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ABSTRACT

We considesstiff initial-value problems fosecond-ordedifferential equations ofhe special formy" = f(y). Stiff
initial-value problem solvers are necessaiityplicit, hence, we ardacedwith the problem of solving systems of
implicit relations. This paper focuses on the construction and analysis of iterative solution methods wéffebtiaee
in cases where the Jacobian of the righthand side diffieeential equation can beplit into a sum ofmatrices with a
simple structureThese iterative methodmnsist of themodified Newton methodand aniterative linear solver taleal
with the linear Newtorsystems. Thdinear solver isbased onthe approximate factorization of the system matrix
associated with the linear Newton systefsumber of convergence results are derivedtier linear solver in thease
where the Jacobian matrix can be split into commuting matrices. Such often problems arise in theisspetizdtion
of time-dependenpartial differential equations. Furthermore, the stability materd the order of accuracy of the
integration process are derived in the casefimiite number of iterations.

1991 Mathematics Subject ClassificatioB5L06
Keywords and PhrasesSecond-order partial differential equations, splitting methods, approximate factorization.
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1. Introduction
We consider initial-value problems (IVPs) for systems of second-order ordinary differential equations
(ODEsSs) of the special form

d2y(t
a4 =iyw), y.fow

We shall assume that the equation (1.1) is stiffthab we need atiff solver tointegrate (1.1).Stiff

IVP solversare necessarily implicithence, weare facedwith the problem ofsolving systems of
implicit relations. This papefiocuses orthe construction andnalysis ofiterative solution methods
which are effective in cases where an approximatioroffdg can be split into a sum af matrices

such that the matriceshlave an essentially simpler structure than the matrix J (in Section 3.2, we will
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specify what igneant by aressentiallysimpler structure').These iterativenethods consist of the
modified Newtonmethod (the outer iteration), in whithe linearNewton systemsre solved by a
second iteration process (the inner iteratwh)ch is based on approximate factorizati®he inner-
outer iteration process will be callegproximate factorization iteratioor briefly AF iteration.

In [5] AF iterationwas used for solvinfully implicit discretizations of transport models and in [2]
AF iterationwas analysed in the case of a largjass ofimplicit integrationmethods for systems of
first-order ODEsoriginating fromthe semidiscretization of partial differenteduations. Irthe latter
paper,general convergence and stabiligsultsare presentedThese resultg€an also be used for
second-orde©DE methods by writing1.1) as dfirst-order system and by simply integrating this
system by a first-order ODE solver (the bldxk« approach). Unfortunately, the usual case where
the eigenvalues odf/dy are negative,the convergence and stability properties of the black box
approach are quite poor, because the special structure of the first-order fdrrh) aé not exploited.
To illustrate this,consider a Runge-Kutta (RKnethod for first-order ODEsy' = g(y), let the
Butcher matrix A of the RK method be an arbitrary matwith complexeigenvalues, ansuppose
thatdg/dy can be written as theum of two commutinghatrices K and Kp. Then it can beshown
that the approximate factorization iteratigmocesscannot be unconditionally convergent if the
eigenvalues of Kand K are purely imaginary (sg2]). Now we apply the same RK method to the
first-order form of (1.1). Suppose that the Jacobian associated with the righthand (didg cén be
split into two matrices ¢ and 3 which sharethe same eigensystewith negative eigenvalugdor
example, this happens(if.1) originates fromthe spatial discretization of a two-dimensional wave
equation). Thenthe matrices K and K associated withhe first-order formy' = g(y) of (1.1)
commuteand their eigenvalues are pureiyaginary. Henceaccording to[2], the AF iteration
process for solvinghe implicit RK relations will not be unconditionallgonvergent.However,
exploiting the special structure of the first-order forns g(y) of (1.1), the implicit RK relations can
be simplified (see Sectionf@r details) and applying AF iteration to these simplifiethtions, we
obtain unconditional convergence providiat the eigenvaluet(A~ ) of the underlying Butcher
matrix A satisfy|arg()\(f5\ ))| < 174. Examples are the Butcher matriceshafthird-order RadadlA,

the fourth-orderLobattolllA, and thefourth-order and sixth-ordéeauss methods. Thusalthough
thesolutionsof the original and the simplified RK relations are identical,cihvevergence properties
of AF iteration are quite different.

The purpose of this paper is to see to whdént the convergence and stabitigultsvalid for first-
order ODE methods change in the second-order case (1.1). Our starting pw@mdass of so-called
General Linear MethodéGLMSs). For first-order ODEs, suchmethods have been introduced by
Butcher in 1966 (see [1, p.335] for a detailed discussion). In Section 2, wettsito®_M methods
can be defined in a similavay for second-orde®DEsgiven by (1.1). The advantage o$ing the
GLM format is that almost any IVP solver can be written as a GLMhaotheanalysis developed in
this paper applies to a wide variety methods.Section 3 tcusseghe structure of themplicit
relations arising in these GLM and defines the outer-inner iterptiocess forthe implicit stage
values. InSection 4, a number of convergence resaésderivedor the model situationvhere the
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matrices Jshare the same eigensystem podsess aegative eigenvalugpectrum. FinallySection
5 presents order @fccuracy and stabilityesults inthe case of dinite number of inner and outer
iterations.

2. General linear methods
A direct extension of the GLMs of Butcher to equations of the second-order form (1.1) reads

(2.1)  Ups1= (RODUp + R(SONF(Up) + R(TONF(Unsa), n=1, 2, ... .

Here R, S and T denote k-by-k matrices, | is the d-by-d identity matrix, h is the stgpsizé,t and
0 denotes the Kronecker product, i.e. if F(ﬁ) then Ril denotes the matrix of matric(sijl). In
this paper, we assuntieat each of the kkomponentsun+3 j of the kd-dimensionasolution vector
Un+1 represents aumerical approximation either to the exaotution vectory(t, + gh) or to the
exact derivative vectonft{t, + gh). The vectora := (g) is called theabscissavector, the quantities
Un+1 thestage vectorand their components,+1 j the stagevalues The stage values approximating
y(tn + gh) will be calledsolution valuesand those approximatingytit, + ah) derivative values
Furthermore, for any vectaf, = (um), F(Up) contains the righthand side vaIL(éeJm)).

If in the formula (2.1) Ris replaced by h, then we obtain a GLM for first-order ODESs. In bases,
the GLM is completely determined by theays @, R, S, T}. Giventhe starting vectolJ;, (2.1)
defines a sequence of vectdds, Uz, Uy, ..., from which approximations tthe exactsolution
values can be obtained.

It may happernthat Rand S have zero columifigr the same column index j. lsuch casesthe jth
componenty j of Uz is not needed to stditte integratiomprocessAll stage valuethat we do need
to start the method are callegternalstage values, otherwise thase callednternal stage valuegcf.
Butcher[1], p. 367). The distinction between internal and external stage values is needed in the
stability analysis given in Section 5.

In this paper, we shall assume that one or more abscjssgqesh 1. If the corresponding components
un+1,i of Un+1 areexternal stag@alues,then these components will balledstep point valuegthe
points h+1 are callecstep points A stage valuein+1 j which provides an approximation tiee exact
solution valuey(t, + gh) is said to beccurate obrder p if for sufficiently smooth righthand side
functionsf and for all points {{+ gh, n =0, 1, ... }, we havéhatun+1 j = y(tn + gh) + O(I?). The
maximalorder of accuracy of the step point values is calledtdpepoint order

Of course the second-orde©DE (1.1) canalso be solved by reducirige ODE (1.1) to first-order
form and by application of a first-order-OD&ethod.There arenow two options(i) the black box
approach where the first-order-ODE method is used as a black box method, oiir{djréee second-
order-ODE-method approach whehe first-order-ODE method is rewritten asecond-order ODE
method by exploiting the special structure of the first-order GidEem. Inthe blackbox option, we
have to rely on the properties of the first-order-Om&thod,including the properties of theration
processimplementedfor solving the implicit relations. Since it is oftemore advantageous, with
respect to numericgberformance, to followthe indirect second-order-ODE-methagbtion, we
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explicitly derive the resulting second-order ODE method. Let us (&ifg asy' =z, z' =f(y) and
let us apply a GLM defined by the arrgs, R,S,T ). It can be verified that theesulting method
is equivalent with separately applying tB&M to y' =z and toz' = f(y). Hencelet us associate
with y andz the stage vectoré andZ. Then,Y andZ satisfy

Yn+1=(RODYn + h(SOlZn+ h(TO)Zn+1,
Zn+1= (RODZp + h(SOD)F(Y ) + h(T Ol F(Y n+1).

By substitution ofthe second equation intthe first and by definingthe extended stage vector
Unp = (YnT, thT)T, we obtain a GLM for second-order ODESs (see also Hairer [3])

0 0g S+ 780 078 o0 072 oU
(2.2) a:%ﬂ, r=0" 5" TRpg 0% 107 %0
El 0o R O 0S oO 0T oO

Note that in(2.2) only Y41 is implicitly definedand should be solved by sonteration process.
Thus, this iteration process needs to kepplied to only kdimplicit relations. This is adirect
conseqguence of the special structure offifs¢-order system. Ignoring thigpecialstructure that is,
applying the blackox option(i), would lead to iteration o2kd implicit relations. Of course, if the
iteration processes usedthme two options both converg#hen they converge to the samamerical
solution. However, it will turn out that the iteration procestha indirect second-order-ODE-method
approach often converges where it does not converge in the black box approach.

Example 2.1.An example of a GLM of the form (2.2) with step point order p = 2 is the GLM

gD
(23) a= 1)
1

ol
I
cooo
oo h~O
cooo
cocoo
O &4

d
nE S:O, T=
U

derived from the two-step backwarddifferentiation method(BDM). Here, Un+1 approximates
(YT, y(tn + )T, by ()T, hy'(tn + N)T)T. ¢

Example 2.2. Anotherindirect second-orde©ODE method,derived fromthe 2-stage Radau IIA
based method for first-order ODEs, is defined by the Runge-Kutta-Nystrom (RKN) method

/13
(2.4) a=[010, R=
01 0
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whereUp+1 = (y(tn + h/3), y(tn + h)T, hy'(ty + h)T)T. This method has step point orde® 3.
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Example 2.3.A direct second-order ODE method is given by (cf. Sharp, Fine and Burrage [7])

71 (0 0 1 17/14[ 0 289/392 0 007
~ %3/6% 0o 01 23600 . _ _ [0 234179/352800289/392 0 0]

(25 a=U1 U, R=gopo1 1 ,»S=0,T=g .21/698 185/349 0 Q]
U1 O Jooo 1 O O  49/349 300/349 0 @

where Un+1 approximates(y(tn + 170191, y(ty + 23n/60)T, hy(th + h)T, hy'(th + h)T)T. This
method has step point orders3.

3. Approximate factorization iteration

In order todefine the approximate factorization iteratimethod, we firsneed to extract thienplicit
relations to be solved from the GLM (2.1). This will be the subject of Section 3.1. In Sé@ijowe
will specify the iteration method by using the splitting mentioned in the introduction.

3.1. Structure of the implicit relations

To see the structure of the implicit relations tosbbsed, it isconvenient to partition the components
un+1,i of Un+1 into (i) explicit stage valueshat can be explicitly evaluated by means of already
computed stage values and righthand sidkies,and (ii) implicit stage values which need the
solution of a (usually nonlinear) system of equations. For instanegample (2.3), alstage values
are explicit except for the second one, and in (2.4) and (2.5), only the first two atageplicit and
the other stages are explicit.

In most methodsawvailable in thditerature, the components tf,+1 can be arranged such a way
thatUp+1 = (Xn+1T, Yn+1', Zn+1")T, whereXn+1 and Zn+1 represenexplicit stagevalues and

Y n+1 the implicitstage values (see agdhlme examples (2.3)(2.4) and (2.5)). The corresponding
partitioning of the matrix T takes the form

nk1 O Op

3.1 T=0l2r A O,
0731 T32 L2 O

where L3 and Lp are strictly lower triangular matrices andql T31, T32 and A are allowed to be full
matrices with A nonsingular. From (3.1) it follows that the implicit stage values are defined by

(3.2)  Rn(Yn:1) =0, Rn(Y):=Y - RATNF(Y) -Vp,

whereVy can beexpressed in terms @lready computedjuantities.The structure of thémplicit
relations defining themplicit stage values is mainly determined by the matrixFAr the implicit
GLMs defined by (2.2), (2.3), (2.4) and (2.5), the matrix A is respectively given by

=~ 4 1 08 -4 289/392 0
(3.3) A=T2 A=g. A= ig% 08. A= H 231170/350800289/3025 -
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where we assumed that in (2.2) the maTrijGWhonsinguIar. Irthe following, the number ofmplicit
stages will be denoted by s.

Before discussinghe solution ofthe implicit relation(3.2), we remarkhat for stiff problems it is
recommendable to impose a special structure on the matrices S sarah that the evaluation of
explicit righthand side valuesan beavoided. This considerably improvélse accuracy in actual
implementations. To be more precise, let R, S and T be partitioned accorthegpgrtitioningUn +1
= (Xn+1T, Yn+1', Zn+1T)T, and let

OR1 MO S12 O N0 O Op
(3.4) R=0Reg, s=00 %200, 71=00 A O
OR3 [ 00 S32 O 00 T32 O

where A is a nonsingular s-bymatrix (note that themethods (2.3),(2.4) and (2.5) possess
parameter matrices of this form). The GLM takes the form

Xn+1= (RiOl)Un + R(S1200)F(Yn),
Yn+1= (ROI)Up + R(Spo0l)F(Yn) + RR(ADIF(Y n+),

Zn+1= (ReOI)Un + M(S3201)F(Yn) + W(T3201) F(Y n+1).

Using a similar approach as used by Shampine [6] in the implementatimplicft RK methods (see
also Hairer and Wanner [4, p.129]), we expiedsn+1) in terms ofY n+1, Un andF(Yp), i.e.

(3.5a)  RF(Yn+1) = (A10DYpe1- (ALRo0NUp - R(A-1Spo01) F(Y ),
so that we can write the GLM in the equivalent form
Xn+1= (RIONUn + R2(S1201)F(Yn),
(3.5b)  Yn+1= (RO)Up + (Sponl)F(Y n) + R(ADIF(Y n+1),
Zn+1= ((R3- T32A IR)T1)Un + MP((Sa2 - T32A1S2)01)F(Y ) + (T32A 10N Y 41,

Since BF(Y ) can be generated by applyi(®5a) for n = 1, 2,.. , n-1, noexplicit F evaluations
are needed in (3.5) except fefY 1). We shall usehe formulas(3.5b) inthe stabilityanalysis of the
iterated GLM (see Section (5.2).

3.2. The iteration method
Eachstep bythe method2.1) requiresthe solution ofthe nonlineassystemRp(Y) = 0 specified in

(3.2). In order to solve this system, we consider the modified Newton iteration process:

3.6a) MY0 -Y(D) =-Ry(YGD), M:= 1-A0h2), j=1,2, .., m,
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where M represents an approximationtlie Jacobian matrix dRp(Y). If the dimension d in the
system (1.1) is large, then solving (3.@&pally is quitecostly. It isthe aim ofthis paper to reduce

these costs by designing a parallel iterative linear system solver based on a splitting of the Jacobian of
f in a sum of matrices.Jrhen, the matrix M can be expressed as

1 0
(36b) M= I-Ah=> Zl (1 - cAON2) .
i=

This linear solver may be considered asitimer iterationprocess anthe Newton process (3.6a) as
the outer iterationprocess.The inner-outer iteratioprocess analysed in thgaper is based on the
approximate factorization of the matrix M and is of the form

1
3.7 n(Y6w -yiv-D) = M(Y(-L0 - YGv-D) -Ry(Y(-L), =[] (1- Boh23)
i=0
wherev=1,2, ... ,r,j=1, 2, ... , nand where B is a suitably chosen matrix. Evidently, if the

iteratesY (V) converge withv, then they caronly converge tathe solution of (3.6a) with Y ()
replaced byy (-1.1). We will refer to (3.7) as AF iteration.

Each inner iteration in (3.7) requires the solutioo tihear systems with system matrix | £B2J; of
order sd. It is now clear what we meantthg prepositionthat the'partial' Jacobians;Jshouldhave
an 'essentiallysimpler structure’, viz. 'thesolution of the linear systems with systenmatrix
| - BOh2J, should be much more easy than solving the linear system in (3.6a)'.

The inner iteration process in (3.7) is particularly attractiymarillel computesystemsare available,
because the LU-decompositions ofhe systemmatrices | - B1h2J) can all bedone concurrently.
Moreover, if B is diagonathen the factor matrices | -tB2J of the systemmatrix [1 are block-
diagonal, which enables us to decouple each of the linear systiensssubsystems whicbhan again
be solved concurrently. If B is not diagonal, lsimilar to a diagonal matrixvith real diagonal
entries,then we can diagonalize the iteration metli®d) by means of a Butcher transformation
Y (V) = (QDI)\?(J',V) , where Q is such that D :=1\Q is diagonal (see e.qg. [4. 128]) Thus,

M (YY) - Y6v-D) = - (QLuM@QuNYGv-D + QLo (MYGL1n - Ry(YG-L1D)),
3.7

_ 1
N :=@nn@on = [ (1- boh2y) .

i=0

Evidently, the factor matrices | -0h2J; of thesystemmatrixﬁ are agairblock-diagonal, allowing
the same amount of parallelism as in the case where B is diagonal.

Before turning to the convergence properties of AF iteration, we retharkan importantlass of
problemsthat can be effectively dealtith by the approach described above are ithal-value
problems originating from the spatial discretization of wave equations of the form



02u ;94 02u
atz daxlz ) wes ,axo_z y XLy «er )b-),

Then,the splitting of thecorresponding Jacobian yieldsatrices Jwhich eachcorrespond with a
one-dimensional differential operator. Hence, solving the linear subsystems is relatively cheap.

4. Convergence results
Let us considethe behaviour of the iteraticgrror (V) := Y(GV) - Y41 From (3.2)and (3.7) it

follows that

elv) = zelv-1) + RN-YATDGr(el-1D),  Z:=1-0-1M,
(4.1)

Gn(e) =F(Yn+1+€) -F(Yn+1) - (10J),

where J is the same approximation to the Jacobian mattgeakin (3.6)and Z representhe inner
amplification matrix. After r inner iterations, this recursion yields

(4.2)  €0N=2zrel-10) + 2 (1 - Z") M-L(ADI)Gp(el-10),

where we assumed thdfi:0) = Y(-1.1), j.e.g0.0) = (-1, Let Gy, possess hipschitz constant j(h)

in the neighbourhood ofhe origin(with respect tahe norm ||.|[) andet Ln(h) = O(hv), where u
depends onthe update strategysed inthe evaluation of the Jacobian J (if J is updated every few
steps,then u =1). Furthermore, it isasily verified that Z = (A - B)h2d + Qh%), so that

Zr = O(hfr), whered = 2 if A# B andB = 4 if A = B. Hence, it follows from (4.2) that

(4.2 ||e0n)|< (O(her) + o(hu+?)) ||eG-1n ), = 1.

This estimate shows that we at least have fast convergettoenaistiff components. For example,
if u = 1, then in each outer iteration the iteratésror is damped by a factor(l¥) + O(h3). Hence,
choosing r = 81, we may expect a convergence rate comparable with that of modified Newton.
So far,all our considerations weradependent of the splitting of the JacobiarHdwever, in the
remainder of this section, we will focus on the convergence in the case of model problems.

4.1. The model problem

The casevherethe 'partial’ JacobiansJall commutewith eachother, that is, they shareghe same
eigensystem, will be referred to as thedel problemSuch model situations occur(i.1) originates
from certain classes of second-ordgrartial differential equations, such athe wave equation
mentioned above.

For briefness of notation, we introduce the following conventieh E(h2Jy, ... , Js) be a matrix
depending on 4y, ..., Jg. Then the s-by-s matrix obtained by replacing the matriégsoly the
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scalars gis denoted by Ej, wherez = (z, ... , ). Thus, with the matrices Mefined in(3.6b),
defined in (3.7), and Z defined in (4.2) we associate the matrices

1
(4.3) Z@) =1 - MY M), M@ =1-€29A NE@ =[] (1-2z8B).

i=0

wheree is theo-dimensional vector with unintries. Evidently, if we choosg z= A(J;)h? where
A(J) denotes an eigenvalue of, then in the case of the model problem defimdmbve, the

eigenvalues of the amplification matrix (A.1) are given bythose ofthe matrix Zg). The region of
convergence can then be defined by the region ire4lane where Z) has itseigenvalues(z)
within the unit circle. Assuminghat the eigenvalues of theartial' JacobiansjJare on thenegative

real axis (as isthe case in manwave equation @blems), we shall call the iteration meth(®17)
A(0)-convergenif the region of convergence contaite region &: z < 0}. The eigenvalueg(z),

will be called theamplification factorof the inner iteration method.

4.2. Matrices B = A with real eigenvalues
We consider the convergence region of (3.7) in the case where B = A(Wijthlieal (for example, as

in the methods (2.3) and (2.5)). The amplification factors are given by
44) 1@ :=1-m@u2), p@ =1-NA)eT2), mn(z):= [](1-r(A)zi),
i=1

whereA(A) denotes areigenvalue of A. LetA\(A) = 0. Then itfollows from (4.4) that A(0)-
convergence is achieved ifi) - u(z) > 0 for z < 0. Since we may write

T(2) = W(2) + PA%(A) + paA3(A) + ... + RAS(A),
where the coefficients; gre nonnegative wheneverz0, we see that fox(A) =0 and z< 0
21(2) - U(2) = U(2) + Ap2A2(A) + paA3(A) + ... + pA°(A)) > 0.

Theorem 4.1.1f A(A) = 0, then AF iteration {(3.7), B = A} is A(0)-convergent for all¢

4.3. Matrices B = A with complex eigenvalues
If B = A with A having complex eigenvalues, then the convergence analysis is more complicated. We
separately discuss the cases of two and three splitting term2 ando = 3).

4.3.1. Two splitting terms.If o = 2, then the amplification factor can be factorized according to

4.5) 2@ = AA)z1(1 -AMA)z1) TAA)z2(1 - A (A)z2)
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By requiringthat the magnitude djoth factors is lesthan 1, we se¢hatfor o = 2 the region of
convergence of the inner iteration method in (3.7) contains the domain

D:=N {z 7 Re()\(A))<% . i=1,2%.
AA)

Theorem 4.2.1f Re(A(A)) = 0, then AF iteration {(3.7), B = A} is A(0)-convergent for= 2.4

Thus, AF iteration applied to the examples (2.3), (2.4) and (2.5) is A(O)-convergém. particular
case of the indirect GLM (2.2), we immediately have by virtue of Theorem 4.2 the result:

Corollary 4.1. If the generating GLM@ , R, S, T) in the indirect GLM(2.2) satisfies
|arg\(T )) | < 774, then AF iteration {(3.7), A = B = # is A(0)-convergent fow = 2.4

This corollary implieghat for all indirect RKN methods generated by RK matricgbose Butcher
matrices A have their eigenvalues in thedge| argi)\(ﬂ )) | < W4 AF iteration isA(0)-convergent.
For example, this happens in the case of the third-order Radathéfourth-orderLobatto IlIA and
the fourth-order and sixth-order Gauss methods.

Next, consider the case where A has eigenvalues w(th(Rg < 0, so that A(0)-convergence is not
possible. In fact, the region abnvergenceonsists of two stripalong the negative;zaxis and the
negative z-axis. The plot in Figure 1 is typicdbr the form of the region of divergence in the third
quadrant of the zz)-plane obtainedfor methods with R@(A)) < O (black part indicates
divergence). Note that the convergence region is symmetric with respect to the=line z

In a number of important applications, we do not need A(0)-convergence with respect to dath z
Z». For example, in the 2-dimensional modeling of the water elevation in a river, we encounter a wave
eqguation in whichthe resolution of the coordinate perpendicular to the sheuld be an order of
magnitude smaller than the resolution of the coordinate alongvére Hence the "stiffness" of the
Newton systems (3.6a&pmes fromthe direction perpendicular to thiever, sothat we neecdnly
unconditional convergence with respect to this direction. In such cases, a region of convergence as in
Figure 1 is quite sufficient.

If we havestiffness withrespect to bothjzand 2, then weshould look athe disk, centered at the
origin, which iscontained in the region aonvergence. From Figure 1 it followsat theradius of
this disk can be determined by setting=zz> on the boundary ahe convergencesgion. Hence, the
point ze is on the boundary of this convergemiisk if zg is a solution (nearest tbe origin) of the
equationsi{(zoe))| = 1 associated with those eigenvaldgs) of A that are inthe negativéhalfplane.
From (4.5) it follows that(;satisfiesP\(A)zo(l -)\(A)zo)"1| = 1. This equation has just one solution
given by[2RgA(A))]-1, so that we may conclude that the convergeagen of the inneiteration
method in (3.7) contains the domain

1
(4.7) D:{z: 72+ 202< 272, 7p:= max ,2130,22s0}.

Re(\(A))<0 ZRG()\(A))
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Suppose that the matricesahd 3 possess the spectral radp(S;) andp(J2). Thenthe convergence
condition becomes#p2(J;) + p2(J)) < 2z2. Thus, we have the convergence resullt:

Theorem 4.3. Let 0 = 2. If A has one omore eigenvalues in the negatialfplane, then a
sufficient condition for convergence of AF iteration {(3.7), B = A} is given by
22y 0 /4 1

U
<[d il , = maX Ty .¢
P23 + P20 T P peniano 2REMA))

(4.8) h

Example 4.1.We illustrate this convergence result imgans of thd&RKN method generated by the
fifth-order RadaullA method for first-order ODE methods. From (2.2) it followshat the RKN
matrix A is the square of the Radau IIA matrix, so that

88 - A6 296 - 1646 -2 + N6
B 360 1800 225 0.022 -0.020 0.01¢;
|:| . = . .
(4.9) A= 961’501069/5 883’%07‘/5 '22'22"5 = []0.177 0.038 - 0.007].
H 16 NG 16 +4E . [J0.318 0.182 0.006J
- +
36 36 9

Its eigenvalues are given BYA) = 0.0756andA(A) = - 0.0078+ 0.0601i. Applying Theorem 4.3
results into the convergence condition h < 4&2(J;) + p2(J)]-1/4. ¢

When A has one or more eigenvalues inléfiehalfplane, onanay wonder whethethe fixed point

iteration process might be a better approach than the AF process. To answer this question, we should
considerthe fixed pointerror equation. By observintat usingfixed point iterationfor solving the

Newton systems in (3.63)jelds an inner-outer iteratigorocess othe form (3.7) with B = O, i.e.

1 =1, the inner amplification matrix Z reduces to

(4.10)  Z=1-M = ADh2J.

This relation shows that fixed point iteration converges if p(p(A)]-12. A comparison with{(4.8)
yields the theorem

Theorem 4.4. Let o = 2. If A has one omore eigenvalues in the negatikalfplane, then the
interval of convergenstepsizes h of Aleration{(3.7), B = A} is larger than that of fixed point
iteration {(3.7), B = O} if

p2(J1) + p2(Jp) O pA) O
“1D S et

N[
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For example, if we use splitting according to dimensions in the two-dimensionale equation,
thenp(Jy) = p(d) = p(Jd1 + B)/2, sothat the lefthandide of(4.11) becomesl/2. Hence, (4.11) is
always satisfied.

There are ofcourse other aspecthat should betaken intoaccount. AFiteration needs LU
decompositions and forward-backward substitutions tt@@notherhand, the amplification factor is
much better for AF iteration. In order to appreciate the damping anitiad error YO) - Y141 by the
two iteration methods, wecompare the amplification factg@d.5) with the amplification factor
associated with (4.10). For the AF method, the largesgdlificationfactors occur on théne z; =
= z/2, so that along this line their magnitudes are respectively given by

A(A) P2

- ’ = A , = h?)\ N.
F Re[\'z,i‘)io 4 - ARA(A)) z + A(A) 222 Crp=|P(A)z|, Z J)

An important aspect is thdhr increases only slightly beyond 1, #wt using toolarge stepsizes
never causes wolent divergence behaviour agould bethe casewhen fixed point iteration is
applied. In factZar will never exceed the vaIL(éL - [Re(A(A)). MA) |'1]2)'1. For example, in the
case of the fifth-order Radau IIA based method (4.9), this maximal value is about 1.017.

4.3.2. Three splitting terms. For three splitting termsa( = 3) we can obtain a spectrum
condition on A by using the following lemma (for a proof see [2]):

Lemma 4.1.Letw := (wy, Wp, w3) and define the functions\yg) := (1 - wq)(1 - wo)(1 - wg) and
m(w) := 1 -eTw, where ware complex variables. Then, tine region {v: 3174 < arg(w) < 514},
the function 1 - g(w)m(w) assumes values within the unit ciréle.

From (4.4) it follows thaf(z) = 1 - p1(A(A)z) m(A(A)z). Applying Lemma4.1 with w; = A(A)z;,
we see thaf(z) assumes values within the unit circle in the reg{ian 34 < arg\(A)zj) < 5T[/4} :
Thus, we have the result:

Theorem 4.5.1f A has eigenvalues(A) with [arg(A(A))| < 174, then AF iteratior{(3.7), B = A}
is A(0)-convergent foo = 3.4

Corollary 4.2. If the generating GLM@ , R, S, T) in the indirect GLM(2.2) satisfies
|arg\(T )) | < 708, then AF iteration {(3.7), A = B = # is A(0)-convergent foo = 34

Hence, AF iteration applied to the examples (2.3), (2.4) and (2.5) is also A(0)-convergenrt 3.
However,this is notthe casdor the RKN methods generated by the RadiA, Lobatto IIA and
Gauss methods, because they all qavq)\(ﬂ )| > 8.

If |arg()\(A))| > 174, then the convergence region is finite and the region of divergenceag af

hyperboloid. In order to get some idea of the region of convergenqgaptter in Figure Zor (2.4)
the convergence boundaries in thgZ)-plane for a few values oz
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By virtue of the symmetry with respect to the convergence region contains the domain (cf. (4.7))
D:= N {z: 7212+ 22+ 732 <3722, 7<0,j=1, 2,3,

AA)

where 3 is the negative root of smallest magnitude of the equptiorrl(zoe)u(zoe)| =1, thatis, of
the equatiorp'[(zoe)|2 - [(zoe) - u(zoe)|2 = 0. Let us writeA(A) = r exp(ia), and define g :Fzor|.
Then, it can be shown that this equation yields the following relation betweerog and

(4.12) [1+ 3¢ -6¢Y + 6q[1 + 2¢f] cos@) + 4F[3 - 2q + 3¢] coF(a) =0, g= 0, a > 4.

The value of g defined bthis relation equalse ata = 174, then rapidly decreases %0 0.85 at
a =172, and slowly decreases+d.33 ata =1t The relation (4.12) leads tbe following analogue
of Theorem 4.3

Theorem 4.6. Let g = qf1) be the defined by4.12). Then, foro = 3 a sufficient condition for
convergence of AF iteration {(3.7), B = A} is given by

0 379 0 A
(413)  h< Y = min B2A)
D2000) + p2(%) + p2()E VY

4.4. Matrices B# A

In this section, wenvestigate whether the severe conditions on the spectrum of the matrix A to
achieve A(0)-convergence derived in the preceding Seétibnan be relaxed bghoosing B# A.

Some insight can be obtained by looking at the behaviour aintipdification matrix Zg) at infinity.

We respectively consider Z(in the cases wherg z « and z= 0 for j# i, and in the case where all
componentsijzend to infinity. This yields, respectively,

Z(2)=1 - B1A + z1B-1(I - B-1A)
(4.14) asg- o, i=1,..,0.
-1 o+l eTZ
Z(z)=1-0BCA, d:= (1)7(e2)
Zj_. .Z(_y
Since z< 0 and d > 0 we easily derive from (4.14) the following result:

Theorem 4.7.Forg 2 2, the condition$ A( - B-1A) | < 1 and RE\(B-9A)) = O arenecessary for
the A(0)-convergence of AF iterati@n.

This theorem provides a guide line for choosing the matrix B.

Example 4.2. Considerthe method(2.4). The eigenvalues of the matrix A are given by
A(A) = 0.0556+ 0.1571 i, sahat]arg(A(A))| = 0.39 T If we wouldhave chosen B = A, then the
first necessary A(0)-convergence conditionTdfeorem4.7 is trivially satisfied. Howeversince
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largA(B-9A))| = [ardA(A1-9))| = (0-1) Jarg(A(A))| = 0.39 6-1) T, the second condition of this
theorem is violated if 0.3%¢1) > 172, i.e. ifo > 2.28.

Now, let uschoose B diagonal arglichthat | - B-1A has twozero eigenvalues, sthat thefirst
condition of Theorem 3.6 is satisfied. This leads to

1 10
(4.15)  B= = Ho oH.

A straightforward calculation reveals that

2 -1
0 0
(4.16)  BOA= 181045 0. ABA) =187 (1 1-9t0 ),

so that thesecond condition oTheorem4.7 isalso satisfiedirrespective the value af. Foro = 2
ando = 3, we checked the A(0)-convergence in the gasere B is defined by4.15) and verified
that in both cases we have A(0)-convergemce.

5. Fixed numbers of inner and outer iterations

If the implicit relations (3.2) are iterated until convergence, then we may rely amdéweofaccuracy

and the stability of the underlying GLM2.). However, inactualcomputation, it is oftermore

efficient if we donotiterate the outer and inner iteration process gotivergence. Consequently, the

order of accuracy and the stability properties of the resulting integration scheme wiligentimal to

those of the underlying integration method. On the other hand, there is no need for convergence of the
AF iteration process.

5.1. Order of accuracy

Let us consider the order of accuracy of $kep values produced llye iterated methotbr fixed m
and r (werecall that astep value is an external stage vatoeresponding to a step point+f). Let
Un+1,i be a step value ithe underlying metho¢2.1) and let urngr). be the approximation after m

outer and r inner iterations.uf+1 j has local error of order p+1, then

m,r m,r m,r
(5.1) ur(1+1,)i -y(th + h) :U|(1+1,)i - Un+1,i + Un+1,i- Y(th+1) = ur(1+1,)i - Up+1,i + O(hP*1),

wherey(th+1) denotes thdocally exactsolution. By observinghat no iteratiorerrorsare introduced

in the computation of the explicit stages, we can derive the order |m|fﬁ?:@r}| - Un+1.j by using the

iteration error estimatét.2'). Let thepredictorfor the implicit stage values havecal error of order
g+1, i.e.On) = O(P*Y). Then (5.1) and (4.2") yield

(5.2) [Jusat) - y(t + hj|= H*(O(ner) + O(h+2))™+ O(hP+1).

Thus, the maximal order of accuracy is reached3f (m - ¢ / min{0r,u+2}.
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5.2. Stability

In order to see the effect of the number of iterations on #imlit, we applythe integratiorprocess
to the stability test equation’ = Jy. We shall confineur considerations tthe casevhere S and T
have the structure as specified in (3.4), so that the GLM can be written in the form (3.5b).
Since the test equation is linear, we mayGet 0in (4.1). From (4.2) and (3.5b) it follows

Y(MD oY= ZMYOD - Y1), Yner= ML((RaONU, + (Sp20h23)Y ).
Let the predictor for the outer iteration process be giveri(®y) = PUp. Then,
(5.3) Y(MN) = zmpy,, + (1 - Zm)M-L((Ra0I)Up, + (S220h23)Y ).
By identifying Y n+1 with Y (M. it follows from (3.5b) that for the stability test equation
Xn+1 = (Ri01)Un + (S120h2)Y,
(5.4)  Yne1=ZMPUp + (1 - ZM)M-L[(Ro01)Up, + (Spo0h23)Y ],
Zn+1- (T32A101) Y ne1 = ((R3 - T32A IR2)01)Un + ((S32 - Ta2A1S29)0h2)) Y.

Thus, weobtain a relation of the typdn+1 = Zm/Un, WhereZy, is a matrix defined by5.4) and
which depends othe matrices &Jj. Its eigenvalues are given by the eigenvalues of rifarix
>mr(2), whereZn(2) is defined in the same way tee matrices M{), [1(z) and Zg) in (4.3). Next
we observethat due to possiblenternal stages,the matrixZm(z) may contain a number of zero
columns. As a consequendbg corresponding components &fp,+1 do not play a role in the
propagation of perturbations throutite steps.Let all ith columns ofZn(z) with i ol be a zero
column, andet 5 mr(Z) denote the matrix obtained by removaigith columns andth rows from
2mr(2) foriol. Then, we have stability if thetability matrix> mr(Z) has itseigenvalues on the unit
disk. The region of stability is defined by the regiortha z-plane where mr(Z) has itseigenvalues
within the unitcircle (cf. the definition of the region of convergence in SecBpnAgain assuming
that the eigenvalues of thpartial' Jacobians jJare on the nonpositive reakis, weshall call the
integration method\(0)-stablaf the region of stability contains the region g < 0}.

We illustrate the above procedure by deriving the stability médrixeratedRKN methods with step
point valueyn+1 = (esT01) Y h+1 and with only one explicit derivative stage valugnhy, i.e. Up+1 =
(Yn+1T, hy'h+17)T. Using the 'last step value' predict®:) = PU, = (egTOl) Y, we have

_[CeaT cO ~ O0A 0
(655 R=0g (0. 5=0 T=ggr o

wherec andd are s-dimensional vectors.The equations (5.4) take the form

Y1 = ZMeaTol) Yo + (1 - Zm)M-1((eaTal) Y, + heal)y'n),
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(5.4')
hy'n+1 - @TA101)Yne1 = ((- dTA-legT)0I) Y + H((1 - dTA-Ic)Ol)y'n.

Usingyn+1 = (es'01)Y n+1, we obtain
Yne1= ((1 - Zm)M-L + zm) eal)yp + h(l - ZM)M-1(cal)y'y,
(5.4")  yn+1= @TO((1 - ZM)M-1 + zm)(enl)y, + hesTol (1 - Zm)M-L(caly'n,
hy'n+1 - (ATA-L00)Y ne1 = - (dTA-Leal)yn + h((2 - dTA-L6)01)y'n.
Elimination ofY+1leads to the 2-by-2 stability matrix

= 0 es' (Smr(z) + Z™(2))e &' Smr(2)c [
(5.6)2 mr(2) = %dTA'l(Smr(z) +Z™(2) - Ne 1 +dTA-Y(Smi(2) - I)c ik

where $(2) := (I - Z™(2))M-1(2). It is of interest testudythe behaviour of the stability matri
mr(2) at infinity. We consideE n(z) in the cases where¢ 2z « and z=0 for j# i, and in the case
where all components tend to infinity. From the relations (4.14) and

M-Y2)=z1AL, S(2)=0(zl) as 7z- o, i=1,..,0,
M-1(2) =eA-1l, Sn(2) = O©¢) as €06 - 0,

wheree := - (eTz)'! andd is defined in(4.14), it follows that thetwo eigenvalues ot mr(2)
approach the valueses™(I - B-1A)Mre, 1 - dTA-1c} and {1 - m(es'B-CAe), 1 - dTA-1c},
respectively. Sinc¢l - dTA'lc| < 1 is also needetbr the A(0)-stability of the underlying RKN
method, we have:

Theorem 5.1.Let the underlying GLM (3.5) be ai(0)-stableRKN method defined by5.5) and
let the initial iterate for AF iteration be defined ¥{P:") = (eeTol) Y. Then, after m outer and r inner
iterations, the two conditiorj®sT(I - B-2A)™e| < 1 andesTB-CAe > 0 arenecessary fothe A(0)-
stability of the iterated RKN methaol.

Example 5.1.In the case of the A(0)-stabliiird-order Radau basd®KN method (2.4), we find

for B = A that|esT(I - B-1A)™'e| = 0 for all mr, but already for = 2we havessTB-0Ae = esTA1-0e

= -14. Hence, according to Theorem 5.1, we cahage A(0)-stability. Figure presentsiumerical

plots for a few values of mr.

However, if we define B by (4.15), then the first condition is still satisfied because the spectral radius
of | - B-1A vanishes and hende - B-1A)Mr vanishes for me 2 (s-by-smatrices M with onlyzero
eigenvalues have theropertythat M = O for n=> s). Furthermore, it followdrom (4.16) that
es'B-0Ae = 20-1 so that thesecond necessary A(0)-stability condition Tieorem5.1 is also
satisfied. Numerical plots far = 2show A(0)-stability for all values of m¢.
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6. Concluding remarks

In this paper, wehave analysed an outer-inner iteration metbaded on modifiedNewton and
approximate factorizatiofior solving the implicit relations occurring in General Linear Methods
(GLMs) for second-orde©DEs aiginating from multi-dimensional wavequations.The implicit
relations are characterized by a matrix A, the iteration method by a matrix B.

Convergence conditions can erpressed in terms apectral properties of the matrices A and B.
Table6.1a summarizes the main convergemnesults for second-order equationsdesived in the
present paper and Table 6.1b compares themthatiA-convergenceesults for first-order equations
derived in[2]. In thesetables, Ay3 indicates the Butcher matrix of ti3ed-order RadallA method

for first-order ODEs, and Aand B refer to the matrices used in AF iteration for first-order ODEs.

The stability conditions for the AF iterated methods depend on the product mr of the number of outer
and inner iterations. Easy to check condititimet arenecessary foA(0)-stability have been derived

for a family of Runge-Kutta-Nystrom (RKN) methods. The tables 6.2 list the main results.

Table 6.1a.Second-order ODEs Table 6.1b. First-order ODEs

Cases of A(0)-convergence Cases of A-convergence
o B=A p(l - B1A) =0 o B=A p(I-B1A)=0
2 ReA(A)) =0 A = A2gg 2 AMA)=0 A = Ars
3 |argX)\(A))| < 14 A=AZR3 e
>4 AA) =0
Table 6.2a.Second-order ODEs Table 6.2b. First-order ODEs

Cases of A(0)-stability Cases of A-stability
o B=A p(l - B1A) =0 o B=A p(l-B1A)=0
2 A=AZzgmr=ec A=AZzs mr=1 2 A =Agy mr=1
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