,
one must be more careful. Thus e.g., it is incorrect to use filtering for the implicit midpoint method,
which is a Gauss method, but harmless to use it for the trapezoidal rule, which falls into the Lobatto
ITIa category. In order to avoid mistakes, we suggest that the construction of implicit estimators is
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considered to be the normal route instead of filtering. Finally we remark that even in cases when
the error estimator formula is not a homogeneous function of I;O, we may select the magnitude of the
error estimator with a multiplicative factor; we may consider E(z) = 8(R(z) — R (z)) as the error
estimator, where the parameter 6 is to be carefully determined so that the estimator gives a proper
approximation to the actual error. This technique may be of particular importance for DAEs.

5. Choosing bo

We shall finally discuss the choice of the free parameter 50, and limit ourselves to methods with ¢, = 1
such as Radau ITa methods. Specifically, we will motivate a suitable choice of I;O for the 3—stage, 5th
order Radau ITa method. For such methods the new error estimator is a homogeneous function of 50,
i.e. by determines the magnitude of the error estimate.

We argue that the most important design goal is that the error estimator does not significantly
underestimate the error. On the other hand, a too large value of by will degrade performance. A
small value is also desirable to reduce R(l)(oo). To find a suitable value, we model the error of the
Radau ITa method by first considering the linear test equation with z = hA. The actual relative local
error, |R(z) — €*|, is investigated on two domains: A, where the method operates in its asymptotic
regime and relative accuracy is high, and B, where the method is able to yield accurate results. B is
considerably larger than A.

Obviously A and B must contain a neighbourhood of the origin. We take A to be a disk of radius p,

A(p) = {z€C : || < p}.

The selection of the radius is based on several criteria. First, A(p) must exclude the poles of R(z)
which for the 3—stage Radau Ila are located at 1/v =~ 3.6378 and 2.6811 + 3.0504 i, respectively. By
(4.8), the poles of the reference formula R()(z) are then also excluded. Furthermore, A(p) should
cover the central portion of the order star of the method, [IN91, p. 7], as this corresponds to the
domain of high relative accuracy. Last, the intersection with the imaginary axis is an important
criterion of relevance for oscillatory systems. To resolve an angular frequency of w, the stepsize must
satisfy hw < 7 by the sampling theorem. In practice, however, the numerical method is unable to
accurately resolve this frequency with stepsizes exceeding hw = /2. Based on these considerations,
we have taken p = m/2. The selected asymptotic domain A(7/2) meets all the criteria above.

B(p) should contain A(p) as well as a large portion of the negative halfplane. Again, high frequencies
cannot be resolved, but B(p) should cover the negative real axis if the method—like the Radau ITa—is
able to produce accurate solutions there. We have chosen to consider the parabolic domain

Blp)={z=z+iw : < (p—w)(p+w)/p},

and A(w/2), B(w/2) and the order star of R(z) are plotted in Figure 1. The Radau Ila method is
able to provide reasonable accuracy inside B(7/2). The method is still of use in large portions of the
complex plane outside B(7/2), e.g. in all of C~; A-stability implies that |R(z)| < 1 on C~ just like
le*] < 1, even if the relative local error |R(z) — e*| cannot be considered to be “small” on all of C~.

As R(z) — e is an analytic function in the domain of accuracy B(w/2), max |R(z) — e?| is attained
on 0B(7/2) by virtue of the maximum modulus theorem. Thus we find that max |R(z) —e?| = 0.067 in
B(x/2), and we may choose by (i.e. the magnitude of the error estimator) so that max |R(z) — RV (z)]
comes close to the maximum of the actual error. This suggests choosing I;O/'y = 0.067, or by ~ 0.018,
and in Figure 2 (left), we plot |R(z) — e7| and the error estimator |R(z) — R (z)| on 8B(x/2) for
by = 0.02. Beacuse the maxima may not occur at the same points, we verify in Figure 2 (right) that
the error estimator with its chosen magnitude does not exhibit any significant underestimation of the
error on the negative real axis.

To investigate the new estimator in the asymptotic regime, we have plotted |R(z) — e*| and
|R(z) — RM)(z)] on dA(x/2) in Figure 3 (left), showing that their magnitudes are similar there.
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omega

: L
-pi —pil2 0 pil2 pi
X

Figure 1: Plots of 0.A(7/2) and 90B(w/2), together with the order star of the 3—stage Radau Ila method.
Poles and zeros of R(z) are denoted by X and o, respectively.

U] U]
1E+0 ‘ ‘ 1E+0 : :

1E-6 - q 1E-6 -

1E-12

. . 1E-12 . .
1E-1 1E+1 1E+3 -1E-1 -1E+1 -1E+3
omega X

Figure 2: Plots of relative error |R(z) — e*| (solid) and error estimator |R(z) — R™(z)| (dash-dotted) on
0B(m/2) for 1072 < w < 10® (left) and on the negative real axis for —10% < z < —107? (right). The plot on
the right clearly shows slopes of 6 and 4 when |z| < 1, and a slight underestimation of the error near z = —10.
The plots were obtained using IA)O = 0.02 in order to match the levels of the error and its estimate.

Note that because the error estimator has lower order than the method, it is still likely to significantly
overestimate the error at sharp tolerances. This is seen in Figure 3 (right), where we study the ratio

R(z) —¢*

K& = 20 —r0)

(5.1)
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and have plotted
k(p) = max |K(2)] (5:2)

lzI<p
for 0 < p < /2. The plot suggests that the error estimator underestimates the error outside A(1.3).
This underestimation is benign, however, as verified by Figure 4, which shows the level curves |K(z)| =
k for k = 0.2(0.2)1.2. Thus, the underestimation occurs only in the right half-plane for |z| > 1.3,
where, in the absence of dissipativity, the method is less likely to proceed with large steps.

o (U]

k(rho)

0 pi 0 ‘ pil2
phi rho
Figure 3: Error |R(z) — ¢*| (solid) and error estimator |R(z) — R(z)| (dash-dotted) for by = 0.02 on
DA(r/2) = {z = me®/2; 0 < ¢ < 7} (left), and the maximum ratio k(p) = max |(R(z) —e*)/(R(z) — RV (2))]
for |z| < p and 0 < p < 7/2 (right).

Let us now consider linear constant coefficient systems
y'=Jy

solved with the method pair (R, R(l)). Because the error estimator is a rational function analytic in
A(p), it follows from the spectral theorem, and the maximum modulus theorem, that the estimated
relative error in the system is bounded by

IR(hT) = R (hJ)|2 < pmax |R(z) = R (2)] = Ap)

for all matrices J with ||h.J||2 < p. Since the error estimator has local order 4, we have A(p) = O(p*).
(From Figure 4 we see that the estimated error exceeds the actual error on .A(1.3), and in the following
we may therefore take 0 < p < 1.3. By formally approximating the matrix exponential e®’ by a
polynomial Pey,(hJ) such that ||e"/ — P, (hJ)||2 < 6 on A(p), it follows that the actual relative error
in the system is bounded by

IR(AT) = "]l |R(hJ) = Pexp(hJ)2 + 6

<
< max |R(z) — Pexp(z)| + 6
lz|<p
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pil2-

omega
o
T

—pil2F

.
—-pil2 0 pil2

Figure 4: Level contours of |R(z) — e*|/|R(z) — RY)(z)| = & for k = 0.2(0.2)1.2. The shaded area is A(7/2).
The plot was obtained for I;o =0.02.

< max|R(z) —e*|+ 26
|z|<p

< max|R(z) — RV (z2)| + 26
|z[<p

= Ap)+26
for all J with ||hJ||2 < p. Note that § can be made arbitrarily small. Thus we have a bound on the
actual error in linear systems, in terms of the error estimator, uniform with respect to the conditioning

of J.

It is also of interest to bound the actual error directly in terms of the estimated error, i.e. we would
like to find a constant C'(p) < 1 such that for all vectors y,

|(B(RT) =" ylla < CIR(AT) = BV (R))yll>- (53)
This can be obtained in a similar manner. By (4.8) and (5.1),

K(2) = R(z) —e* _ (vz2=1)(Pr(2) = Qr(2)e?)
R(z) — RM(z) by 2 '

Note that Pgr(z) — Qr(2)e* = Qr(2)O(z%), hence

1
K(z) = (2 = 1@Qr(2) 0(2?)
bo
because of the pole—zero cancellation at the origin. Thus K(z) is regular in A(p) with a double zero
at the origin; this is also clearly seen in Figure 3 (right). It follows from (5.3) by the pole—zero
cancellation that
Clp)= sup [K(hJ)|2.
lhJll2<p

Now, in order to apply the spectral theorem, we again approximate e/ by P.y,(hJ) and consider

instead
K() = (vz = 1)(PR(Z;) —4QR(Z)PeXp(z)) |
0<%
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By taking the degree of P.y,(2) suitably high, we have ||[K(hJ) — K (hJ)||2 < 6, therefore

1K (DIl < K (hT)]2 + 6
< max|K(z)|+6
lz[<p
< max|K(z)|+ 26
|z[<p
= k(p)+26

for all J with ||hJ||2 < p. Thus, the actual error is never underestimated on .A(1.3) for linear constant
coefficient systems.

We finally remark that the latter result depends on the pole—zero cancellation at the origin. This
implies that the result is not valid for more general classes of problems. This comes as no surprise,
however, as the error estimator does not contain the same elementary differentials as the actual error;
it is therefore not possible to prove that the error estimator is an upper bound for the error in general
nonlinear problems.

Concluding remarks. Since the RADAUS5 code uses by = v, [HW96a], our new estimator with
I;O = 0.02 has approximately 14 times smaller magnitude without significant underestimation of the
error. This leads to approximately 70% larger steps, a better agreement between requested and
achieved accuracy, and, for a given tolerance, improved performance.

The design process above has also been used in the code PSIDE, [SLV97], which is based on the
4-stage Radau ITa method, and obtained bo = 0.01. Practical experience with these error estimators
is affirmative, although extensive testing must be reported elsewhere.
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