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Parallel Adams Methods

P.J. van der Houwen & E. Messina
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ABSTRACT

In the literature, various types of parallel methods for integrating nonstiff initial-value problems for first-order ordinary

differential equation have been proposed. The greater part of them are based on an implicit multistage method in which

the implicit relations are solved by the predictor-corrector (or fixed point iteration) method. In the predictor-corrector

approach the computation of the components of the stage vector iterate can be distributed over s processors, where s is

the number of implicit stages of the corrector method. However, the fact that after each iteration the processors have to

exchange their just computed results is often mentioned as a drawback, because it implies frequent communication

between the processors. Particularly on distributed memory computers, such a fine grain parallelism is not attractive.

An alternative approach is based on implicit multistage methods which are such that the implicit stages are already

parallel, so that they can be solved independently of each other. This means that only after completion of a step, the

processors need to exchange their results. The purpose of this paper is the design of a class of parallel methods for

solving nonstiff IVPs.  We shall construct explicit methods of order k+1 with k parallel stages where each stage

equation is of Adams-Bashforth type and implicit methods of order k+2 with k parallel stages which are of Adams-

Moulton type. The abscissae in both families of methods are proved to be the Lobatto points, so that the Adams-

Bashforth type method can be used as a predictor for the Adams-Moulton type corrector.
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1. Introduction

We consider parallel methods for nonstiff initial-value problems (IVPs) for the first-order ordinary

differential equation (ODE)

(1.1)
dy
dt   = f(y),  y, f ∈  Rd,  t ≥ t0.

In the literature, various types of parallel methods for integrating such IVPs have been proposed. The

greater part of them are based on an implicit method, usually a classical Runge-Kutta (RK) method or

a multistep RK method, in which the implicit relations are solved by the predictor-corrector (or fixed

point iteration) method. Within each iteration, the predictor-corrector approach is highly parallel. The

parallel aspects of the predictor-corrector approach using RK type correctors were analysed in e.g. Lie

[15], Nørsett and Simonsen [18], Jackson and Nørsett [14], van der Houwen and Sommeijer [11],

Burrage [3], and in Burrage and Suhartanto [5]. More general correctors for parallel computation

were constructed in e.g. Miranker and Liniger [17], Chu and Hamilton [8], Birta and Osman Abou-

Rabia [2]. The correctors in these last three papers are based on block methods, in which the blocks

consist of solution values corresponding with equally spaced abscissae. Extensions to nonequidistant
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abscissae were studied in [12], [13] and [21]. An extensive survey of parallel predictor-corrector

methods can be found in the text book of Burrage [4].

In all parallel approaches indicated above, the computation of the components of the stage vector

iterate can be distributed over s processors, where s is the number of implicit stages of the corrector

method. However, the fact that after each iteration the processors have to exchange their just

computed results is often mentioned as a drawback, because it implies frequent communication

between the processors. Particularly on distributed memory computers, such a fine grain parallelism

is not attractive.

An alternative approach is based on implicit multistage methods which are such that the implicit stages

are already parallel, so that they can be solved independently of each other. This means that only after

completion of a full integration step, the processors need to exchange their results. An example of an

implicit method with only parallel stages is an RK method with a diagonal Butcher matrix.

Unfortunately, such methods have a low order of accuracy. Higher orders can be obtained in the class

of General Linear Methods (GLMs) of Butcher (see [6]). GLMs with parallel stages have been

constructed in [20] and [7]. As an example, consider the method [20]

yn+21/10 = yn + 1
660

  h [541f(yn+11/10) + 483f(yn) + 462f(yn+21/10)],
(1.2)

yn+1 = yn + 1
660

  h [-1000f(yn+11/10) + 230f(yn) + 1430f(yn+1)],

where yn+21/10 and yn+1 provide a 2nd-order and a 3rd-order approximation to y(tn+21/10) and

y(tn+1), respectively. Evidently, the two associated implicit relations can be solved concurrently.

Hence, effectively the method behaves as a one-implicit-stage method, provided that two processors

are available. However, the methods of [20] and [7] are meant for stiff IVPs and great care was taken

to make them A-stable. For a given number of stages, this of course limits the order of accuracy.

The purpose of this paper is the design of a class of parallel GLMs for solving nonstiff IVPs. Since

the stability region is allowed to be finite, we can derive methods such that for a given number of

stages, the orders of accuracy are greater than those of the A-stable methods derived in [20] and [7].

In fact, we shall construct explicit GLMs of order k+1 with k parallel stages where each stage

equation is of Adams-Bashforth type and implicit GLMs of order k+2 with k parallel stages which are

of Adams-Moulton type. The abscissae in both families of GLMs are proved to be the Lobatto points,

so that the Adams-Bashforth type GLM can be used as a predictor for the Adams-Moulton type

corrector.
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2. General linear methods

In 1966 Butcher proposed the general linear method

(2.1) Yn+1 = (R⊗ I)Yn + h(S⊗ I)F(Yn) + h(T⊗ I)F(Yn+1), n = 1, 2, ... .

Here R, S and T denote k-by-k matrices, ⊗  the Kronecker product, h is the stepsize tn+1 - tn, and each

of the k components yn+1,i of the kd-dimensional solution vector Yn+1 represents a numerical

approximation to y(tn + aih), to hy'(tn + aih) or "to any other quantity which enables us to construct

and describe useful methods" (see Butcher [6, p. 339]). The vector a := (ai) is called the abscissa

vector, the quantities Yn the stage vectors and their components yni the stage values. Furthermore, for

any vector Yn = (yni), F(Yn) contains the righthand side values (f(yni)).

The GLM (2.1) is completely determined by the arrays {R, S, T} and the starting vector Y1. Thus,

given {Y1, R, S, T}, (2.1) completely defines the sequence of vectors Y2, Y3, Y4, ... .  

In this paper, we shall assume that ak = 1 and that all components of Yn+1 represent numerical

approximations to solution values y(tn + aih). Furthermore, we restrict our considerations to the case

where T is a diagonal matrix with nonnegative diagonal entries δi. Such GLMs will be referred to as

GLMs with parallel stages.

2.1. Solution of the implicit relations
If the matrix T has one or more nonzero diagonal entries δi, then yn+1,i has to be obtained by solving

an (uncoupled) implicit relation of the form

(2.2) y - δihf(y) = vni,

where vni is the corresponding d-dimensional vector component of Vn := (R⊗ I)Yn + h(S⊗ I)F(Yn).

Note that the equations (2.2) can be solved concurrently. The conventional way of solving (2.2) in

nonstiff situations is a fixed point iteration (briefly FP iteration) process of the form

(2.3) y(j) = δihf(y(j-1)) + vni,   j ≥ 1,

where y(0) represents an initial stage value iterate. These initial iterates can be generated by the GLM

(2.1) with T = O and with the same abscissa vector as the underlying implicit GLM. A sufficient

condition for the convergence of the process (2.3) is

(2.4) h <  
1

δi|| ∂f/∂y|| 
   .

Thus, in the construction of GLMs with parallel stages, we should take care that δi is sufficiently

small.

2.2. Consistency

Consistency is defined by substitution of the exact solution into the GLM and by requiring that the

residue vanishes as h tends to zero. The rate by which the residue tends to zero determines the order
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of consistency. We shall call the GLM (and the stage vector Yn+1) consistent of order p if the residue

upon substitution of the exact solution values y(tn + aih) into (2.1) is of order hp+1. This leads to a set

of order conditions to be satisfied by the matrices R, S and T. In addition, in order to have

convergence, the GLM should satisfy the necessary condition of zero-stability, that is, the matrix R

should have its eigenvalues on the unit disk and the eigenvalues of modulus one should have

multiplicity not greater than 1.  

From the consistency definition given above, the order conditions follow immediately. Let for any

function g, the vector g(a) be defined by (g(ai)). Then, on substitution of the exact solution into (2.1)

and requiring the Taylor series expansion of the residue to be of order p+1 in h yields

(2.5)  (R + hS) exp(bh) - (I - hT) exp(ah) = O(hp+1),  b := a - e.

In the construction of GLMs, we shall start with a given zero-stable matrix R and a diagonal matrix T.

The matrix S is then determined by imposing the order conditions. From (2.5) it easily follows that

we obtain order of consistency p = k if

(2.6) Re = e,  Sbj-1 =  
1
j   (aj - Rbj)  - Taj-1 ,   j = 1, ... , k.

Let us introduce the k-by-k matrices Vx and Wx:

(2.7) Vx := (x, ..., xk),   Wx := (e, 2x, 3x2, ... , kxk-1).

The consistency conditions (2.6) can now be expressed as

(2.8) Re = e,   SWb = Va - RVb - TWa .

Given an abscissa vector a with distinct abscissae, a zero-stable matrix R satisfying the condition

Re = e and a matrix T, we obtain a family of kth-order GLMs by defining

(2.9) S = (Va - RVb - TWa)Wb-1.

In the case of the predictor formula needed in the FP iteration process, we set T = O, so that the S is

completely defined as soon as a is prescribed. In the next section, we try to choose the abscissa vector

a and the matrix T such that the order of the corrector is greater than k under the constraint that the

diagonal entries of T are nonnegative and sufficiently small.

3. Construction of GLMs with parallel stages

If the GLM (2.1) is consistent of order k, then its error constants are given by the components of the

vector

(3.1) C(k) :=  
1

(k+1)!  (Rbk+1 + (k+1) (Sbk + Tak) - ak+1) .
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Hence, given a, R T, and defining S by (2.9), this error vector can be written as

(3.2) C(k) :=  
1

(k+1)!  ( Tp(k) - q(k)) ,

where the vectors p(k) and q(k) are defined by

(3.3) p(k) := (k+1)(ak - WaWb-1bk),   q(k) := ak+1 - Rbk+1 - (k+1)((Va - RVb)Wb-1bk).

The order can be raised to k+1 by setting C(k) = 0, that is, Tp(k) = q(k). Observing that δi may be

chosen arbitrary whenever pi(k) and qi(k) both vanish, we have the following theorem:

Theorem 3.1. Let p(k) and q(k) be defined by (3.2) where the matrix R is a given zero-stable

matrix, and let the abscissae vector a be such that if an entry of p(k) vanishes, then the corresponding

entry of q(k) also vanishes. Then all stage values in the GLM (2.1) have order of consistency k+1 if

the matrices S and T are defined by

(3.4) T = diag (q(k)p-1(k)),    S  = (Va - RVb - TWa)Wb-1. ♦

3.1. Parallel Adams-Moulton and Adams-Bashforth methods

Let us choose the zero-stable matrix R = eekT, that is, each stage value yn+1,k is defined by yn,k and

the last k evaluations of f . Such stage equations are very similar to the classical Adams-Moulton

formula, and therefore we shall call the special family of GLMs with R = eekT and T diagonal,

parallel Adams-Moulton methods, or briefly PAM methods.

For PAM methods, the quantities p and q defined in (3.3) are given by

(3.5) p(k) = (k+1)(ak - WaWb-1bk),   q(k) = ak+1 - (k+1)VaWb-1bk.

A second consequence of the choice R = eekT is that we can obtain order k+2 accuracy if the last

component of the second error vector

C(k+1) :=   
1

(k+2)!  (Rbk+2 + (k+2) (Sbk+1 + Tak+1) - ak+2) 

vanishes. In order to derive a simple expression for this condition, we consider the last equation in the

system (2.1), viz.

(3.6) yn+1,k = yn,k + h(ekTS⊗ I)F(Yn) + hδkf(yn+1,k),

and we compare this equation with the continuous analogue satisfied by the solution of (1.1), i.e. the

relation
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(3.7) y(tn+1) = y(tn) +  ⌡⌠
tn 

 tn+1

  f(y(t)) dt.

Thus, h(ekTS⊗ I)F(Un) + hδkf(un+1,k) may be considered as an interpolatory quadrature formula for

the integral term in (3.7) using the k quadrature points {tni, i =1, ... , k} and the additional point

tn+1,k with tji  := tj-1 + aih. Assuming that f(y(t)) is sufficiently differentiable, such quadrature

formulas possess a quadrature error of the form (see e.g. [1, p. 886])

Qk+1 :=  
1

(k+1)!    ⌡⌠
tn 

 tn+1

    qk+1(t) gk+1(t) dt,   

qk+1(t) := (t - tn+1,k) ∏
i=1

k
 (t - tni) ,  gk+1(t) :=   

dk+1f(y(θ(t)))
dtk+1    ,

where θ(t) assumes values in the interval (tn,tn+1). Defining the polynomial Bk and the integral Ip(q)

(3.8) Bk(x) :=  ∏
i=1

k
 (x - bi) ,   Ip(q) :=   ⌡⌠

0 

 1

  xp Bq(x) dx,

and substituting tn+1,k = tn + h, tni = tn + bih, where bi := ai - 1, we can write

(3.9) (k+1)! Qk+1 = hk+2 ⌡⌠
0 

 1

 (x - 1)  Bk(x) gk+1(tn + xh) dx = hk+2([I1(k) - I0(k)] gk+1(tn) +

+ h[I2(k) - I1(k)] g'k+1(tn) +  1
2
  h2[I 3(k) - I2(k)] g"k+1(tn) + ...).

Hence, the order of accuracy of the method can be raised by one if I0(k) = I1(k). Imposing this

superconvergence condition yields a (k-2)-parameter family of PAM methods of order p = k+2 (we

recall that bk = 0). For k = 2, we immediately find bk-1 = b1 = 1/2, so that the abscissae a1 = 3/2.

For k ≥ 3 we shall exploit the additional degrees of freedom by choosing b such that the predictor

formula to be used to start the FP iteration process (see Section 2.1) becomes also superconvergent.

Let us define the predictor by the GLM (2.1) with

(3.10) R = eekT,  S = VaWb-1, T = O,

where the abscissa vector is the same as in the PAM corrector. The method {(2.1),(3.9)} will be

called a parallel Adams-Bashforth method and is denoted by PAB. Proceeding as above, we find for

the approximation error the relation

(3.11) k! Qk = hk+1 ⌡⌠
0 

 1

  Bk(x) g(tn + xh) dx = hk+1(I0(k) gk(tn) + h I1(k) g'k(tn) +
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 +  1
2
  h2 I2(k)g"k(tn) + ...).

Thus, we have the result:

Lemaa 3.1. The PAB and PAM methods are respectively of order k+1 and k+2 if the abscissae

vector is such that  I0(k) = I1(k) = 0. ♦

It is easily verified that for k = 3 these conditions are satisfied by

(3.12) b1 =  
6 + 6

10  , b2 =  
6 - 6

10  , b3 = 0.

If k ≥ 4, then we have a (k-3)-parameter family of solutions. The following theorem is

straightforwardly verified.

Lemma 3.2. Let k ≥ 4 and let the shifted abscissae bi be chosen symmetrically in the interval [1,1].

Then, I0(k) = I1(k) = 0 for k odd and I0(k) - 2I1(k) = 0 for k even. ♦

From this theorem, we immediately conclude that for k odd the Lobatto points in the interval [1,1]

generate PAB methods of order k+1 and PAM methods of order k+2. The question now arises

whether this is also true if k is even, or equivalently, does I0(k) also vanish in the case of an even

number of Lobatto points in the interval [1,1]. These Lobatto points are given by b1 = 1, bk = 0, and

by bi = zi, i = 2, ... , k-1, where zi is the (i-1)st zero of the derivative of the shifted Legendre

polynomial Pk-1(2x-1) (see e.g. [1, p. 888]). Hence, Bk(x) = cx(x-1)P'k-1(2x-1), where c is some

constant. Transformation to the interval [-1,1], integration by parts and observing that P1(y) = y

yields

I0(k) = c⌡⌠
0 

 1

  x(x-1)P'k-1(2x-1) dx = - 
c
4
 ⌡⌠
-1 

 1

  yPk-1(y) dy = - 
c
4
 ⌡⌠
-1 

 1

  P1(y)Pk-1(y) dy

which does vanish for k ≥ 3.

Theorem 3.1. Let k ≥ 4 and let the shifted abscissae bi be defined by the Lobatto points in the

interval [1,1]. Then, the PAB methods are of order k+1 and the PAM methods of order k+2. ♦

In computing the matrices S and T corresponding to the Lobatto points, it turned out that for

4 ≤ k ≤ 8, the last component of both vectors p(k) and q(k) are of quite small magnitude (less than

10-18), so that the value of δk is more or less free (cf. (3.2)). In our experiments, we have chosen

δk = 0.15 for 4 ≤ k ≤ 8.

The Lobatto-based PAM methods are only useful if the size of the entries of S, T, and of the vector of

error constants

(3.13) E(k) := (C1(k+1), C2(k+1), ... , Ck-1(k+1), Ck(k+2)).
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is acceptably small. Table 3.1 lists the abscissa vector a, the diagonal entries of T, || E(k)|| ∞, and || S|| ∞
for 2 ≤ k ≤ 8. In all cases, the value of || E(k)|| ∞ is quite acceptable. However, the value of || S|| ∞
rapidly increases with k and becomes inconveniently large for k ≥ 7. Therefore, it is of interest to

construct PAM methods in which the abscissae are chosen such that || E(k)|| ∞ is minimized under the

constraint that || S|| ∞ is small.

Table 3.1a. PAB and PAM methods.
-----------------------------------------------------------------------------------------------------------------

        Lobatto points Abscissae obtained by minimization
    ----------------------------------------------          --------------------------------------------

k a qp-1 = (δi) || E(k)|| ∞ || S|| ∞ a qp-1 = (δi) || E(k)|| ∞ || S|| ∞
-----------------------------------------------------------------------------------------------------------------

2 3/2 0.38 0.093 1.1
1 0.17

3  (16 -  6 )/10 0.18 0.047 2.2
(16 + 6 )/10 0.33

1 0

4 2 0.27 0.013 7.1
(15 + 5 )/10 0.21
(15  - 5 )/10 0.10

1 0.15

5 2 0.23 2.810-3 28 2 0.23 3.010-3 27
1.8273268354 0.20 1.808994654 0.20

1.5 0.14 1.463543856 0.13
3 - a2 0.06 1.148203456 0.05

1 0.15 1 0.15

6 2 0.20 5.010-4 118 2 0.20 5.310-4 115
1.8825276620 0.18 1.885275365 0.18
1.6426157582 0.14 1.630711359 0.14

3 - a2 0.04 1.083979860 0.03
3 - a3 0.09 1.320847699 0.09

1 0.15 1 0.15

7 2 0.17 8.110-5 522 2 0.10 8.610-5 502
1.9151119481 0.16 1.922202399 0.17
1.7344243967 0.14 1.731517951 0.14

1.5 0.10 1.472403452 0.10
3 - a2 0.03 1.062674121 0.03
3 - a3 0.07 1.226601360 0.06

1 0.15 1 0.15

8 2 0.16 1.210-5 2386 2 0.15 1.110-5 4094
1.9358700743 0.15 1.898303060 0.14
1.7958500907 0.13 1.801012442 0.13
1.6046496090 0.11 1.636888160 0.11

3 - a2 0.02 1.028569475 0.00
3 - a3 0.05 1.243500553 0.06
3 - a4 0.08 1.528856627 0.10

1 0.15 1 0.15
-----------------------------------------------------------------------------------------------------------------
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For that purpose, we first derive the general solution to the superconvergence condition of Lemma 3.1

by expressing the abscissae bk-2 and bk-1 explicitly in terms of the other abscissae. Let σ := bk-2 + bk-

1 and π := bk-2bk-1. Then Ip(k) can be written as

Ip(k) = Ip+3(k-3) - Ip+2(k-3)σ + Ip+1(k-3)π,

so that the superconvergence condition leads to a linear system for σ = bk-2 + bk-1 and π = bk-2bk-1.

Hence, solving this linear system for σ and π, the shifted abscissae bk-2 and bk-1 are the solutions of

the equation b2 - σb + π = 0, provided that this equation has real zeros. Thus, we have:

Theorem 3.2. Let k ≥ 4 and let σ and π be defined by.

(3.14) I2(k-3)σ - I1(k-3)π = I3(k-3),     I3(k-3)σ - I2(k-3)π = I4(k-3).

Then, the PAB and PAM methods are respectively of order k+1 and k+2 if σ2 > 4π and if bk-2 and

bk-1 satisfy the equation b2 - σb + π = 0. ♦

Next, we restricted the entries of T to the interval [0, 0.5] and minimized the quantity

(3.15) | E(k)|| ∞ + c(|| S|| ∞ - k) ,

where c = 0 if || S|| ∞ < k and c = 1 otherwise. In this way, we computed for 4 ≤ k ≤ 8 the abscissa

vector a, the matrices T,  || E(k)|| ∞ and || S|| ∞. It turned out that for k = 4, we again obtained the

Lobatto points. For 5 ≤ k ≤ 8, we found the results as listed in Table 3.1. These figures show that for

5 ≤ k ≤ 7 the values of || E(k)|| ∞ and || S|| ∞ are close to those obtained for the Lobatto points. Only for

k = 8, ||  E(k)|| ∞ is slightly reduced, however at the cost of a much larger value of || S|| ∞.

3.2. Stability

The linear stability region S of the GLM (2.1) is defined by the set of points in the complex z-plane

where the matrix  

(3.16) M(z) := (I - zT)-1(R + zS)

has its eigenvalues within the unit circle. The process (2.1) will be called linearly stable if the

eigenvalues of the matrix h∂f/∂y are in S. The negative interval (-βreal, 0) and the imaginary interval

(0, iβimag) of maximal length which is contained in S  is called the real and imaginary stability

boundary, respectively.  Approximate values to these boundaries are listed in the Tables 3.2a and

3.2b respectively for the PAM methods with the Lobatto abscissae and with the abscissae obtained by

minimization (see Table 3.1). These boundaries are quite acceptable, except for the imaginary stability

boundaries of the 2-stage and 4-stage PAM methods. However, if we look at the intersection of the

region S*  defined by the points z where M(z) has eigenvalues of modulus less than say 1.001, then

we obtain β* imag ≈ 0.75 for k = 2 and β* imag ≈ 0.78 for k = 4.  

Table 3.2a. PAM stability boundaries   Table 3.2b. PAM stability boundaries
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 associated with Table 3.1a. associated with Table
3.1b.

---------------------------------------------------------- ------------------------------------------
k 2 3 4 5 6 7 8 k 5 6 7 8
---------------------------------------------------------- ------------------------------------------
βreal 2.39 1.36 0.88 0.96 0.46 0.36 0.17 βreal 0.92 0.41 0.31 0.15

βimag0.12 1.14 0.23 0.84 0.44 0.35 0.17 βimag0.81 0.40 0.30 0.15
---------------------------------------------------------- ------------------------------------------

4. Numerical experiments

In this section we illustrate the performance of a few of the parallel GLMs constructed in the previous

sections. In order to clearly see the algorithmic effects, we used a fixed stepsize strategy. The implicit

relations were solved by FP iteration (see Section 2) with a fixed number of iterations for all stages.

The tables of results list the total number of sequential righthand sides needed to produce a given

number of correct digits ∆ at the end point, that is, the maximal absolute end point error is written as

10-∆ (negative values are indicated by -).

We tested the k-stage PAM methods of order p = k+2 for k = 6, 7, 8 with Lobatto abscissae. The

starting values were obtained by the 8th-order Runge-Kutta method of Dormand-Prince [9] and the

predictor needed to start the FP iteration method (2.3) was defined by the PAB method (3.10) with

the same Lobatto abscissae. The resulting predictor-corrector method is denoted by PABM. We

distinguish the P(EC)m mode and the P(EC)m-1E mode of the PABM method. On a k-processor

computer system, each of these modes require m righthand sides per step that have to be computed

sequentially.

We selected the following well-known test problems (cf. [10, p.174]), viz. the Fehlberg problem

y1' =   2 t y1 log(max{ y2, 10-3} ),     y1(0) = 1,
(4.1)     0 ≤ t ≤ 5,

y2' = - 2 t y2 log(max{ y1, 10-3} ),     y2(0) = e,
 
the Euler problem JACB [10, p. 237]

y1' = y2y3, y1(0) = 0,

(4.2) y2' = -y1y3, y2(0) = 1,    0 ≤ t ≤ 20,

y3' = - .51y1y2, y3(0) = 1,

and the Orbit problem TWOB [10, p.237]

y1' = y3, y1(0) = 1 - ε,

y2' = y4, y2(0) = 0,

(4.3) y3' =  
-y1

(y12 + y22)3/2   , y3(0) = 0, 0 ≤ t ≤ 20.

y4' =  
-y2

(y12 + y22)3/2   , y4(0) = 
1 + ε
1 - ε

   ,  ε = 
1
2
  ,



11

4.1. Comparison of the PE, PEC, PECE and PECEC modes

First we want to know in what mode the PABMs are most efficient. We tested the PE, PEC, PECE

and PECEC modes. The PABMs with 6, 7 and 8 stages were run on a lot of examples (not only the

three test problems given above) and in most cases the PEC mode turned out to be the most efficient

mode. A typical performance is given in the Tables 4.1 and 4.2 for the Fehlberg and Euler problems.

   Table 4.1. Number of sequential righthand side evaluations for the Fehlberg problem (4.1).
                  ------------------------------------------------------------------------------------------

Method ∆ = 5 ∆ = 6 ∆ = 7 ∆ = 8 ∆ = 9 ∆ = 10
                  ------------------------------------------------------------------------------------------

PABM(PE) 222 274 338 431 622 873
PABM(PEC) 218 267 317 382 585 809
PABM(PECE) 270 349 445 569 697 847
PABM(PECEC) 273 349 447 563 699 867

                  ------------------------------------------------------------------------------------------

   Table 4.2. Number of sequential righthand side evaluations for the Euler problem (4.2).
                  ------------------------------------------------------------------------------------------

Method ∆ = 5 ∆ = 6 ∆ = 7 ∆ = 8 ∆ = 9 ∆ = 10
                  ------------------------------------------------------------------------------------------

PABM(PE) 96 123 158 210 281 374
PABM(PEC) 88 111 141 180 232 302
PABM(PECE) 103 135 173 221 283 363
PABM(PECEC) 105 137 177 223 283 363

                  ------------------------------------------------------------------------------------------

4.2. Comparison with other methods

The PAMs in PEC mode were compared with a few methods from the literature, viz.

DOPRI Dormand-Prince method of order 8 using 13 stages

ABM Adams Moulton of order 8, 9 and 10 using AB predictors of order 7, 8 and 9

ABR Adams-Bahsforth-Radau methods of order 8 and 9 constructed in [13] and [21]

The ABR methods are also parallel predictor-corrector methods in which the predictor and the

corrector are again of the form (2.1) but based on Radau abscissae. The corrector uses a nondiagonal

matrix T and the FP iteration process is applied dynamically.

The Tables 4.3, 4.4 and 4.5 list the results obtained (the results by the ABR methods of order 8 and 9

were taken from [13] and [21], respectively. Furthermore, we listed the 'speed-down' factors of all

methods with respect to the 10th-order PABM(PEC) method and the effective order of accuracy

defined by peff := (∆2 - ∆1) log10(h1h2-1), where (h1,∆1) and (h2,∆2) correspond with the results of

highest and lowest accuracy,  respectively.

  Table 4.3. Number of sequential righthand side evaluations for the Fehlberg problem (4.1).
  -----------------------------------------------------------------------------------------------------------------

Method p ∆ = 5 ∆ = 6 ∆ = 7 ∆ = 8 ∆ = 9 ∆ = 10 peff Speed-down
  -----------------------------------------------------------------------------------------------------------------
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DOPRI 8 688 934 1244 1608 2085 2690 8.4 3.7 - 5.9
ABM(PECEC) 8 548 677 810 1044 1536 2161 8.4 3.0 - 4.7
ABR 8 240 335 430 532 689 846 9.1 1.3 - 1.9
PABM(PEC) 8 218 267 317 382 585 809 8.8 1.2 - 1.8
ABM(PECEC) 9 497 653 853 1110 1437 1850 8.8 2.7 - 4.0
ABR 9 256 361 466 571 677 9.5 1.1 - 1.5
PABM(PEC) 9 188 223 276 351 445 558 10.6 1.0 - 1.2
ABM(PECEC) 10 468 570 719 916 1139 1383 10.6 2.6 - 3.0
PABM(PEC) 10 184 223 267 318 380 456 12.7 1

  -----------------------------------------------------------------------------------------------------------------

   Table 4.4. Number of sequential righthand side evaluations for the Euler problem (4.2).
  -----------------------------------------------------------------------------------------------------------------

Method p ∆ = 5 ∆ = 6 ∆ = 7 ∆ = 8 ∆ = 9 ∆ = 10 peff Speed-down
  -----------------------------------------------------------------------------------------------------------------

DOPRI 8 379 505 685 901 1189 1567 8.1 5.3 - 8.5
ABM(PECEC) 8 221 266 379 575 798 1085 7.2 3.1 - 5.9
ABR 8 160 192 223 293 379 506 10.0 2.2 - 2.7
PABM(PEC) 8 88 111 141 180 232 302 9.3 1.2 - 1.6
ABM(PECEC) 9 198 278 394 514 658 834 8.0 2.6 - 4.5
ABR 9 117 169 221 273 325 9.0 1.4 - 1.8
PABM(PEC) 9 76 95 119 148 184 233 10.3 1.1 - 1.3
ABM(PECEC) 10 203 266 338 404 501 689 9.4 2.8 - 3.7
PABM(PEC) 10 72 84 101 121 149 185 12.2 1

  -----------------------------------------------------------------------------------------------------------------

 Table 4.4. Number of sequential righthand side evaluations for the Orbit problem (4.3).
  -----------------------------------------------------------------------------------------------------------------

Method p ∆ = 5 ∆ = 6 ∆ = 7 ∆ = 8 ∆ = 9 ∆ = 10 peff Speed-down
  -----------------------------------------------------------------------------------------------------------------

DOPRI 8 1418 1834 2367 3030 3862 4862 9.3 5.1 - 5.5
ABM(PECEC) 8 1014 1380 2293 3172 4304 5794 6.6 3.7 - 6.5
PABM(PEC) 8 409 570 738 945 1207 1554 8.6 1.5 - 1.7
ABM(PECEC) 9 1144 1548 2014 2586 3291 4188 8.9 4.1 - 4.7
PABM(PEC) 9 332 386 510 715 9461227 8.8 1.2 - 1.4
ABM(PECEC) 10 1046 1314 1585 1783 2365 3590 9.3 3.8 - 4.0
PABM(PEC) 10 276 336 477 604 741 892 9.8 1

  -----------------------------------------------------------------------------------------------------------------
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