
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

The Use of Approximate Factorization in Stiff ODE Solvers

P.J. van der Houwen, B.P. Sommeijer

Modelling, Analysis and Simulation (MAS)

MAS-R9732 November 30, 1997

Report MAS-R9732
ISSN 1386-3703

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

The Use of Approximate Factorization
in Stiff ODE Solvers

P.J. van der Houwen & B.P. Sommeijer
CWI

P.O. Box 94079, 1090GB Amsterdam, The Netherlands

ABSTRACT

We consider implicit integration methods for the numerical solution of stiff initial-value problems. In applying such

methods, the implicit relations are usually solved by Newton iteration. However, it often happens that in subintervals of

the integration interval the problem is nonstiff or mildly stiff with respect to the stepsize. In these nonstiff subintervals,

we do not need the (expensive) Newton iteration process. This motivated us to look for an iteration process that

converges in mildly stiff situations and is less costly than Newton iteration. The process we have in mind uses modified

Newton iteration as the outer iteration process and a linear solver for solving the linear Newton systems as an inner

iteration process. This linear solver is based on an approximate factorization of the Newton system matrix by splitting

this matrix into its lower and upper triangular part. The purpose of this paper is to combine fixed point iteration,

approximate factorization iteration and Newton iteration into one iteration process for use in initial-value problems

where the degree of stiffness is changing during the integration.

1991 Mathematics Subject Classification: 65L05, 65L20

Keywords and Phrases: numerical analysis, initial-value problems, ordinary differential equations, approximate

factorization.

Note: Work carried out under project MAS 2.2 - 'Circuit Simulation'.

1. Introduction

We consider implicit integration methods for the numerical solution of stiff initial-value problems

(IVPs) for the ordinary differential equation (ODE)

(1.1)
dy
dt = f(y), y, f ∈ Rd, t ≥ t0.

The conventional way of solving the implicit relations is the modified Newton (MN) iteration process.

MN iteration possesses a relatively large convergence region, that is, if h is the stepsize used, then the

quantity || h∂f/∂y || is allowed to be of large magnitude. However, it often happens that in

subintervals of the integration interval the problem is nonstiff or mildly stiff with respect to h,

implying that || h∂f/∂y || is of moderate size. In these nonstiff subintervals, we do not need the

(expensive) MN iteration process with its large convergence region and we would like to use a less

costly method in steps where || h∂f/∂y || is of modest size. For example, one may use an explicit

method or one may apply an iteration method which is less costly than MN iteration. In this paper, we

focus on using less costly iteration processes. One such an iteration procedure is fixed point (FP)

iteration. Unfortunately, the convergence of FP iteration is not satisfactory unless || h∂f/∂y || is quite

small. This motivated us to look for an iteration process that converges much faster than FP iteration

in nonstiff situations and is cheaper than MN iteration. The process we have in mind uses MN

iteration as the outer iteration process and a linear solver for solving the linear Newton systems as an

2
inner iteration process. This linear solver is based on an approximate factorization of the Newton

system matrix by splitting it into two (or more) 'convenient' matrices. The inner-outer iteration

process will be referred to as approximate factorization (AF) iteration. The technique of approximate

factorization is well known in the design of suitable discretizations of partial differential equations

(PDEs) [4], but can also be used for the design of suitable iteration processes. The particular splitting

of the Newton matrix is crucial for the rate of convergence in AF iteration. In [1] and [5] we analysed

and applied AF iteration to time-dependent partial differential equations (PDEs) and used splittings

that correspond to the spatial dimensions of the PDE. In this paper, we do not restrict (1.1) to PDEs

and use a generally applicable splitting which splits the Newton matrix in its lower and upper

triangular part. Then, in one-inner-iteration mode, each AF iteration requires one righthand side

evaluation f and one d-dimensional forward/backward substitution. Hence, when compared with an

MN iteration process using a direct linear solver for the linear Newton systems, we see that the AF

iterations are equally expensive as the MN iterations, but AF iteration does not require the O(d3)

factorization costs associated with MN iteration.

The purpose of this paper is to combine FP, AF and MN iteration into one iteration process for use in

IVPs where the degree of stiffness is changing in the integration interval.

2. Approximate factorization iteration

We consider implicit IVP solvers in which the implicit relations to be solved are of the form

(2.1) R(y) = 0, R(y) := y − δhf(y) − v,

where h is the stepsize of the numerical method, δ is a positive parameter, y represents a numerical

approximation to the solution of (1.1), and v is a given vector ∈ Rd. In nonstiff parts of the

integration interval, a possible way of solving the equations (2.1) is FP iteration

(2.2) y(j) = y(j-1) − R(y(j-1)), j = 1, 2, ... , m,

where y(0) is to be provided by a predictor formula. However, this process only converges rapidly if

δh|| ∂f/∂y || is sufficiently small. We want to accelerate the rate of convergence. Our starting point is

the MN iteration process

(2.3) (I − δhJ)(y(j) − y(j-1)) = − R(y(j-1)), j = 1, 2, ... , m,

where J is an approximation to the Jacobian matrix ∂f/∂y. Each iteration in (2.3) requires the solution

of a d-dimensional linear system for the Newton correction y(j) − y(j-1). We shall employ special

iterative linear solvers which converge much faster than FP iteration. Let J be split into a lower

triangular matrix L and an upper triangular matrix U, and consider the iteration method

∏(y(j,ν) − y(j,ν-1)) = (I − δhJ)(y(j-1) − y(j,ν-1)) − R(y(j-1)),
(2.4)

y(j,0) = y(j-1), y(j) = y(j,r), ∏ := (I − δhL)(I − δhU), J = L + U,

3
where ν = 1, 2, ... , r and j = 1, ... , m represent the inner and outer iteration indices, respectively.

The matrix ∏ is called an approximate factorization of the MN iteration matrix I − δhJ and the process

(2.4) will be referred to as AF iteration. Each inner iteration in (2.4) requires the solution of 2 linear

systems with triangular system matrices (that is, a forward/backward substitution), and, except for the

very first inner iteration, a matrix-vector multiplication.

2.1. Rate of convergence

In order to get insight into the convergence of the process (2.4), we first look at the convergence of

the MN method (2.3). From (2.1) and (2.3) it follows

(2.5) y(j) − y = δh(I − δhJ)-1g(y(j-1) − y), g(ε) := f(y + ε) − f(y) − Jε.

If the function g possesses a Lipschitz constant C(h) in the neighbourhood of the origin (with respect

to the norm || .||), then we have the estimate

(2.6) || y(j) − y || ≤ δhC(h) || (I − δhJ)-1
|| || y(j-1) − y || .

If we assume that the logarithmic norm of J with respect to the Euclidean norm || .|| 2 is nonpositive,

i.e. µ2[J] ≤ 0, then the value of || (I − δhJ)-1
|| 2 can be estimated by means of the Von Neumann

theorem (cf. e.g. [2, p.179]). This yields || (I − δhJ)-1
|| 2 ≤ max {|1−z |-1: Re(z) ≤ 0} = 1, so that we

have the estimate

(2.7) || y(j) − y || 2 ≤ δhC(h) || y(j-1) − y|| 2 .

The value of C(h) is determined by || J
~

 − J || 2, where the entry J
~

ij of the matrix J
~

 equals ∂fi/∂yj at

some point on the line segment θy(j-1) + (1 − θ)y, 0 ≤ θ ≤ 1. Hence, if J is a sufficiently close

approximation to the Jacobian ∂f/∂y evaluated at y, then C(h) is quite small.

Next, we consider the rate of convergence of the AF process (2.4). The inner iteration error

y(j,ν) − y(j) satisfies the recursion

y(j,ν) − y(j) = M(y(j,ν−1) − y(j)),
(2.8)

M := I − ∏-1(I − δhJ) = δ2h2 (I − δhU)-1(I − δhL)-1 LU.

From this recursion and again using the Von Neumann theorem, we immediately have the

convergence result:

Theorem 2.1. Let µ2[.] denote the logarithmic norm with respect to the Euclidean norm || .|| 2 and let

δ > 0, µ2[L] ≤ 0, µ2[U] ≤ 0. Then, a sufficient condition for convergence of the inner iteration

process (2.4) is

(2.9) h <
1

δ√||LU|| 2
 . ♦

4
For the overall convergence of the inner-outer iteration process (2.4) we also need the recursion

(2.5). From (2.5) and (2.8) we obtain

(2.10) y(j,ν) − y = M(y(j,ν−1) − y(j)) + δh(I − δhJ)-1g(y(j-1) − y).

After r inner iterations, the recursion (2.10) yields

(2.11) y(j,r) − y = Mr (y(j-1,r) − y) + δh(I − Mr) (I − δhJ)-1g(y(j-1,r) − y),

where we have set y(j,0) = y(j-1,r). As in (2.7), we assume that µ2[J] ≤ 0 yielding the estimate

(2.12) || y(j,r) − y || 2 ≤ K(r,h) || y(j-1,r) − y|| 2 , K(r,h) := || Mr|| 2 + δhC(h)|| I − Mr|| 2.

Since M = (δh)2 LU (1 + O(h)), we see that the amplification factor is approximately given by

(2.13) KAF(r,h) ≈ (δh)2r || (LU)r|| 2 + δhC(h).

Here, δ2rh2r || (LU)r|| 2 represents the (accumulated) inner amplification factor and δhC(h) the MN

amplification factor. Expression (2.13) indicates that there is no point in choosing r too large, because

KAF(r,h) is always bounded below by the Newton amplification factor.

2.2. Comparison with FP iteration

Let us compare the AF amplification factor K(r,h) with the amplification factor associated with the FP

iteration process. By observing that FP iteration (2.2) is obtained from MN iteration (2.3) by setting

J = 0, we see that (2.7) implies the estimate

(2.14) || y(j) − y || 2 ≤ KFP(h) || y(j-1) − y || 2 , KFP(h) := δhCFP,

where CFP is a Lipschitz constant for f in the neighbourhood of the numerical solution. This constant

can be approximated by || J || 2 = || L + U || 2, provided that J is a sufficiently close approximation to the

Jacobian of f at the point y. Then, it follows from (2.13) and (2.14) that AF iteration converges faster

than FP iteration by a factor

(2.15) α(r,h) :=
KFP(h)

KAF(r,h) ≈
|| L + U || 2

(δh)2r-1|| (LU)r|| 2 + C(h)
 .

Assuming that α(r,h) is at least as large as α(1,h), we find that

(2.16) α(r,h) ≥ α(1,h) ≥
|| L + U || 2

2 max {δh|| LU|| 2,C(h)}
 .

In cases where the AF contribution in the amplification factor KAF(1,h) dominates the Newton

contribution, that is, if δh || LU || 2 ≥ C(h), we may expect that even in one-inner-iteration mode, AF

iteration is faster than FP iteration for stepsizes less than || L + U || 2(2δ|| LU || 2)-1. Note that the one-

inner-iteration mode of AF iteration reduces to the simple scheme

5
(2.4') ∏(y(j) − y(j-1)) = − R(y(j-1)), ∏ := (I − δhL)(I − δhU), J = L + U, j = 1, ... , m.

Finally, we consider the interval of 'fast' convergence of FP and AF iteration defined by the interval

of h-values where the amplification factor is less than or equal to a small number q (say q ≤ 0.1).

From (2.14) and (2.12) it follows that these intervals are respectively determined by [0, H(q)] with

(2.17) HFP(q) =
q

δ || L + U || 2
 , HAF(q) =

 


 
q

δ2|| LU|| 2
 1/2,

where we assumed that CFP ≈ || L + U || 2 and where we ignored the contribution of the MN iteration to

the amplification factor KAF(1,h) of AF iteration. Thus, if √q|| LU|| 2 < || L + U || 2, then the

corresponding interval of AF convergent h-values is larger than the corresponding interval of FP

convergent h-values. For example, in problem (3.3a) of Kaps [6], we have √|| LU|| 2 ≈ 1
4
 || L + U || 2,

so that the convergence interval of AF iteration is a factor 4 / √ q larger than that of FP iteration.

3. Numerical illustration

Consider the 4th-order Runge-Kutta method of Butcher (cf. [2, p.205]) based on Lobatto quadrature:

(3.1a) yn+1/2 = yn + 1
4
 h(f(tn, yn) + f(tn+1/2, yn+1/2)),

(3.1b) y*n+1 = yn + hf(tn+1/2, yn+1/2),

(3.1c) yn+1 = yn + 1
6

 h(f(tn, yn) + 4f(tn+1/2, yn+1/2) + f(tn+1, y*n+1)).

This method has one implicit stage yn+1/2 which has to satisfy an equation of the form (2.1). Let us

solve this equation by means of FP iteration (2.2) and by the one-inner-iteration mode of AF iteration

(2.4'). In both cases, we used the last step value predictor y(0)n+1/2 = yn and we updated the Jacobian

in each step. Furthermore, we implemented the Butcher-Lobatto method (3.1) such that y*n+1 and

yn+1 are respectively approximated by (cf. Shampine [8])

(3.2b) y*n+1 ≈ u*n+1 := yn + 4(y(m)n+1/2 − yn) − hf(tn, yn),

(3.2c) yn+1 ≈ un+1 := 1
3

 yn + 2
3
 u*n+1+ 1

6
 h(f(tn, yn) + f(tn+1, u*n+1)).

We observe that for autonomous problems, the last step value predictor implies that the first iteration

does not require a new righthand side evaluation, so that each integration step requires m+1 righthand

side evaluations in the case of FP iteration and m+1 righthand side evaluations and m

forward/backward substitutions in the case of AF iteration. In the case of nonautonomous problems,

we have the same costs if in each step, the first residue is evaluated at the point (tn, yn).

The iteration error y(m)n+1/2 − yn+1/2 = O(hθm+1), where θ = 1 and θ = 2 in the FP and AF iteration

case, respectively. Hence,

u*n+1 − y*n+1 = 4(y(m) − yn) − hf(tn, yn) − hf(tn+1/2, yn+1/2)

= 4(y(m) − yn+1/2) = O(hθm+1).

6
It is now easily verified that un+1 = yn+1 + O(hθm+1), so that the global error becomes O(hθm + h4).

Thus, two AF iterations already yield a 4th-order scheme.

3.1. Comparison of FP, AF and MN iteration

We used a test problem of Kaps [6]

(3.3a)
dy1
dt = − 12 y1 + 10y22,

dy2
dt = y1 − y2 (1 + y2), y1(0) = y2(0) = 1, 0 ≤ t ≤ 5,

and three test problems from the books of Hairer-Nørsett-Wanner:

(3.3b) JACB [2, p.236], 0 ≤ t ≤ 20,

(3.3c) TWOB [2, p.236], 0 ≤ t ≤ 20,

(3.3d) HIRES [3, p.156], 0 ≤ t ≤ 1.

Table 3.1. Relative precision at end point produced by Butcher-Lobatto {(3.1), (3.2)}.

 Prblm m h = 1/4 h = 1/8 h = 1/16 h = 1/32

FP AF MN FP AF MN FP AF MN FP AF MN

(3.3a) 1 - 1.3 2.3 0.2 2.1 2.7 0.6 2.7 3.3 0.9 3.3 3.9
2 1.1 2.5 2.7 1.7 3.6 4.0 2.3 4.8 5.2 2.9 6.0 6.5
3 1.9 2.8 2.7 4.0 3.6 5.3 4.5 6.5
4 2.2 3.2 4.5 5.7
.
∞ 2.7 4.0 5.2 6.5

(3.3b) 1 - 1.8 1.3 0.3 2.8 1.9 0.6 3.0 2.5 0.9 3.5 3.1

2 0.8 3.3 3.5 1.5 4.6 4.7 2.1 5.9 5.9 2.7 7.1 7.1
3 2.0 3.5 2.9 3.8 4.7
4 3.8 4.9 6.0 7.2
.
∞ 3.5 4.7 6.0 7.2

(3.3c) 1 - - - - - - - - - - - -

2 - - - - 0.9 0.5 - 2.1 1.9 - 3.4 3.7
3 - - - - 0.6 0.6 0.7 2.0 2.0 1.7 3.3 3.3
4 - - - 0.5 1.9 3.2 3.3 3.3
.
∞ - 0.6 2.0 3.3

(3.3d) 1 - - 0.1 1.0 1.4 2.7 1.4 1.9 3.3 1.7 2.4 3.5

2 - - - - 1.8 1.8 2.9 4.1 3.9 3.3 4.6 5.3
3 - - - 0.6 3.2 3.9 3.7 5.2
4 - - - 3.2 4.1
.
∞ - 1.9 3.9 5.2

In order to clearly see the algorithmic effects, we used a fixed stepsize strategy. Table 3.1 lists in a

logarithmic scale the relative end point errors, that is, the numbers of correct significant digits (csd) at

the end point (negative values are indicated by -). These figures show that in most cases AF iteration

has more or less converged within two iterations, whereas FP iteration requires at least four iterations.

7
Furthermore, in these examples, AF iteration performs as robust as MN iteration and converges only

slightly less fast.

3.2. Combination of FP, AF and MN iteration

Suppose that we use FP, AF and MN iteration respectively in the nonstiff, mildly stiff and stiff parts

of the integration interval. Then, we avoid unnecessary evaluations of the Jacobian,

forward/backward substitutions and LU decompositions. Again, we used a fixed stepsize strategy,

applied AF iteration in one-inner-iteration mode, and we chose the following simple switching

strategy:

If δh || J ||∞ < a then FP iteration

(3.4a) If a ≤ δh || J ||∞ < b then AF iteration

If b ≤ δh || J ||∞ then MN iteration.

Here a and b are constants depending on the integration method used. Furthermore, in the very first

step we used MN iteration, and if in FP mode more than 4 iterations were needed, then we switched

to AF mode in the next step. In all iteration modes, the iteration process was stopped if

(3.4b) ||R(y(j))[y(j) + 10-6e]-1||∞ < hp+1,

where p is the order of the integration method, e is a vector with unit entries, and where the vector

operations are meant to be componentwise.

Table 3.2a. Results for problem (3.3a). Table 3.2b. Results for problem (3.3b).
-- --

h csd rhs jac fbs lud h csd rhs jac fbs lud
-- --

1/4 2.7 4.95 1.00 3.95 0.05 1/4 2.8 4.25 0.02 0.05 0.01
1/8 4.0 6.27 0.67 2.67 0.02 1/8 4.3 4.73 0.01 0.01 0.01
1/16 5.2 6.45 0.51 2.04 0.01 1/16 6.2 4.93 0.01 0.02 0.00
1/32 6.5 6.04 0.50 1.99 0.01 1/32 7.3 4.99 0.01 0.02 0.00

-- --

Table 3.2c. Results for problem (3.3c). Table 3.2d. Results for problem (3.3d).
-- --

h csd rhs jac fbs lud h csd rhs jac fbs lud
-- --

1/4 - - - - - 1/4 - - - - -
1/8 0.5 5.01 0.22 0.74 0.01 1/8 1.9 6.37 0.75 3.37 0.12
1/16 2.0 5.09 0.21 0.66 0.00 1/16 3.9 6.69 0.62 2.75 0.06
1/32 3.3 5.09 0.22 0.69 0.00 1/32 5.3 6.97 0.50 2.06 0.03

-- --

We applied the Butcher-Lobatto method {(3.1a),(3.2b),(3.2c)} and we set a = 1/2, b = 3 and p = 4 in

the strategy formulas (3.4). In the Tables 3.2, we listed for the four problems (3.3) the correct

number of significant digits obtained at the end point (csd), the averaged number of righthand sides

per step (rhs), the averaged number of Jacobians per step (jac), the averaged number of

forward/backward substitutions per step (fbs), and the averaged number of LU decompositions per

8
step (lud), respectively. A comparison with Table 3.1 reveals that in most cases the implicit stage

equation (3.1a) in the Butcher-Lobatto equation is more or less solved and that the averaged number

of iterations per step given by m = rhs − 1 is at most about 6 and usually about 4 or 5. Furthermore,

lud is always small, so that the iteration process is mostly in FP or AF mode, as should be expected

when integrating nonstiff or mildly stiff problems.

3.3. Using the various modes in an automatic code

Next we show the effect of the various modes when implemented in an automatic ODE solver. For

that purpose we selected the code PSODE as our starting point. The main features of this code are

described below and for further details we refer to [9]. The code itself is available by the second

author of this paper.

3.3.1. The code PSODE. PSODE is based on the L-stable, four-stage Radau IIA method of order

seven and is aimed to solve initial value problems for stiff ODEs. The implicit relation to be solved in

each step is of the form

(3.5) Yn = e ⊗ yn + hn (A⊗ I) F(tne+hnc, Yn),

where Yn is the so-called stage vector containing the four approximations Yn,i, i=1, ..., 4 to the

solution vector y(t) in the points tn + cihn, defined by the abscissae vector c = (ci). Furthermore,

F(tne + hnc,Yn) = (f(tn + c1hn,Yn,1)T, ..., f(tn + c4hn,Yn,4)T)T contains the corresponding

derivative vectors. A is the parameter matrix of the Radau method and hn is the current stepsize

tn+1 - tn. The symbol ⊗ denotes the Kronecker product and the vector e = (1, 1, 1, 1)T. Since the

Radau IIA method is stiffly accurate (c4 = 1), the new approximation yn+1 equals Yn,4.

To solve (3.5) for the stage vector Yn leads to a huge linear algebra problem, since this system is of

dimension 4d. To reduce the computational work involved to an acceptable level, PSODE uses the

following iteration process [9]

(3.6) Yn(j) − hn (D⊗ I) F(tne+hnc, Yn(j)) = e ⊗ yn + hn ((A−D)⊗ I) F(tne+hnc, Yn(j-1)),

where the iterates Yn(j) (hopefully) converge to Yn for j = 1, 2, Here, the matrix D has been

chosen of diagonal form which has the advantage that each of the four components Yn,i(j) of Yn(j) can

be solved from a d-dimensional system, which is of the form (2.1). Moreover, if PSODE runs on a

parallel machine with (at least) four processors, then the components vectors Yn,i(j) can be solved

concurrently. This was exactly the motivation in [9] to construct methods of this type. A convergence

analysis showed that (for the Radau IIA method) the choice D ≈ diag(0.3205, 0.0891, 0.1817,

0.2334) leads to an optimal damping of the stiff components in the iteration error.

In PSODE, the iterate Yn(j) is solved from the nonlinear relation (3.6) by applying just one modified

Newton iteration, using Yn(j-1) as its initial guess. It is straightforwardly verified that the resulting

expression for each of the components of Yn(j) is of the form (2.3) with δ replaced by the

corresponding element of the matrix D.

9
The code PSODE is equipped with a number of control mechanisms to perform an automatic

integration of stiff ODEs. We shall briefly describe the most important ones.

First, the local truncation error is controlled by calculating a reference solution. This reference

solution yref is a linear combination of yn, hnf(tn, yn), and the four final (say, the m-th) iterates

Yn,i(m), where the weights are such that we obtain fourth-order accuracy (see [9] for more details).

Following an idea of Shampine, an estimate for the local truncation error is now defined by

(I − d4hn∂f/∂y)-1 (yref − yn+1), where d4 is the fourth entry in the diagonal matrix D. The

premultiplication by the matrix (I − d4hn∂f/∂y)-1 is meant to obtain a bounded estimate for the linear

test problem y' = λy in case hnλ → ∞ (see also [3, p.134]).

Then the usual formula hn+1 = facsafe (TOL/|| local error ||)1/5 hn is applied to predict a new stepsize.

The safety factor facsafe has been set to 0.9 in PSODE and the stepsize ratio hn+1/hn is restricted to the

interval [0.1, 4]. Finally, some additional strategies have been implemented to further fine-tune the

stepsize selection.

With respect to the control of the convergence behaviour of the iteration process (3.6) a sophisticated

strategy is needed. The convergence control used in PSODE is quite similar to the one used in the

code RADAU5 (cf. [3, p.130]). Skipping the details we mention that the iteration is interrupted in

case of a too slow convergence (which includes divergence). With a 'fresh' Jacobian and a halved

stepsize the iteration is retried. The process is considered to be converged as soon as the (scaled,

Eucledian) norm of the update of the last iterate is less than 0.1*TOL. We conclude this brief

description of PSODE by mentioning that the prediction Yn(0) to start the iteration is obtained by

extrapolating the collocation polynomial calculated in the preceding step.

To get an impression of the usefulness of the AF and FP modes in the context of a stiff ODE solver,

we extended PSODE with a strategy to automatically switch between the various modes. We

emphasize that in the 'original' PSODE only the MN mode has been used. As a switching criterion we

use the simple test (3.4a) as described in the previous section (with δ = max di = 0.3205, a = 1/2 and

b = 3). This test is activated in all cases where either the stepsize or the Jacobian has been changed.

The FP-AF-MN version of PSODE was applied to the nonstiff or mildly stiff test problems (3.3). We

nicely observed that the MN mode has never been selected (in fact, almost all steps were performed in

FP mode).

3.3.2. The HIRES problem. Next, we perform a more severe test with the code by applying it to

the HIRES problem (3.3d) including the non-transient interval, viz. we choose 0 ≤ t ≤ 321.8122, as

in [3]. Results for the original PSODE as well as for the extended version are given in Table 3.3.

Analogously to the tables in Section 3.2, the listed numbers of operations (like rhs, jac, fbs, and lud)

have been scaled by the number of (successful) steps, which is denoted by N in Table 3.3. It should

be remarked that the values of rhs, fbs and lud listed in Table 3.3 take into account that the four

implicit subsystems in (3.6) can be solved in parallel, that is, each four righthand sides, each four

forward/backward substitutions and each four LU decompositions are counted for one.

As we see from this table, approximately 40% of the steps could be iterated with the AF or FP mode,

saving a lot of the expensive LU-factorizations. Moreover, the numbers of righthand side and

10
Jacobian evaluations remain more or less constant and the number of forward/backward substitutions

is reduced.

Table 3.3. Results for the HIRES problem on [0, 321.8122].

--

PSODE in MN mode PSODE in FP-AF-MN mode

TOL N csd rhs jac fbs lud N csd rhs jac fbs lud
--

10-2 36 3.2 6.94 0.42 5.94 1.00 36 2.7 6.92 0.42 5.11 0.61
10-3 51 4.3 6.86 0.41 5.86 1.00 56 4.0 7.00 0.41 5.16 0.66
10-4 63 4.8 6.83 0.35 5.83 0.98 70 4.7 7.04 0.36 4.86 0.61

--

3.3.3. A conbustion problem. Our second example is a problem from combustion theory and is

a two-dimensional version of a similar test problem used in [7]. It is described by the PDEs

(3.7)
∂c
∂t = ∂

2c
∂x2 + ∂

2c
∂y2 − D c e-δ/T, L

∂T
∂t = ∂

2T
∂x2 + ∂

2T
∂y2 + α D c e-δ/T, t > 0,

defind on the unit square 0 < x, y < 1. The initial conditions are given by c = T = 1, on the whole unit

square. At x = y = 0, we impose homogeneous Neumann conditions, and at x = y = 1 Dirichlet

conditions are prescribed (c = T = 1).

The variables c and T denote the concentration and temperature of a chemical during a reaction. At the

origin, a so-called 'hot-spot' is developed for the temperature. Initially, the temperature slowly

increases but suddenly, at the ignition point, it explodes to about 1+α, and initiates a reaction front

which propagates towards the boundaries x = y = 1, where a boundary layer is formed. Finally, the

temperature distribution reaches a steady state. The problem parameters are given by L = 0.9, α = 1,

δ = 20, and D = R eδ/(αδ), with R = 5. The integration interval is 0 < t < 0.3, which is sufficiently

long to reach the steady state.

The equations in (3.7) are discretized on a uniform spatial grid with mesh size ∆ using second-order,

symmetric differences. Defining ∆ = 1/(N + 0.5), with N the number of grid points in both

directions, and introducing artificial points outside the region at a distance ∆/2, the homogeneous

Neumann boundary conditions are easily discretized by symmetric differences. In this test example

we set N = 20, resulting in a system of 2 * 202 = 800 ODEs. Again we applied both versions of

PSODE to problem (3.7) and the results are given in Table 3.4. To measure the errors, we calculated

a reference solution of the ODE system, using a stringent tolerance. Hence, the errors displayed in the

table are only due to the time integration and do not interfere with spatial discretization errors.

During ingition, the problem becomes locally unstable, forcing any integration method to take small

timesteps in order to accurately follow the solution. Also the travelling reaction front limits the time

step for accuracy reasons. In this part of the integration interval, the extended version of PSODE

frequently uses steps in AF or FP mode. Only for small t-values and near the steady steate, large steps

are possible and the code switches to MN mode. The nature of this flame propagation problem is

11
nicely illustrated by the numerical experiments. From Table 3.4 we see that the number of steps and

the corresponding accuracies of both version are more or less comparable. However, the number of

right-hand side evaluations and forward/backward substitutions per step are smaller for the mixed-

mode version, but especially the number of LU-decompositions has been drastically reduced, which

saves a lot of CPU time for a problem of this size. Finally, we remark that the lud-numbers for the

original PSODE are beyond 1, which indicates that the MN mode encountered convergence problems.

The remedy to halve the stepsize forces PSODE to calculate a new LU-decomposition within the same

step.

Table 3.4. Results for the combustion problem (3.8) on [0, 0.3].

--

PSODE in MN mode PSODE in FP-AF-MN mode

TOL N csd rhs jac fbs lud N csd rhs jac fbs lud
--

10-2 187 2.4 7.66 0.51 6.66 1.14 241 2.4 6.72 0.59 5.71 0.53
10-3 259 3.5 8.08 0.49 7.08 1.19 300 3.9 7.55 0.58 5.80 0.41

--

References

[1] Eichler, C., Houwen, P.J. van der & Sommeijer, B.P. [1997]: Analysis of approximate

factorization in iteration methods, to appear in Appl. Numer. Math..

[2] Hairer, E., Nørsett, S.P. & Wanner, G. [1987]: Solving ordinary differential equations, Vol.

I. Nonstiff problems, Springer-Verlag, Berlin.

[3] Hairer, E. & Wanner, G. [1991]: Solving ordinary differential equations, Vol. II. Stiff and

differential-algebraic problems, Springer-Verlag, Berlin.

[4] Hirsch, C. [1988]: Numerical Computation of Internal and External Flows, Vol. 1:

Fundamentals of Numerical Discretization, Wiley.

[5] Houwen, P.J. van der, Sommeijer, B.P. & Kok, J. [1997]: The iterative solution of fully

implicit discretizations of three-dimensional transport models, Appl. Numer. Math. 25, 243-

256.

[6] Kaps, P. [1981]: Rosenbrock-type methods, in: Numerical methods for stiff initial value

problems (eds.: G. Dahlquist & R. Jeltsch), Bericht Nr.9, Inst. für Geometrie und Praktische

Mathematik der RWTH Aachen.

[7] Moore, P.K. & Dillon, R.H. [1996], A comparison of preconditioners in the solution of

parabolic systems in three space dimensions using DASPK and a high order finite element

method, Appl. Numer. Math. 20, 117-128.

[8] Shampine, L.F. [1980]: Implementation of implicit formulas for the solution of ODEs, SIAM

J. Sci. Stat. Comput. 1, 103-118.

[9] Sommeijer, B.P. [1993]: Parallel-iterated Runge-Kutta methods for stiff ordinary differential

equations, J. Comput. Appl. Math. 45, 151-168.

