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ABSTRACT

We consider stiff initial-value problems for second-order differential equations of the special form y" = f(y). Stiff

initial-value problem solvers are necessarily implicit, hence, we are faced with the problem of solving systems of

implicit relations. This paper focuses on the construction and analysis of iterative solution methods which are effective

in cases where the Jacobian of the righthand side of the differential equation can be split into a sum of matrices with a

simple structure. These iterative methods consist of the modified Newton method and an iterative linear solver to deal

with the linear Newton systems. The linear solver is based on the approximate factorization of the system matrix

associated with the linear Newton systems. A number of convergence results are derived for the linear solver in the case

where the Jacobian matrix can be split into commuting matrices. Such often problems arise in the spatial discretization

of time-dependent partial differential equations. Furthermore, the stability matrix and the order of accuracy of the

integration process are derived in the case of a finite number of iterations.
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1. Introduction

We consider initial-value problems (IVPs) for systems of second-order ordinary differential equations

(ODEs) of the special form

(1.1)
d2y(t)

dt2
   = f(y(t)),     y, f  ∈  Rd.

We shall assume that the equation (1.1) is stiff, so that we need a stiff solver to integrate (1.1). Stiff

IVP solvers are necessarily implicit, hence, we are faced with the problem of solving systems of

implicit relations. This paper focuses on the construction and analysis of iterative solution methods

which are effective in cases where an approximation J to ∂f/∂y can be split into a sum of σ matrices Ji
such that the matrices Ji have an essentially simpler structure than the matrix J (in Section 3.2, we will
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specify what is meant by an 'essentially simpler structure'). These iterative methods consist of the

modified Newton method (the outer iteration), in which the linear Newton systems are solved by a

second iteration process (the inner iteration) which is based on approximate factorization. The inner-

outer iteration process will be called approximate factorization iteration or briefly AF iteration.

In [5] AF iteration was used for solving fully implicit discretizations of transport models and in [2]

AF iteration was analysed in the case of a large class of implicit integration methods for systems of

first-order ODEs originating from the semidiscretization of partial differential equations. In the latter

paper, general convergence and stability results are presented. These results can also be used for

second-order ODE methods by writing (1.1) as a first-order system and by simply integrating this

system by a first-order ODE solver (the black box approach). Unfortunately, in the usual case where

the eigenvalues of ∂f/∂y are negative, the convergence and stability properties of the black box

approach are quite poor, because the special structure of the first-order form of (1.1) is not exploited.

To illustrate this, consider a Runge-Kutta (RK) method for first-order ODEs y ' = g(y), let the

Butcher matrix A~  of the RK method be an arbitrary matrix with complex eigenvalues, and suppose

that ∂g/∂y can be written as the sum of two commuting matrices K1 and K2. Then it can be shown

that the approximate factorization iteration process cannot be unconditionally convergent if the

eigenvalues of K1 and K2 are purely imaginary (see [2]). Now we apply the same RK method to the

first-order form of (1.1). Suppose that the Jacobian associated with the righthand side of (1.1) can be

split into two matrices J1 and J2 which share the same eigensystem with negative eigenvalues (for

example, this happens if (1.1) originates from the spatial discretization of a two-dimensional wave

equation). Then, the matrices K1 and K2 associated with the first-order form y ' = g(y) of (1.1)

commute and their eigenvalues are purely imaginary. Hence, according to [2], the AF iteration

process for solving the implicit RK relations will not be unconditionally convergent. However,

exploiting the special structure of the first-order form y' = g(y) of (1.1), the implicit RK relations can

be simplified (see Section 2 for details) and applying AF iteration to these simplified relations, we

obtain unconditional convergence provided that the eigenvalues λ(A~ ) of the underlying Butcher

matrix A~  satisfy | arg(λ(A~ ))| ≤ π/4. Examples are the Butcher matrices of the third-order Radau IIA,

the fourth-order Lobatto IIIA, and the fourth-order and sixth-order Gauss methods. Thus, although

the solutions of the original and the simplified RK relations are identical, the convergence properties

of AF iteration are quite different.

The purpose of this paper is to see to what extent the convergence and stability results valid for first-

order ODE methods change in the second-order case (1.1). Our starting point is the class of so-called

General Linear Methods (GLMs). For first-order ODEs, such methods have been introduced by

Butcher in 1966 (see [1, p.335] for a detailed discussion). In Section 2, we show that GLM methods

can be defined in a similar way for second-order ODEs given by (1.1). The advantage of using the

GLM format is that almost any IVP solver can be written as a GLM, so that the analysis developed in

this paper applies to a wide variety of methods. Section 3 discusses the structure of the implicit

relations arising in these GLM and defines the outer-inner iteration process for the implicit stage

values. In Section 4, a number of convergence results are derived for the model situation where the
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matrices Ji share the same eigensystem and possess a negative eigenvalue spectrum. Finally, Section

5 presents order of accuracy and stability results in the case of a finite number of inner and outer

iterations.

2. General linear methods

A direct extension of the GLMs of Butcher to equations of the second-order form (1.1) reads

(2.1) Un+1 = (R⊗ I)Un + h2(S⊗ I)F(Un) + h2(T⊗ I)F(Un+1),  n = 1, 2, ... .

Here R, S and T denote k-by-k matrices, I is the d-by-d identity matrix, h is the stepsize tn+1 - tn, and

⊗  denotes the Kronecker product, i.e. if R = (rij), then R⊗ I denotes the matrix of matrices (rij I). In

this paper, we assume that each of the k components un+1,i of the kd-dimensional solution vector

Un+1 represents a numerical approximation either to the exact solution vector y(tn + aih) or to the

exact derivative vector hy'(tn + aih). The vector a := (ai) is called the abscissa vector, the quantities

Un+1 the stage vectors and their components un+1,i the stage values. The stage values approximating

y(tn + aih) will be called solution values and those approximating hy'(tn + aih) derivative values.

Furthermore, for any vector Un = (uni), F(Un) contains the righthand side values (f(uni)).

If in the formula (2.1) h2 is replaced by h, then we obtain a GLM for first-order ODEs. In both cases,

the GLM is completely determined by the arrays {a, R, S, T}. Given the starting vector U1, (2.1)

defines a sequence of vectors U2, U3, U4, ..., from which approximations to the exact solution

values can be obtained.

It may happen that R and S have zero columns for the same column index j. In such cases, the jth

component u1,j of U1 is not needed to start the integration process. All stage values that we do need

to start the method are called external stage values, otherwise they are called internal stage values (cf.

Butcher [1], p. 367). The distinction between internal and external stage values is needed in the

stability analysis given in Section 5.

In this paper, we shall assume that one or more abscissae ai equal 1. If the corresponding components

un+1,i of Un+1 are external stage values, then these components will be called step point values (the

points tn+1 are called step points). A stage value un+1,i which provides an approximation to the exact

solution value y(tn + aih) is said to be accurate of order p if for sufficiently smooth righthand side

functions f and for all points {tn+ aih, n = 0, 1, ... }, we have that un+1,i = y(tn + aih) + O(hp). The

maximal order of accuracy of the step point values is called the step point order.

Of course, the second-order ODE (1.1) can also be solved by reducing the ODE (1.1) to first-order

form and by application of a first-order-ODE method. There are now two options, (i) the black box

approach where the first-order-ODE method is used as a black box method, or (ii) the indirect second-

order-ODE-method approach where the first-order-ODE method is rewritten as a second-order ODE

method by exploiting the special structure of the first-order ODE system. In the black box option, we

have to rely on the properties of the first-order-ODE method, including the properties of the iteration

process implemented for solving the implicit relations. Since it is often more advantageous, with

respect to numerical performance, to follow the indirect second-order-ODE-method option, we
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explicitly derive the resulting second-order ODE method. Let us write (1.1) as y ' = z, z' = f(y) and

let us apply a GLM defined by the arrays (a~ , R~ , S~ , T~ ). It can be verified that the resulting method

is equivalent with separately applying this GLM to y ' = z and to z' = f(y). Hence, let us associate

with y and z the stage vectors Y and Z. Then, Y and Z satisfy  

Yn+1 = ( R~ ⊗ I)Yn + h(S~ ⊗ I)Zn + h(T~ ⊗ I)Zn+1,

Zn+1 = ( R~ ⊗ I)Zn + h(S~ ⊗ I)F(Yn) + h(T~ ⊗ I)F(Yn+1).

By substitution of the second equation into the first and by defining the extended stage vector

Un := (YnT, hZnT)T, we obtain a GLM for second-order ODEs (see also Hairer [3])

(2.2) a = 






a~

a~
  ,   R =  







R~ S~ + T~R~

O R~
  ,   S = 







T~S~ O

S~ O
  ,   T = 







T~2 O

T~ O
  .

Note that in (2.2) only Yn+1 is implicitly defined and should be solved by some iteration process.

Thus, this iteration process needs to be applied to only kd implicit relations. This is a direct

consequence of the special structure of the first-order system. Ignoring this special structure, that is,

applying the black box option (i), would lead to iteration of 2kd implicit relations. Of course, if the

iteration processes used in the two options both converge, then they converge to the same numerical

solution. However, it will turn out that the iteration process in the indirect second-order-ODE-method

approach often converges where it does not converge in the black box approach.

Example 2.1. An example of a GLM of the form (2.2) with step point order p = 2 is the GLM

(2.3) a =  








0

1
0
1

  ,   R =  1
9
  








0 9 0 0

-3 12 -2 8
0 0 0 9
0 0 -3 12

  ,  S = O,  T =  1
9
  








0 0 0 0

0 4 0 0
0 0 0 0
0 6 0 0

  .

derived from the two-step backward differentiation method (BDM). Here, Un+1 approximates

(y(tn)T, y(tn + h)T, hy'(tn)T, hy'(tn + h)T)T. ♦

Example 2.2. Another indirect second-order ODE method, derived from the 2-stage Radau IIA

based method for first-order ODEs, is defined by the Runge-Kutta-Nyström (RKN) method

(2.4) a =  






1/3

1
1

  ,   R =  1
6
  






0 6 2

0 6 6
0 0 6

  ,   S = O,   T =  1
72

  






8 -4 0

36 0 0
54 18 0

  ,

where Un+1 ≈ (y(tn + h/3)T, y(tn + h)T, hy'(tn + h)T)T. This method has step point order 3. ♦
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Example 2.3. A direct second-order ODE method is given by (cf. Sharp, Fine and Burrage [7])

(2.5) a = 






17/14

23/60
1
1

  ,   R = 








0 0 1 17/14

0 0 1 23/60
0 0 1 1
0 0 0 1

  ,  S = O,  T =  








289/392 0 0 0

- 234179/352800289/392 0 0
- 21/698 185/349 0 0
49/349 300/349 0 0

  ,

where Un+1 approximates (y(tn + 17h/14)T, y(tn + 23h/60)T, hy(tn + h)T, hy'(tn + h)T)T. This

method has step point order 3. ♦

3. Approximate factorization iteration

In order to define the approximate factorization iteration method, we first need to extract the implicit

relations to be solved from the GLM (2.1). This will be the subject of Section 3.1. In Section 3.2, we

will specify the iteration method by using the splitting mentioned in the introduction.

3.1. Structure of the implicit relations

To see the structure of the implicit relations to be solved, it is convenient to partition the components

un+1,i of Un+1 into (i) explicit stage values that can be explicitly evaluated by means of already

computed stage values and righthand side values, and (ii) implicit stage values which need the

solution of a (usually nonlinear) system of equations. For instance, in example (2.3), all stage values

are explicit except for the second one, and in (2.4) and (2.5), only the first two stages are implicit and

the other stages are explicit.

In most methods available in the literature, the components of Un+1 can be arranged in such a way

that Un+1 = (Xn+1T, Yn+1T, Zn+1T)T, where Xn+1 and Zn+1 represent explicit stage values and

Yn+1 the implicit stage values (see again the examples (2.3), (2.4) and (2.5)). The corresponding

partitioning of the matrix T takes the form

(3.1) T =  






L1 O O

T21 A O
T31 T32 L2

  ,

where L1 and L2 are strictly lower triangular matrices and T21, T31, T32 and A are allowed to be full

matrices with A nonsingular. From (3.1) it follows that the implicit stage values are defined by

(3.2) Rn(Yn+1) = 0,   Rn(Y) := Y - h2(A ⊗ I)F(Y)  - Vn,

where Vn can be expressed in terms of already computed quantities. The structure of the implicit

relations defining the implicit stage values is mainly determined by the matrix A. For the implicit

GLMs defined by (2.2), (2.3), (2.4) and (2.5), the matrix A is respectively given by

(3.3) A = T~ 2,    A = 
4
9
  ,    A =   1

72
   

8 -4
36 0   ,    A =    

289/392 0
- 234179/352800289/392   ,
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where we assumed that in (2.2) the matrix T~  is nonsingular. In the following, the number of implicit

stages will be denoted by s.

Before discussing the solution of the implicit relation (3.2), we remark that for stiff problems it is

recommendable to impose a special structure on the matrices S and T such that the evaluation of

explicit righthand side values can be avoided. This considerably improves the accuracy in actual

implementations. To be more precise, let R, S and T be partitioned according to the partitioning Un+1

= (Xn+1T, Yn+1T, Zn+1T)T, and let

(3.4) R =  






R1

R2
R3

  ,   S =  






O S12 O

O S22 O
O S32 O

  ,   T =  






O O O

O A O
O T32 O

  

where A is a nonsingular s-by-s matrix (note that the methods (2.3), (2.4) and (2.5) possess

parameter matrices of this form). The GLM takes the form

Xn+1 =  (R1⊗ I)Un + h2(S12⊗ I)F(Yn),

Yn+1 =  (R2⊗ I)Un + h2(S22⊗ I)F(Yn) + h2(A ⊗ I)F(Yn+1),

Zn+1 =  (R3⊗ I)Un + h2(S32⊗ I)F(Yn) + h2(T32⊗ I)F(Yn+1).

Using a similar approach as used by Shampine [6] in the implementation of implicit RK methods (see

also Hairer and Wanner [4, p.129]), we express F(Yn+1) in terms of Yn+1, Un and F(Yn), i.e.

(3.5a) h2F(Yn+1) = (A-1⊗ I)Yn+1 -  (A-1R2⊗ I)Un - h2(A-1S22⊗ I)F(Yn),

so that we can write the GLM in the equivalent form

Xn+1 =  (R1⊗ I)Un + h2(S12⊗ I)F(Yn),

(3.5b) Yn+1 =  (R2⊗ I)Un + h2(S22⊗ I)F(Yn) + h2(A ⊗ I)F(Yn+1),

Zn+1 =  ((R3 - T32A-1R2)⊗ I)Un + h2((S32 - T32A-1S22)⊗ I)F(Yn) + (T32A-1⊗ I)Yn+1.

Since h2F(Yn) can be generated by applying (3.5a) for n = 1, 2, ... , n-1, no explicit F evaluations

are needed in (3.5) except for F(Y1). We shall use the formulas (3.5b) in the stability analysis of the

iterated GLM (see Section (5.2).

3.2. The iteration method
Each step by the method (2.1) requires the solution of the nonlinear system Rn(Y) = 0 specified in

(3.2). In order to solve this system, we consider the modified Newton iteration process:

(3.6a) M(Y(j) - Y(j-1)) = - Rn(Y(j-1)),   M :=  I - A⊗ h2J,   j = 1, 2, ... , m,
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where M represents an approximation to the Jacobian matrix of Rn(Y). If the dimension d in the

system (1.1) is large, then solving (3.6a) usually is quite costly. It is the aim of this paper to reduce

these costs by designing a parallel iterative linear system solver based on a splitting of the Jacobian of

f in a sum of matrices Ji. Then, the matrix M can be expressed as

(3.6b) M =  I - A⊗ h2J =  
1

σ
  ∑

i=1

σ
 (I - σA ⊗ h2Ji) .

This linear solver may be considered as the inner iteration process and the Newton process (3.6a) as

the outer iteration process. The inner-outer iteration process analysed in this paper is based on the

approximate factorization of the matrix M and is of the form

(3.7) ∏(Y(j,ν) - Y(j,ν-1)) = M(Y(j-1,r) - Y(j,ν-1)) - Rn(Y(j-1,r)),   ∏ :=  ∏
i=σ

1

 (I - B⊗ h2Ji) ,

where ν = 1, 2, ... , r, j = 1, 2, ... , m, and where B is a suitably chosen matrix. Evidently, if the

iterates Y (j,ν) converge with ν, then they can only converge to the solution of (3.6a) with Y(j)

replaced by Y(j-1,r). We will refer to (3.7) as AF iteration.

Each inner iteration in (3.7) requires the solution of σ linear systems with system matrix I - B⊗ h2Ji of

order sd. It is now clear what we meant by the preposition that the 'partial' Jacobians Ji should have

an 'essentially simpler structure', viz. 'the solution of the linear systems with system matrix

I - B⊗ h2Ji should be much more easy than solving the linear system in (3.6a)'.

The inner iteration process in (3.7) is particularly attractive if parallel computer systems are available,

because the σ LU-decompositions of the system matrices I - B⊗ h2Ji can all be done concurrently.

Moreover, if B is diagonal, then the factor matrices I - B⊗ h2Ji of the system matrix ∏ are block-

diagonal, which enables us to decouple each of the linear systems into s subsystems which can again

be solved concurrently. If B is not diagonal, but similar to a diagonal matrix with real diagonal

entries, then we can diagonalize the iteration method (3.7) by means of a Butcher transformation

Y(j,ν) = (Q⊗ I)Y
~(j,ν) , where Q is such that D := Q-1AQ is diagonal (see e.g. [4. 128]) Thus,

∏
~

 (Y
~(j,ν) - Y

~(j,ν−1))  = - (Q-1⊗ I)M(Q⊗ I)Y
~(j,ν−1)  + (Q-1⊗ I)(MY(j-1,r) - Rn(Y(j-1,r))),

(3.7')

∏
~

  := (Q-1⊗ I)∏(Q⊗ I) =  ∏
i=σ

1

 (I - D⊗ h2Ji) .

Evidently, the factor matrices I - D⊗ h2Ji of the system matrix ∏
~

  are again block-diagonal, allowing

the same amount of parallelism as in the case where B is diagonal.

Before turning to the convergence properties of AF iteration, we remark that an important class of

problems that can be effectively dealt with by the approach described above are the initial-value

problems originating from the spatial discretization of wave equations of the form
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∂2u
∂t2

   = g( 
∂2u
∂x12   , ... , 

∂2u
∂xσ2  , x1, ... , xσ),

Then, the splitting of the corresponding Jacobian yields matrices Ji which each correspond with a

one-dimensional differential operator. Hence, solving the linear subsystems is relatively cheap.♦

4. Convergence results
Let us consider the behaviour of the iteration error ε(j,ν) := Y (j,ν) - Yn+1. From (3.2) and (3.7) it

follows that

ε(j,ν) = Z ε(j,ν−1) + h2∏-1(A⊗ I)Gn(ε(j-1,r)),    Z := I - ∏-1M,    
(4.1)

Gn(ε) := F(Yn+1 + ε ) - F(Yn+1) - (I⊗ J)ε,

where J is the same approximation to the Jacobian matrix as used in (3.6) and Z represents the inner

amplification matrix. After r inner iterations, this recursion yields

(4.2) ε(j,r) = Zr ε(j-1,r) + h2 (I - Zr) M-1(A⊗ I)Gn(ε(j-1,r)),

where we assumed that Y(j,0) = Y(j-1,r), i.e. ε(j,0) = ε(j-1,r). Let Gn possess a Lipschitz constant Ln(h)

in the neighbourhood of the origin (with respect to the norm ||.||) and let  Ln(h) = O(hu), where u

depends on the update strategy used in the evaluation of the Jacobian J (if J is updated every few

steps, then u = 1). Furthermore, it is easily verified that Z = (A - B)⊗ h2J + O(h4), so that

Zr =  O(hθr), where θ = 2 if A ≠ B and θ = 4 if A = B. Hence, it follows from (4.2) that

(4.2') || ε(j,r)|| ≤ (O(hθr) + O(hu+2)) || ε(j-1,r) || ,    j ≥ 1.

This estimate shows that we at least have fast convergence of the nonstiff components. For example,

if u = 1, then in each outer iteration the iteration error is damped by a factor O(hθr) + O(h3). Hence,

choosing r = 4θ-1, we may expect a convergence rate comparable with that of modified Newton.

So far, all our considerations were independent of the splitting of the Jacobian J. However, in the

remainder of this section, we will focus on the convergence in the case of model problems.

4.1. The model problem
The case where the 'partial' Jacobians Ji all commute with each other, that is, they share the same

eigensystem, will be referred to as the model problem. Such model situations occur if (1.1) originates

from certain classes of second-order partial differential equations, such as the wave equation

mentioned above.

For briefness of notation, we introduce the following convention. Let E(h2J1, ... , h2Jσ) be a matrix

depending on h2J1, ... , h2Jσ. Then the s-by-s matrix obtained by replacing the matrices h2Ji by the
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scalars zi is denoted by E(z), where z = (z1, ... , zσ). Thus, with the matrices M defined in (3.6b), ∏

defined in (3.7), and Z defined in (4.2) we associate the matrices

(4.3) Z(z) := I - ∏-1(z)M(z),    M(z) = I - (eTz)A,    ∏(z) = ∏
i=σ

1

 (I - ziB) ,   

where e is the σ-dimensional vector with unit entries. Evidently, if we choose zi := λ(Ji)h2 where

λ(Ji) denotes an eigenvalue of Ji, then in the case of the model problem defined above, the

eigenvalues of the amplification matrix in (4.1) are given by those of the matrix Z(z). The region of

convergence can then be defined by the region in the z-plane where Z(z) has its eigenvalues ζ(z)

within the unit circle. Assuming that the eigenvalues of the 'partial' Jacobians Ji are on the negative

real axis (as is the case in many wave equation problems), we shall call the iteration method (3.7)

A(0)-convergent if the region of convergence contains the region {z: zi ≤ 0}. The eigenvalues ζ(z),

will be called the amplification factors of the inner iteration method.

4.2. Matrices B = A with real eigenvalues
We consider the convergence region of (3.7) in the case where B = A with λ(A) real (for example, as

in the methods (2.3) and (2.5)). The amplification factors are given by

(4.4) ζ(z) := 1 - π-1(z)µ(z),  µ(z) := 1 -  λ(A)(eTz),    π(z) :=  ∏
i=1

σ
 (1 - λ (A)zi) ,

where λ(A) denotes an eigenvalue of A. Let λ(A) ≥ 0. Then it follows from (4.4) that A(0)-

convergence is achieved if 2π(z) - µ(z) > 0 for zi ≤ 0. Since we may write

π(z) = µ(z) + p2λ2(A) + p3λ3(A) + ...  + pσλσ(A),

where the coefficients pi are nonnegative whenever zi ≤ 0, we see that for λ(A) ≥ 0 and zi ≤ 0

2π(z) - µ(z) = µ(z) + 2(p2λ2(A) + p3λ3(A) + ...  + pσλσ(A)) > 0.

Theorem 4.1. If λ(A) ≥ 0, then AF iteration {(3.7), B = A} is A(0)-convergent for all σ.♦

4.3. Matrices B = A with complex eigenvalues

If B = A with A having complex eigenvalues, then the convergence analysis is more complicated. We

separately discuss the cases of two and three splitting terms (σ = 2 and σ = 3).

4.3.1. Two splitting terms. If σ = 2, then the amplification factor can be factorized according to

(4.5) ζ(z) = λ(A)z1(1 - λ(A)z1)−1 λ(A)z2(1 - λ(A)z2)−1.
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By requiring that the magnitude of both factors is less than 1, we see that for σ = 2 the region of

convergence of the inner iteration method in (3.7) contains the domain

D := ∩
λ(A)

  { z:  zj Re(λ(A)) < 1
2
  ,  j = 1, 2} .

Theorem 4.2. If Re(λ(A)) ≥ 0, then AF iteration {(3.7), B = A} is A(0)-convergent for σ = 2.♦

Thus, AF iteration applied to the examples (2.3), (2.4) and (2.5) is A(0)-convergent. In the particular

case of the indirect GLM (2.2), we immediately have by virtue of Theorem 4.2 the result:

Corollary 4.1. If the generating GLM (a~ , R~ , S~ , T~ ) in the indirect GLM (2.2) satisfies

| arg(λ(T~ )) | ≤ π/4 , then AF iteration {(3.7), A = B = T~ 2} is A(0)-convergent for σ = 2.♦

This corollary implies that for all indirect RKN methods generated by RK matrices whose Butcher

matrices A~  have their eigenvalues in the wedge | arg(λ(A~ )) | ≤ π/4 AF iteration is A(0)-convergent.

For example, this happens in the case of the third-order Radau IIA, the fourth-order Lobatto IIIA and

the fourth-order and sixth-order Gauss methods.

Next, consider the case where A has eigenvalues with Re(λ(A)) < 0, so that A(0)-convergence is not

possible. In fact, the region of convergence consists of two strips along the negative z1-axis and the

negative z2-axis. The plot in Figure 1 is typical for the form of the region of divergence in the third

quadrant of the (z1,z2)-plane obtained for methods with Re(λ(A)) < 0 (black part indicates

divergence). Note that the convergence region is symmetric with respect to the line z1 = z2.

In a number of important applications, we do not need A(0)-convergence with respect to both z1 and

z2. For example, in the 2-dimensional modeling of the water elevation in a river, we encounter a wave

equation in which the resolution of the coordinate perpendicular to the river should be an order of

magnitude smaller than the resolution of the coordinate along the river. Hence, the "stiffness" of the

Newton systems (3.6a) comes from the direction perpendicular to the river, so that we need only

unconditional convergence with respect to this direction. In such cases, a region of convergence as in

Figure 1 is quite sufficient.

If we have stiffness with respect to both z1 and z2, then we should look at the disk, centered at the

origin, which is contained in the region of convergence. From Figure 1 it follows that the radius of

this disk can be determined by setting z1 = z2 on the boundary of the convergence region. Hence, the

point z0e is on the boundary of this convergence disk if z0 is a solution (nearest to the origin) of the

equations |ζ(z0e))| = 1 associated with those eigenvalues λ(A) of A that are in the negative halfplane.

From (4.5) it follows that z0 satisfies |λ(A)z0(1 - λ(A)z0)−1| = 1. This equation has just one solution

given by [2Re(λ(A))]-1, so that we may conclude that the convergence region of the inner iteration

method in (3.7) contains the domain

(4.7) D = { z:  z12 + z22 < 2z02,  z0 := max
Re(λ(A))<0

   
1

2Re(λ(A))
   , z1 ≤ 0, z2 ≤ 0} .
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Suppose that the matrices J1 and J2 possess the spectral radius ρ(J1) and ρ(J2). Then the convergence

condition becomes h4(ρ2(J1) + ρ2(J2)) < 2z02. Thus, we have the convergence result:

Theorem 4.3. Let σ = 2. If A has one or more eigenvalues in the negative halfplane, then a

sufficient condition for convergence of AF iteration {(3.7), B = A} is given by

(4.8) h < 






2z02

ρ2(J1) + ρ2(J2)
  

1/4
 ,   z0 := max

Re(λ(A))<0
   

1

2Re(λ(A))
   . ♦

Example 4.1. We illustrate this convergence result by means of the RKN method generated by the

fifth-order Radau IIA method for first-order ODE methods. From (2.2) it follows that the RKN

matrix A is the square of the Radau IIA matrix, so that

(4.9) A =  







8 8  -  7 6
360

296 -  169 6
1800

- 2  +  3 6
225

296 +  169 6
1800

8 8  +  7 6
360

- 2  -  3 6
225

1 6  -  6
36

1 6  +  6
36

1
9

  

2

 ≈  






0.022 - 0.020   0.010

0.177   0.038 - 0.007

0.318   0.182   0.000

  .

Its eigenvalues are given by λ(A) ≈ 0.0756 and λ(A) ≈ - 0.0078 ± 0.0601i. Applying Theorem 4.3

results into the convergence condition h < 9.52 [ρ2(J1) + ρ2(J2)]-1/4. ♦

When A has one or more eigenvalues in the left halfplane, one may wonder whether the fixed point

iteration process might be a better approach than the AF process. To answer this question, we should

consider the fixed point error equation. By observing that using fixed point iteration for solving the

Newton systems in (3.6a) yields an inner-outer iteration process of the form (3.7) with B = O, i.e.

∏ = I, the inner amplification matrix Z reduces to

(4.10) Z = I - M = A⊗ h2J.

This relation shows that fixed point iteration converges if h < [ρ(J)ρ(A)]-1/2. A comparison with (4.8)

yields the theorem

Theorem 4.4. Let σ = 2. If A has one or more eigenvalues in the negative halfplane, then the

interval of convergent stepsizes h of AF iteration {(3.7), B = A} is larger than that of fixed point

iteration {(3.7), B = O} if

(4.11)
ρ2(J1) + ρ2(J2)

ρ2(J1 + J2)
   <  1

2
  min

Re(λ(A))<0
 






ρ(A)

Re(λ(A))
 
2
  . ♦
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For example, if we use a splitting according to dimensions in the two-dimensional wave equation,

then ρ(J1) = ρ(J2) = ρ(J1 + J2)/2, so that the lefthand side of (4.11) becomes 1/2. Hence, (4.11) is

always satisfied.

There are of course other aspects that should be taken into account. AF iteration needs LU

decompositions and forward-backward substitutions. On the other hand, the amplification factor is

much better for AF iteration. In order to appreciate the damping of the initial error Y(0) - Yn+1 by the

two iteration methods, we compare the amplification factor (4.5) with the amplification factor

associated with (4.10). For the AF method, the largest amplification factors occur on the line z1 = z2
= z/2, so that along this line their magnitudes are respectively given by

ζAF = max
Re(λ(A))<0

   
|λ(A)|2z2

4 - 4Re(λ(A)) z + |λ(A)|2z2   ,   ζFP = |ρ(A)z| ,  z := h2λ(J).    

An important aspect is that ζAF increases only slightly beyond 1, so that using too large stepsizes

never causes a violent divergence behaviour as would be the case when fixed point iteration is

applied. In fact, ζAF will never exceed the value (1 - [Re(λ(A)).|λ(A)|-1]2)-1. For example, in the

case of the fifth-order Radau IIA based method (4.9), this maximal value is about 1.017. 

4.3.2. Three splitting terms. For three splitting terms (σ = 3) we can obtain a spectrum

condition on A by using the following lemma (for a proof see [2]):

Lemma 4.1. Let w := (w1, w2, w3) and define the functions p(w) := (1 - w1)(1 - w2)(1 - w3) and

m(w) := 1 - eTw, where wj are complex variables. Then, in the region {w: 3π/4 ≤ arg(wj) ≤ 5π/4},

the function 1 - p-1(w)m(w) assumes values within the unit circle.♦

From (4.4) it follows that ζ(z) = 1 - p-1(λ(A)z) m(λ(A)z). Applying Lemma 4.1 with wj = λ(A)zj,

we see that ζ(z) assumes values within the unit circle in the region { z: 3π/4 ≤ arg(λ(A)zj) ≤ 5π/4} .

Thus, we have the result:

Theorem 4.5. If A has eigenvalues λ(A) with |arg(λ(A))| ≤ π/4, then AF iteration {(3.7), B = A}

is A(0)-convergent for σ = 3.♦

Corollary 4.2. If the generating GLM (a~ , R~ , S~ , T~ ) in the indirect GLM (2.2) satisfies

| arg(λ(T~ )) | ≤ π/8 , then AF iteration {(3.7), A = B = T~ 2} is A(0)-convergent for σ = 3.♦

Hence, AF iteration applied to the examples (2.3), (2.4) and (2.5) is also A(0)-convergent for σ = 3.

However, this is not the case for the RKN methods generated by the Radau IIA, Lobatto IIIA and

Gauss methods, because they all have | arg(λ(A~ )) | > π/8.  

If |arg(λ(A))| > π/4, then the convergence region is finite and the region of divergence is a sort of

hyperboloid. In order to get some idea of the region of convergence, we plotted in Figure 2 for (2.4)

the convergence boundaries in the (z1,z2)-plane for a few values of z3.
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By virtue of the symmetry with respect to zj, the convergence region contains the domain (cf. (4.7))

 D :=  ∩
λ(A)

  { z: z12 + z22 + z32 < 3z02,  zj ≤ 0, j = 1, 2, 3} ,

where z0 is the negative root of smallest magnitude of the equation |1 - π-1(z0e)µ(z0e)| = 1, that is, of

the equation |π(z0e)|2 - |π(z0e) - µ(z0e)|2 = 0. Let us write λ(A) = r exp(iα), and define q := |z0r|.
Then, it can be shown that this equation yields the following relation between q and α:

(4.12) [1 + 3q2 - 6q4] + 6q[1 + 2q2] cos(α) + 4q2[3 - 2q + 3q2] cos2(α) = 0,  q ≥ 0,  α ≥ π/4.

The value of q defined by this relation equals ∞ at α = π/4, then rapidly decreases to ≈ 0.85 at

α = π/2, and slowly decreases to ≈ 0.33 at α = π. The relation (4.12) leads to the following analogue

of Theorem 4.3

Theorem 4.6. Let q = q(α) be the defined by (4.12). Then, for σ = 3 a sufficient condition for

convergence of AF iteration {(3.7), B = A} is given by

(4.13) h < 






3z02

ρ2(J1) + ρ2(J2) + ρ2(J3)
  

1/4
 ,   z0 := - min

λ(A)
  
q(arg(A))

|λ(A)|
   . ♦

4.4. Matrices B ≠ A

In this section, we investigate whether the severe conditions on the spectrum of the matrix A to

achieve A(0)-convergence derived in the preceding Section 4.3 can be relaxed by choosing B ≠ A.

Some insight can be obtained by looking at the behaviour of the amplification matrix Z(z) at infinity.

We respectively consider Z(z) in the cases where zi → ∞ and zj = 0 for j ≠ i, and in the case where all

components zi tend to infinity. This yields, respectively,

Z(z) ≈ I - B-1A + zi-1B-1(I - B-1A)
(4.14) as zi → ∞, i = 1, ... , σ.

Z(z) ≈ I - δB-σA,   δ :=  
(-1)σ+1(eTz)

z1. ... .zσ
 

Since zi < 0 and  δ > 0 we easily derive from (4.14) the following result:

Theorem 4.7. For σ ≥ 2, the conditions | λ(I - B-1A) | ≤ 1 and Re(λ(B-σA)) ≥ 0 are necessary for

the A(0)-convergence of AF iteration.♦

This theorem provides a guide line for choosing the matrix B.

Example 4.2. Consider the method (2.4). The eigenvalues of the matrix A are given by

λ(A) ≈ 0.0556 ± 0.1571 i, so that |arg(λ(A))| ≈ 0.39 π. If we would have chosen B = A, then the

first necessary A(0)-convergence condition of Theorem 4.7 is trivially satisfied. However, since
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|arg(λ(B-σA))| = |arg(λ(A1-σ))| = (σ-1) |arg(λ(A))| ≈ 0.39 (σ-1) π, the second condition of this

theorem is violated if 0.39 (σ-1) π > π/2, i.e. if σ > 2.28.

Now, let us choose B diagonal and such that I - B-1A has two zero eigenvalues, so that the first

condition of Theorem 3.6 is satisfied. This leads to

(4.15) B =   1
18

   
1 0
0 9   .

A straightforward calculation reveals that

(4.16) B-σA =  18σ-1 






2 -1

9
1-σ

0
  ,    λ(B-σA) = 18σ-1 (1 ±  1 - 91-σ   ),

so that the second condition of Theorem 4.7 is also satisfied, irrespective the value of σ. For σ = 2

and σ = 3, we checked the A(0)-convergence in the case where B is defined by (4.15) and verified

that in both cases we have A(0)-convergence. ♦

5. Fixed numbers of inner and outer iterations

If the implicit relations (3.2) are iterated until convergence, then we may rely on the order of accuracy

and the stability of the underlying GLM (2.1). However, in actual computation, it is often more

efficient if we do not iterate the outer and inner iteration process until convergence. Consequently, the

order of accuracy and the stability properties of the resulting integration scheme will not be identical to

those of the underlying integration method. On the other hand, there is no need for convergence of the

AF iteration process.

5.1. Order of accuracy

Let us consider the order of accuracy of the step values produced by the iterated method for fixed m

and r (we recall that a step value is an external stage value corresponding to a step point tn+1). Let

un+1,i be a step value in the underlying method (2.1) and let un+1,i
(m,r)

  be the approximation after m

outer and r inner iterations. If un+1,i has local error of order p+1, then

(5.1) un+1,i
(m,r)

  - y(tn + h) = un+1,i
(m,r)

  - un+1,i + un+1,i - y(tn+1) = un+1,i
(m,r)

  - un+1,i + O(hp+1),

where y(tn+1) denotes the locally exact solution. By observing that no iteration errors are introduced

in the computation of the explicit stages, we can derive the order in h of un+1,i
(m,r)

  - un+1,i by using the

iteration error estimate (4.2'). Let the predictor for the implicit stage values have local error of order

q+1, i.e. ε(0,r) = O(hq+1). Then (5.1) and (4.2') yield

(5.2) || un+1,i
(m,r)

  - y(tn + h)|| = hq+1(O(hθr) + O(hu+2))m+ O(hp+1).

Thus, the maximal order of accuracy is reached if m ≥ (p - q) / min{θr,u+2}.  
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5.2. Stability

In order to see the effect of the number of iterations on the stability, we apply the integration process

to the stability test equation y ' = Jy. We shall confine our considerations to the case where S and T

have the structure as specified in (3.4), so that the GLM can be written in the form (3.5b).

Since the test equation is linear, we may set Gn = 0 in (4.1). From (4.2) and (3.5b) it  follows

Y(m,r) - Yn+1 = Zrm(Y(0,r) - Yn+1),   Yn+1 =  M-1((R2⊗ I)Un + (S22⊗ h2J)Yn).

Let the predictor for the outer iteration process be given by Y(0,r) = PUn. Then,

(5.3) Y(m,r) = ZrmPUn + (I - Zrm)M-1((R2⊗ I)Un + (S22⊗ h2J)Yn).

By identifying Yn+1 with Y(m,r) it follows from (3.5b) that for the stability test equation

Xn+1 = (R1⊗ I)Un + (S12⊗ h2J)Yn,

(5.4) Yn+1 = ZrmPUn + (I - Zrm)M-1[(R2⊗ I)Un + (S22⊗ h2J)Yn],

Zn+1 - (T32A-1⊗ I)Yn+1 = ((R3 - T32A-1R2)⊗ I)Un + ((S32 - T32A-1S22)⊗ h2J)Yn.

Thus, we obtain a relation of the type Un+1 = ΣmrUn, where Σmr is a matrix defined by (5.4) and

which depends on the matrices h2Ji. Its eigenvalues are given by the eigenvalues of the matrix

Σmr(z), where Σmr(z) is defined in the same way as the matrices M(z), ∏(z) and Z(z) in (4.3). Next

we observe that due to possible internal stages, the matrix Σmr(z) may contain a number of zero

columns. As a consequence, the corresponding components of Un+1 do not play a role in the

propagation of perturbations through the steps. Let all ith columns of Σmr(z) with i ∈  I be a zero

column, and let Σ
~

 mr(z) denote the matrix obtained by removing all ith columns and ith rows from

Σmr(z) for i ∈  I. Then, we have stability if the stability matrix Σ
~

 mr(z) has its eigenvalues on the unit

disk. The region of stability is defined by the region in the z-plane where Σ
~

 mr(z) has its eigenvalues

within the unit circle (cf. the definition of the region of convergence in Section 3). Again assuming

that the eigenvalues of the 'partial' Jacobians Ji are on the nonpositive real axis, we shall call the

integration method A(0)-stable if the region of stability contains the region {z: zi ≤ 0}.

We illustrate the above procedure by deriving the stability matrix for iterated RKN methods with step

point value yn+1 = (esT⊗ I)Yn+1 and with only one explicit derivative stage value hy 'n+1, i.e. Un+1 =

(Yn+1T, hy'n+1T)T. Using the 'last step value' predictor Y(0,r) = PUn = (eesT⊗ I)Yn, we have

(5.5) R =  






eesT c

0T 1
  ,   S = O,   T =  



A 0

dT 0   ,

where c and d are s-dimensional vectors.The equations (5.4) take the form

Yn+1 = Zrm(eesT⊗ I)Yn + (I - Zrm)M-1((eesT⊗ I)Yn + h(c⊗ I)y'n),
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(5.4')
hy'n+1 - (dTA-1⊗ I)Yn+1 = (( - dTA-1eesT)⊗ I)Yn + h((1 - dTA-1c)⊗ I)y'n.

Using yn+1 = (esT⊗ I)Yn+1, we obtain

Yn+1 = ((I - Zrm)M-1 + Zrm)(e⊗ I)yn + h(I - Zrm)M-1(c⊗ I)y'n,

(5.4") yn+1 = (esT⊗ I)((I - Zrm)M-1 + Zrm)(e⊗ I)yn + h(esT⊗ I)(I - Zrm)M-1(c⊗ I)y'n,

hy'n+1 - (dTA-1⊗ I)Yn+1 = - (dTA-1e⊗ I)yn + h((1 - dTA-1c)⊗ I)y'n.

Elimination of Yn+1 leads to the 2-by-2 stability matrix

(5.6) Σ~ mr(z) = 






esT(Smr(z) + Zmr(z))e esTSmr(z)c

dTA -1(Smr(z) + Zmr(z) - I)e 1 + dTA -1(Smr(z) - I)c
  ,

where Smr(z) := (I - Zmr(z))M-1(z). It is of interest to study the behaviour of the stability matrix Σ
~

mr(z) at infinity. We consider Σ
~

 mr(z) in the cases where zi → ∞ and zj = 0 for j ≠ i,  and in the case

where all components zi tend to infinity. From the relations (4.14) and

M-1(z) ≈ zi-1A-1, Smr(z) ≈ O(zi-1) as   zi → ∞, i = 1, ... , σ,

M-1(z) ≈ εA-1, Smr(z) ≈ O(δε) as   ε, δ → 0,  

where ε := - (eTz)-1 and δ is defined in (4.14), it follows that the two eigenvalues of Σ
~

 mr(z)

approach the values { esT(I - B-1A)mre, 1 - dTA-1c}  and { 1 - mrδ(esTB-σAe), 1 - dTA-1c} ,

respectively. Since | 1 - dTA-1c | ≤ 1 is also needed for the A(0)-stability of the underlying RKN

method, we have:

Theorem 5.1. Let the underlying GLM (3.5) be an A(0)-stable RKN method defined by (5.5) and

let the initial iterate for AF iteration be defined by Y(0,r) = (eesT⊗ I)Yn. Then, after m outer and r inner

iterations, the two conditions | esT(I - B-1A)mre | ≤ 1 and esTB-σAe ≥ 0 are necessary for the A(0)-

stability of the iterated RKN method.♦

Example 5.1. In the case of the A(0)-stable, third-order Radau based RKN method (2.4), we find

for B = A that |esT(I - B-1A)mre| = 0 for all mr, but already for σ = 2 we have esTB-σAe = esTA1-σe

= -14. Hence, according to Theorem 5.1, we cannot have A(0)-stability. Figure 3 presents numerical

plots for a few values of mr.

However, if we define B by (4.15), then the first condition is still satisfied because the spectral radius

of I - B-1A vanishes and hence (I - B-1A)mr vanishes for mr ≥ 2 (s-by-s matrices M with only zero

eigenvalues have the property that Mn = O for n ≥ s). Furthermore, it follows from (4.16) that

esTB-σAe = 2σ-1, so that the second necessary A(0)-stability condition of Theorem 5.1 is also

satisfied. Numerical plots for σ = 2 show A(0)-stability for all values of mr. ♦
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6. Concluding remarks

In this paper, we have analysed an outer-inner iteration method based on modified Newton and

approximate factorization for solving the implicit relations occurring in General Linear Methods

(GLMs) for second-order ODEs originating from multi-dimensional wave equations. The implicit

relations are characterized by a matrix A, the iteration method by a matrix B.

Convergence conditions can be expressed in terms of spectral properties of the matrices A and B.

Table 6.1a summarizes the main convergence results for second-order equations as derived in the

present paper and Table 6.1b compares them with the A-convergence results for first-order equations

derived in [2]. In these tables, AR3 indicates the Butcher matrix of the 3rd-order Radau IIA method

for first-order ODEs, and A~  and B~  refer to the matrices used in AF iteration for first-order ODEs.

The stability conditions for the AF iterated methods depend on the product mr of the number of outer

and inner iterations. Easy to check conditions that are necessary for A(0)-stability have been derived

for a family of Runge-Kutta-Nyström (RKN) methods. The tables 6.2 list the main results.

Table 6.1a. Second-order ODEs Table 6.1b. First-order ODEs

Cases of A(0)-convergence Cases of A-convergence
----------------------------------------------------------- ------------------------------------------------------

σ B = A ρ(I - B-1A) = 0 σ B~  = A~ ρ(I - B~ -1A~ ) = 0
----------------------------------------------------------- ------------------------------------------------------

2 Re(λ(A)) ≥ 0 A = A2R3 2 λ(A~ ) ≥ 0 A~  = AR3

3 | arg(λ(A))| ≤ π/4 A = A2R3 ------------------------------------------------------

   ≥ 4 λ(A) ≥ 0    
---------------------------------------------------------        

Table 6.2a. Second-order ODEs Table 6.2b. First-order ODEs

Cases of A(0)-stability Cases of A-stability
----------------------------------------------------------- ------------------------------------------------------

σ B = A ρ(I - B-1A) = 0 σ B~  = A~ ρ(I - B~ -1A~ ) = 0
----------------------------------------------------------- ------------------------------------------------------

2 A = A2R3, mr = ∞ A = A2R3, mr ≥ 1 2 A~  = AR3, mr ≥ 1
----------------------------------------------------------- ------------------------------------------------------
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