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ABSTRACT

The objective of this work is to provide a methodology for approximating globally optimal Fekete point con-

�gurations. This problem is of obvious interest in numerical mathematics and scienti�c modeling. Following a

brief discussion of the pertinent analytical background, Lipschitz global optimization (LGO) is applied to de-

termine {i.e., to numerically approximate{ Fekete point con�gurations. Next to the optimization approach, an

alternative strategy by formulating a set of di�erential-algebraic equations (DAEs) of index 2 will be considered.

The steady states of the DAEs coincide with the optima of the function to be minimized. Illustrative numerical

results {with con�gurations of up to 150 Fekete points{ are presented, to show the viability of both approaches.

1991 Mathematics Subject Classi�cation: 65K10, 90C05, 90C31, 65L05.

Keywords and Phrases: Elliptic Fekete points; Lipschitz global optimization; LGO program system; DAE

solvers; IVP algorithms, numerical examples; prospective applications.
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1. Introduction

We shall consider the following classical problem: given the unit sphere (ball) B in the Euclidean real

space IR3, and a positive integer n, �nd the n-tuple of points (unit length vectors)

x(n) = fxi; i = 1; : : : ; ng ; xi = (xi1; xi2; xi3)

on the surface S2 of B, which maximizes the product of distances between all possible pairs fxi; xjg,

1 � i < j � n. In other words, we are interested in �nding the global maximum of the function

fn(x(n)) =
Y

1�i<j�n

kxi � xjk ; xi 2 S2 ; (1.1)

where k k indicates the Euclidean norm. A set of vectors x�(n) = fx�i ; i = 1; : : : ; ng, where x�i 2 S2

which satis�es the relations

f�n = fn(x
�(n)) = max

x(n)
fn(x(n)) ; xi 2 S2; (i = 1; : : : ; n) ; (1.2)

is called elliptic Fekete points of order n (Fekete, 1923). We shall name (1.2) the Fekete (global

optimization) problem.

Let us note �rst of all that {by the classical theorem of Weierstrass{ the optimization problem

(1.2) has globally optimal solution(s). Second, although {for obvious reasons of symmetry{ there are
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in�nitely many vector sets x�(n) which satisfy (1.2), the solution can easily be made unambiguous

(as will be seen in Section 3). Consequently, we shall analyze the problem of �nding x�(n), and the

corresponding function value f�n := fn(x
�(n)).

The analysis and determination of elliptic Fekete point sets has been of great theoretical interest for

several decades: consult the original references Fekete (1923); Szeg�o (1921,1924); or, more recently,

for instance, Hille (1962); Tsuji (1959); Shub and Smale (1993). Apparently, it also represents a

longstanding numerical challenge: Pardalos (1995) states it as an open problem. Additionally, because

of the direct relation of the formulation (1.2) to models in potential theory (Tsuji, 1959), the solution

of the Fekete problem (and its possible modi�cations) has also important practical aspects: we shall

return to this point later.

We will start with a short overview of some analytical results concerning Fekete points and related

topics, followed by a description of the chosen parametrization of Fekete point sets. In Sections 4 and

5 the Lipschitzian Global Optimization (LGO) approach and the formulation in terms of Di�erential-

Algebraic Equations (DAEs) will be discussed, respectively. We also give a summary of the numerical

results and the corresponding performances of both approaches in Section 6. The last section presents

some concluding remarks and future perspectives.

2. A brief review of some analytical background

The following notes are largely based on the works of Tsuji, Shub and Smale mentioned above.

Let D be a bounded closed set in IR3 which contains in�nitely many points. Taking n vectors

z1; :::; zn from D, de�ne (cf. (1.1)) z(n) = fz1; : : : ; zng,

Vn(z(n)) :=
Y

1�i<j�n

kzi � zjk ; (2.1)

and

V �n := Vn(z
�(n)) := max

z(n)
Vn(z(n)) : (2.2)

De�ne now the normalized value of V �n by

(n2)dn := dn(D) :=
p
V �n > 0 ; (2.3)

then the following general result {due to Fekete (1923){ is valid.

Theorem 2.1 dn+1 � dn; therefore �(D) = limn!1 dn exists.

Proof: See Tsuji (1959), p. 71.

De�nition 2.1 The quantity �(D) is called the trans�nite diameter of the set D.

The apparent connection of Fekete's trans�nite diameter with certain problems of packing {i.e.,

`�nd a set of points in D which are located so that no two are very close together'{ is discussed, e.g.,

by Lubotzky, Phillips, and Sarnak (1986), as cited by Shub and Smale. In this context, they also refer

briey to the connection of the trans�nite diameter and the so-called elliptic capacity. In problems

of �nding electrostatic equilibria, the resulting point con�gurations {modeling repellent bodies{ are

located on a corresponding equipotential surface. Obviously, physically stable, minimal energy con-

�gurations are of great importance also in other areas of natural sciences, most notably, in physics

and chemistry. Although both the topology of the potential surface in question and the functional

form (the underlying analytical description) of characterizing the `goodness' of point con�gurations

may vary, the result described by Theorem 2.1 bears direct relevance to such problems, under very

general conditions.
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Shub and Smale (1993, p. 9) remark {citing Tsuji's work{ that the trans�nite diameter of the sphere

of radius 1
2
equals e�

1
2 . This directly leads to the estimate (recall (1.2))

(n2)dn(S
2) =

p
f�n � 2e�

1
2 = 1:21306132::: ; (2.4)

the approximation is valid for su�ciently large n. Theorem 2.1 immediately provides also a lower

bound for the solution of the maximization problem in (1.2):

f�n �
�
2e�

1
2

�(n2)
: (2.5)

This estimate shows the rate of increase of the global optimum value, as a function of the number of

Fekete points in the optimal con�guration. One can also use the estimate dn+1 � dn, which directly

leads to

f�n+1 � (f�n)
n+1

n�1 : (2.6)

The pair of relations (2.5)-(2.6) provides valid lower and upper bounds; (2.6) also bounds the rate of

increase of subsequent optimal function values in the Fekete problem.

Concluding this brief review of some essential analytical background, let us note �nally that Shub

and Smale also refer to the apparently signi�cant numerical di�culty of �nding the globally optimal

con�guration x�(n), for a given {not too small{ n. Di�culties arise due to several reasons: viz., the

above mentioned various symmetries of the function fn, and {more essentially{ its inherent multiex-

tremality. Obviously, fn(x(n)) equals zero, whenever (at least) two points xi coincide. Furthermore

{see (2.5){ its maximal value very rapidly increases as a function of n. These properties together

lead to functions fn which tend to change in an extremely `abrupt' manner, making any perceivable

numerical solution procedure inherently tedious.

In the following two sections, �rst we shall introduce a suitable problem representation, and then

consider a global optimization approach to solving Fekete problems (approximately), in a robust and

numerically viable sense.

3. Unique parametric representation of n-tuple point con�gurations on S2

It is a natural approach to represent arbitrary point con�gurations on the surface, S2, by introducing

spherical coordinates. Let us denote the three unit vectors in the usual Cartesian coordinate setting

by e1, e2, and e3. Furthermore, for xi 2 S2, let �i denote the angle between xi and its projection

onto the plane de�ned by e1 and e2; and �i denote the angle between this projection and e1. Then

the n-tuple x(n) {consisting of corresponding unit length vectors xi, i = 1; : : : ; n{ is described by

xi1 = cos(�i) cos(�i) ;

xi2 = sin(�i) cos(�i) ;

�
0 � �i < 2�

��=2 � �i � �=2

�
(3.1)

xi3 = sin(�i) :

We shall also use the equivalent parametrization, with the auxiliary variables �i

0 � �i < 2� ;

�1 � �i � 1 ; (��=2 � �i := arcsin(�i) � �=2) : (3.2)

This results in replacing the calculation of xi3 in (3.1) simply by xi3 = �i. The reparametrization has

the advantage that if �i and �i are taken from a uniform distribution from their domains, then the

corresponding points xi have a uniform distribution on the sphere. This is important for a random

search as it is used throughout the global search phase of LGO.
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In order to eliminate rotational symmetries, one can select and �x three angles in the spherical

representation (3.1) of x(n). We choose

�1 = �1 = �2 = 0 (i.e., �1 = �1 = �2 = 0) : (3.3)

Geometrically, this means that the unit vector e1 = (1; 0; 0) is always a component of the optimized

Fekete point con�guration. Additionally, at least another (the second) vector in the Fekete set sought

belongs to the fe1; e2g-plane. This convention e�ectively reduces the number of unknown parameters

in x(n) to 2n� 3.

4. Applying LGO approach

Since S2 is bounded and closed, and the objective function fn(x(n)) in (1.2) is continuously di�eren-

tiable, it is also Lipschitz-continuous on S2 � S2 � : : : � S2 =
�
S2
�n
. In other words, for any given

n and corresponding fn, there exists a Lipschitz-constant L = L(n) such that for all possible pairs

x(n); ex(n) from �
S2
�n

we have

jfn(x(n)) � fn(ex(n))j � Lkx(n)� ex(n)k
�

(4.1)

the norm, kx(n)� ex(n)k
�
on
�
S2
�n
, is a sum of Euclidean norms.

As mentioned earlier, the function fn is expected to become very `steep' in certain neighborhoods

in
�
S2
�n
, especially when n becomes large. The complicated structure of function fn can also be

simply visualized, observing that the derivative of fn has a non-polynomially increasing number of

zeros {as a function of n{ indicating local minima, maxima and saddle points. Consequently, we

shall consider the Fekete problem (1.2) as an instance from the broad category of Lipschitz global

optimization problems, without further {more narrow, and algorithmically exploitable{ speci�cation.

Note additionally that only simple lower and upper bound (`box') constraints are explicitly stated by

the parametrization (3.1)-(3.2).

The underlying global convergence theory of Lipschitz optimization algorithms is discussed in detail

by Hansen and Jaumard (1995), Horst and Tuy (1996), and Pint�er (1996a), with numerous references

therein. The latter monograph also presents details on implementing algorithms for continuous and

Lipschitz global optimization, and reviews a number of prospective applications and case studies.

The numerical results obtained on the basis of a program system called LGO {abbreviating Lipschitz

Global Optimization{ are given in Section 6 and compared with the results obtained via an alternative

approach which will be described in the next section. For more details on LGO, consult Pint�er (1995,

1996b, 1997).

5. Formulation for DAE approach

As already mentioned, we have used two approaches to approximate Fekete point sets numerically.

The previous section dealt briey with a global optimization approach. Another way to approximate

Fekete point sets is based upon the numerical solution of an index 2 system of di�erential-algebraic

equations (DAEs). For more details on DAEs see Brenan et al. (1989) or Hairer et al. (1996a). This

section starts with a derivation of the DAE formulation. We will show that the stable steady states of

these DAEs coincide with the optima of the function fn in (1.1). Some practical remarks concerning

the numerical implementation of this approach are also highlighted.

Let us consider a set of n repellent particles on the unit sphere. The coordinates of the i-th particle

are denoted by xi. Due to the dynamic behavior of the particles, these coordinates will be parametrized

by a time variable, t. The particles are restricted in such a way that they will stay on surface of the

the unit sphere in IR3; xi(t) 2 S2. We de�ne the repulsive force on particle i caused by particle j by

Fij =
xi � xj

kxi � xjk
: (5.1)



Computation of elliptic Fekete point sets 5

Note that the choice  = 3 can be interpreted as an electrical force a�ecting particles with unit charge.

Furthermore, we imply an adhesion force on the particles, due to which the particles will stop moving

after some time. Denoting the con�guration of the particles at time t by x(t) = fx1(t); : : : ; xn(t)g,

Lagrangianmechanics tells us that x(t) satis�es the following system of di�erential-algebraic equations:

x0 = q; (5.2)

q0 = g(x; q) +GT (x)�; (5.3)

0 = �(x); (5.4)

where q is the velocity vector, G = @�=@x and � 2 IRn. The function � : IR3n ! IRn is the constraint,

which states that the particles cannot leave the unit sphere:

�i(x) = x2i;1 + x2i;2 + x2i;3 � 1:

The function g : IR6n ! IR3n is given by g = (gi), i = 1; : : : ; n, where

gi(x; q) =
X
j 6=i

Fij(x) +Ai(q);

where Fij is given by (5.1). The function Ai is the adhesion force a�ecting particle i and is given by

the formula

Ai = ��qi:

Here, � is set to 0:5. Without this adhesion force, the particles would not stop moving, because the

system would preserve its energy. The term GT (x)� in (5.3) represents the normal force which keeps

the particles on S2.

Let us denote the �nal con�guration by bx = fbxi; i = 1; : : : ; ng. Since we know that the speed of

this �nal con�guration is 0, we can substitute q = 0 and x = bx in formula (5.3), thus arriving at

0 =
X
j 6=i

Fij(bx) +GT (bx)� ;

which is equal toX
i6=j

bxi � bxj
kbxi � bxjk = �2�ibxi : (5.5)

If we, on the other hand, take the logarithm (which is a monotonous function) of fn(x(n)) in

(1.1) and di�erentiate log(fn(x(n))) with respect to xi, then, by applying the method of Lagrange

multipliers, we know that fn has a (local) maximum at x, where x satis�es

ri log(fn(x)) =
X
i6=j

xi � xj

kxi � xjk2
= �ixi : (5.6)

Here, �i is the Lagrange multiplier. Comparing (5.6) and (5.5) tells us that computing bx for  = 2

gives the (local) optima of the function fn. In principle by solving the system (5.2) - (5.4) it is possible

to arrive at the global maximum by varying the initial values and the adhesion parameter �. However,

numerical experiments show that for n � 150, even with a constant � and a �xed strategy for choosing

the initial values, one obtains values for fn that satisfy the conditions (2.5)-(2.6) and are at least as

large as those obtained by the LGO implementation. (This will be shown in Section 6.)

Now we describe how the DAE system given by the equations (5.2) - (5.4) and  = 2 can be solved

numerically. Since (5.4) is a position constraint, the system is of index 3. To arrive at a more stable

formulation of the problem, we stabilize the constraint (see Brenan et al. (1989), p. 153) by replacing

(5.2) by



6 J�anos Pint�er, Walter Stortelder & Jacques de Swart

x0 = q +GT (p)�; (5.7)

where � 2 IRn, and appending the di�erentiated constraint

0 = G(x)q: (5.8)

The system (5.7), (5.3), (5.4), (5.8) is now of index 2; the variables x and q are of index 1, the variables

� and � of index 2.

We choose the initial positions xi(0) on the intersection of S
2 and the fe1; e2g-plane, except the �rst

particle, which is initially in (0; 0; 1). Choosing q(0) = 0 yields �(0) = 0 and �0i(0) = h2xi(0); qi(0)i = 0.

Consequently,

�00i (0) = h2xi(0); q
0
i(0)i

= h2xi(0); gi(x(0); q(0)) + 2�i(0)xi(0)i:

Requiring �00i (0) = 0 gives

�i(0) = �
hxi(0); gi(x(0); q(0))i

2hxi(0); xi(0)i
= �

1

2
hxi(0); gi(p(0); q(0))i:

The problem is now of the form

M
dy

dt
= w(y); y(0) = y0; (5.9)

with

M =

�
I6n 0

0 0

�
;

where I6n is the identity matrix of dimension 6n,

y 2 IR8n; 0 � t � tend ;

y = (x; q; �; �)T and w(y) = w(x; q; �; �) = (q +GT�; g +GT�; �;Gq)T :

Here, tend is chosen such that

jqi(tend)j < 10�14; 8 i 2 f1; 2; : : : ; ng: (5.10)

Numerical experiments show that if tend = 1000, then (5.10) holds for n � 150.

Solving the problem numerically leads to a phenomenon that one might call numerical bifurcation.

Assume that two particles xi and xj are close to each other at time t1 with xi;1(t1) > xj;1(t1). It may

happen that the numerical integration method applied with �nite error tolerance � computes a new

stepsize h� such that xi;1(t+h�) > xj;1(t+h� ), whereas the same method applied with error tolerance

~� results in a stepsize h~� for which xi;1(t + h~� ) < xj;1(t + h~� ). This means that for di�erent error

tolerances, the numerical integration method may compute paths of particles that di�er signi�cantly.

The occurrence of this phenomenon is irrespective of the scale of the error tolerance and can happen

for every value of n. Although it is more probable for larger values of n. However, the quantity of

interest here is (1.1) which is independent of the path that the particles followed to arrive at the �nal

con�guration.

To solve the DAE we use RADAU5 by Hairer and Wanner (1996b), which is an implementation of

the 3-stage implicit Runge{Kutta method of Radau IIA type. For more information related to this

code, we refer to Hairer and Wanner (1996a). RADAU5 can integrate problems of the form (5.9) up

to index 3.

As an example, Figure 1 depicts the solution obtained by RADAU5 for n = 20, the same solution

in the f�; �g-plane (cf. (3.1)) {after a rotation such that (3.3) is ful�lled{ is shown in Figure 2.

Remark: for n = 20 the DAE formulation of the Fekete problem is included in the Test Set for IVP

Solvers (see Lioen et al. (1996)).
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Figure 1: Final con�guration obtained with RADAU5 for n = 20. The large ball is

centered at the origin and only added to facilitate the 3-D perception.

  0 2*pi
−pi/2  

 pi/2  

alpha

be
ta

Figure 2: Final con�guration, as in Figure 1, where the Fekete points are given in the

f�; �g-plane. A rotation has been applied such that (3.3) is ful�lled.
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6. Numerical results and discussion

From the previous exposition it should be clear that the numerical determination of Fekete point

sets leads to rapidly growing computational demands which can easily become prohibitive. Therefore

{although `precise' globally optimal solutions have been sought{ the results reported in this section

should be considered as numerical approximations obtained with a reasonable computational e�ort,

for the purposes of this exploratory study. The individual solution times on a SGI workstation, Indy

with 4 194 Mhz R10010SC processors, start with a few seconds for both approaches up to 15 points

and lead to CPU times between 2 and 17 hours for n in the range of 100 to 150 Fekete points. Even

a powerful personal computer is too slow for such a task, memory limitations will become a serious

drawback for the DAE approach in case of increasing n. To give an impression: the size of the

executable �le for the DAE approach with 150 points was already 50 MB, while the LGO approach

comes up with an executable of 0.1 MB for the same number of Fekete points. The highest order term

of the storage required by RADAU5 is 4(8n)2 real numbers. This means that using double precision,

we need about 2 � 103n2 bytes of memory. For n = 150 this is about 45 MByte, which can be a

severe restriction on small computer systems. Concerning this comparison of the sizes {especially for

n � 50{ the LGO approach is favorite. Later on in this section we show a more thorough comparison

of the two approaches. Numerical tests can be performed for smaller number of points on a personal

computer or a workstation, but in order to give an overall comparison we did all the computations

on the above mentioned, powerful, 4 processor workstation. Faster machines are useful {and are

even available right now{ of course, but the essential computational complexity of the Fekete problem

remains exponential. Applying a similar global (exhaustive) search methodology to that of LGO, even

on a (say) ten thousand times faster machine, the hardware limitations could be easily reached. For

this reason, di�erent heuristic solution strategies need to play a role in solving Fekete problems for

large values of n.

Table 1 serves to summarize the results obtained on a workstation using the LGO version described

in Pint�er (1995) and the DAE approach.

Concerning the the results, several additional points should be mentioned; see also the notes pro-

vided in the table.

� For almost all cases the DAE approach gives a slightly better solution, although the di�erences

are not that big. Except for the above mentioned computer memory limitations, the DAE

approach performs somewhat better than the LGO approach (according to their given imple-

mentations). It should be mentioned here that this optimization problem is special because it

can be rewritten as a set of DAEs, for more general optimization problems the solution can not

be obtained with a DAE solver and a more general, e.g. LGO style, solver is indispensable.

� For the values n = 2; 3; 4 and 6, the exact analytical solution is trivial, or can be easily veri�ed;

with the exception of n = 2, however, all values in the tables resulted from numerical calculations.

Consequently, all entries are approximate values, except when stated otherwise.

� Concerning the LGO approach: since the function value f�n grows very rapidly as n increases,

and the resulting (overall) Lipschitzian problem characteristics are also rapidly becoming less

favorable. Therefore the value of fn(x(n)) has been directly optimized only up to n = 6.

Starting from n = 7, optimization using the original objective function form has been replaced,

by applying a logarithmic transformation.

� Concerning the LGO approach: `exact' (exhaustive) search has been attempted for the `small'

values n = 3; : : : ; 15. That is, up to n = 15, all entries have been calculated by fully automatic

LGO execution in which the stated global and local limits imposed on the allowed search e�ort

did not seem to be restrictive. (In particular, the bound on the number of allowable local search

steps has not ever been attained, indicating that the LGO search was completed by �nding a

solution `as precise as possible' under the given LGO parametrization.) In order to avoid very
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Table 1: Summary of the numerical results obtained with the described LGO and

DAE approach.

n 10log(f�(n))a (LGO vs. DAE) d(f�(n))b CPUc (LGO vs. DAE)

3 0.71568197d 0.715681882 1.732050808 0.32 0.02

4 1.27790594e 1.277906197 1.632993162 0.81 0.03

5 1.91980124 1.915913829 1.555894423 1.72 0.06

6 2.70926213f 2.709269961 1.515716566 3.11 0.17

7 3.55244136 3.553605389 1.476451904 5.51 0.29

8 4.52830887 4.528830580 1.451255736 8.29 0.49

9 5.59671545 5.597079893 1.430455795 11.24 0.49

10 6.75809669 6.758978609 1.413186645 14.85 0.60

11 7.99809456 7.999912697 1.397825498 22.15 0.83

12 9.38208294 9.383429649 1.387308913 29.05 1.08

13 10.79686832 10.799480094 1.375481878 37.04 1.44

14 12.33009911 12.337356433 1.366392109 46.61 1.68

15 13.95238304 13.961645275 1.358213523 57.78 2.15

16 15.67958355 15.680702647 1.351053423 70.17 4.67

17 17.47670937 17.490362341 1.344638697 84.72 3.49

18 19.38352394 19.391373372 1.338877991 101.07 4.49

19 21.35863686 21.367241420 1.333382123 119.02 5.06

20 23.43731117 23.456734617 1.328790449 139.12 6.07

25 35.16385269 35.176771046 1.309953572 273.17 16.52

30 49.09183884 49.114039625 1.296898053 476.75 32.42

35 65.15724182 65.227582124 1.287141190 757.61 58.50

40 83.40406036 83.531197391 1.279650229 1012.75 138.31

45 103.83299255 103.993419796 1.273631696 1614.29 169.41

50 126.39979553 126.609262581 1.268687030 2222.95 224.81

60 178.03697205 178.291893702 1.261042964 3850.51 586.50

70 238.21658325 238.547125801 1.255385990 5949.21 1573.90

80 306.96221924 307.343814269 1.251009768 9102.11 3380.64

90 384.40673828 384.668442639 1.247518664 11950.35 5511.98

100 470.00125122 470.493394133 1.244655523 17919.00 8844.01

125 721.47052002 722.227981483 1.239340686 33587.70 23703.40

150 1026.29870605 1026.946736740 1.235653773 59967.91 55152.32

1 1 1 1.213061394 g

aFor de�nition see (1.2)
bFor de�nition see (2.3). The f�(n) value from the DAE approach has been used every time, except for n = 5
cIn seconds
dExact value: 10log(3

p
3) = 0:715681882 : : :

eExact value: 10log((8=3)3) = 1:2779061968 : : :
fExact value: 10log(512) = 2:7092699609 : : :
gRecall (2.4)
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excessive runtimes, in the cases n = 50; 60; : : : ; 125; 150 the number of global search function

evaluations was {based on the analysis of detailed LGO output listings, but still somewhat

arbitrarily{ restricted by 250 000 to 750 000. In light of the computational e�ort in smaller

dimensional Fekete problems, such limitations could be a bit `optimistic', and may have stopped

the global search phase somewhat prematurely. Furthermore, the local search e�ort (limited by

100 000 to 300 000) has also been attained, in several higher dimensional cases. Notwithstanding

these numerical limitations, all LGO runs provided `plausible' results, conforming with the

theoretical bounds and asymptotics reviewed in Section 2. The global and local search e�orts

were also chosen in such a way that their sum was comparable to the CPU time for the DAE

approach for n � 50.

� Concerning the DAE approach: the input parameters for RADAU5 are h0=atol=rtol=1d-4.

� For both approaches the machine used: SGI workstation, Indy with 4 194 Mhz R10010SC

processors.

� Compiler: FORTRAN 77 of SGI with optimization: f77 -O.

� Timing function: second

7. Generalizations and application perspectives

An obvious generalization of the Fekete problem {which immediately falls within the scope of the

numerical solution strategy suggested{ is its extension to arbitrary dimensionality, and for general

compact sets. Let D be a bounded closed set in IRd d � 2, which contains in�nitely many points.

Then (recalling the discussion in Section 2) the generalized Fekete con�guration problem consists of

�nding an n-tuple of points z(n) = (z1; :::; zn) such that zi belongs to D, and the product

Vn(z(n)) :=
Y

1�i<j�n

kzi � zjk ; (7.1)

is maximized. As noted earlier, problems of this general class have relevance in diverse areas of

scienti�c modeling.

The higher dimensional case is also of interest in the area of nonlinear regression. From linear

regression one obtains an ellipsoidal level set, which can be used as an approximation for the level

set of the regression variables in the nonlinear case. Evaluation of the regression criterion at points

which are distributed in a regular and uniform way on such an ellipse gives good insight into the

nonlinearity of the regression problem; the ellipsoid turns into a `cashew nut', for example. The

uniformly distributed sample points on such an ellipsoidal level set can be obtained by solving the

Fekete problem (7.1), where D is the ellipsoidal level set and n the number of sample points.

Again, the numerical solution approach {Lipschitzian global optimization or DAE formulation{

advocated by the present work is directly relevant to analyze and solve such problems. This statement

remains true, of course, if the `simple' objective function type (7.1) is replaced by other suitable

(Lipschitzian function) models/formulae expressing the `quality' of the con�gurations sought. For

detailed discussions and various applications, consult, for instance the papers in special issues of

the Journal of Global Optimization (1994, 1995), or Shalloway (1992), Oresiĉ and Shalloway (1994),

Botina and Rabitz (1995), Botina, Rabitz and Rahman (1995), Lu and Rabitz (1995), Mor�e and Wu

(1995a,b), Amara, Ma and Straub (1996), Andricioaei and Straub (1996), Bollweg, Maurer and Kroll

(1997), Church, Oresiĉ and Shalloway (1996), Dill, Phillips and Rosen (1997), Phillips, Rosen and

Valke (1996), with numerous further references.
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