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Parallel Adams Methods

P.J. van der Houwen & E. Messina
CWwWiI
P.O. Box 94079, 1090GB Amsterdam, The Netherlands

ABSTRACT

In the literature, various types of parallel methods for integrating nonstiff initial-value problems for firstrdidary
differential equation have been proposed. The greater ptr¢wfare based on aimplicit multistagemethod in which
the implicit relationsare solved bythe predictor-correctofor fixed point iteration) method. In theredictor-corrector
approach the computation of the components of the stage vector d@nalbe distributed over grocessorswhere s is
the number ofmplicit stages of the corrector method. However,ftut that after eachteration the processotsave to
exchangeheir just computedresults is often mentioned asdeawback, because implies frequentcommunication
between the processors. Particularly on distributed memory computers, such a fine grain parallelism is not attractive.
An alternative approach isased orimplicit multistage methods whichre such that the implicit stagesre already
parallel, so that thegan be solved independently of eather. This means that onbfter completion of a step, the
processorsieed toexchangeheir results. The purpose of thigper isthe design of a class of parallel methods for
solving nonstiff IVPs.  We shall construatxplicit methods oforder k+1 with k parallel stagesvhere each stage
equation is of Adams-Bashfortiipe andimplicit methods oforderk+2 with k parallel stages whiclare of Adams-
Moulton type. Theabscissae iboth families of methodsre proved to behe Lobatto points, so that th&dams-
Bashforth type method can be used as a predictor for the Adams-Moulton type corrector.

1991 Mathematics Subject ClassificatioB5L06
Keywords and Phrasesumerical analysis, general linear methods, parallelism.
Note: Work carried out under project MAS 1.4 - Exploratory research: Analysis of ODEs and PDEs.

1. Introduction
We considelparallelmethods for nonstiffnitial-value problems (IVPs) forthe first-order ordinary
differential equation (ODE)

dy
(1.1) Gt =f(y), y.fORY, t=to.

In the literature, various types of parallel methods for integrating suchhidRsbeemproposed. The

greater part of them are based on an implicit method, usually a classical Rung@rKjttaethod or

a multistep RK method, in whidhe implicit relations aresolved bythe predictor-correctafor fixed

point iteration) method. Within each iteration, the predictor-corrector approach is highly parallel. The
parallel aspects of the predictor-corrector approach using RK type correctors were analysed in e.g. Lie
[15], Ngrsettand Simonseifil8], Jacksorand Ngrsetf14], van derHouwenand Sommeijef11],
Burrage[3], and in Burrage and Suhartaris]. More generakcorrectors forparallel computation

were constructed ie.g. Miranker and Linigef17], Chuand Hamilton[8], Birta and Osman Abou-

Rabia [2]. The correctors in these last thpepersare based on blocknethods, in whictihe Hocks

consist of solution values corresponding watjually spaced abssae. Extensions twonequidistant



abscissae were studied [b2], [13] and[21]. An extensivesurvey ofparallel predictor-corrector
methods can be found in the text book of Burrage [4].

In all parallelapproaches indicategbove,the computation of the components of the stage vector
iterate can be distributed oveipsocessors, where s tise number ofmplicit stages of the corrector
method. Howeverthe fact that after each iteration tipeocessorshave to exchange their just
computed results is oftementioned as arawback,because it implies frequent communication
between therocessorsParticularly on distributed memogomputers, such #ne grain parallelism

IS not attractive.

An alternative approach is based on implicit multistage methods which are such ihailitiestages
are already parallel, so that they can be solved independently of each other. Thithateahs after
completion of a full integration step, the processors need to exchangeesiudis. Anexample of an
implicit method with only parallel stages is an RK methadth a diagonal Butcher matrix.
Unfortunately, such methods have a low order of accuracy. Higher orders can be obthieethss

of General Linear Method&GLMs) of Butcher (sed6]). GLMs with parallel shges havebeen
constructed in [20] and [7]. As an example, consider the method [20]

Yn+21/10 = Yn + % h[541f(yn+11/10 + 48F (yn) + 46F(Yn+21/10],

(1.2)

Yn+1=Yn + g5 h[-100C (Yns1120 + 230(yn) + 1430(yns1)],

whereyn+21/10 andyn+1 provide a 2nd-order and a 3rd-order approximatiory(tg+21/19 and
y(th+1), respectively. Evidentlythe two associatedmplicit relations can besolved concurrently.
Hence, effectively the method behaves as a one-implicit-statjeod, providedhattwo processors
are available. However, the methods of [20] and [7] are meastiffidVPs andgreat carevas taken

to make them A-stable. For a given number of stages, this of course limits the order of accuracy.
The purpose of this papertige design of a class gdarallelGLMs for solvingnonstiff IVPs. Since
the stability region is allowed to mite, we can derive methodsuchthat for a given number of
stages, the orders of accuracy are greater than thake éfstable methods derived [20] and[7].

In fact, weshall construcexplicit GLMs of order k+1 with kparallel shges wheresach stage
equation is of Adams-Bashforth type angblicit GLMs of order k+2 with k parallel stages which are
of Adams-Moulton type. The abscissae in both families of GLMs are proved to be the Ipabat$o
so that theAdams-Bashforth type GLMan beused as gredictor for the Adams-Moulton type
corrector.



2. General linear methods
In 1966 Butcher proposed the general linear method

(2.1)  Yne1= (RIDYn + h(SINE(YR) + h(TODE(Yns), =1, 2, ... .

Here R, S and T denote k-by-k matricegshe Kronecker product, h is the stepsjza t t,, andeach
of the k componentyn+1,; of the kd-dimensionasolution vectorYn+1 represents aumerical
approximation to/(t, + gh), to hy'(th + gh) or "to any other quantity which enables us to construct
and describe useful methods" (see But¢Bemp. 339]). The vectora := (g) is called theabscissa
vector, the quantitiey , thestage vectorand their componentg,; thestage values-urthermore, for
any vectorY, = (yni), F(Ypn) contains the righthand side vall(é@/ni)).

The GLM (2.1) iscompletely determined by tlerays{R, S, T} and the starting vectdf;. Thus,
given {Y1, R, S, T}, (2.1) completely defines the sequence of vedpr¥s, Ya, ... .

In this paper, weshall assume thatka= 1 andthat allcomponents ofY+1 representnumerical
approximations teolutionvaluesy(t, + gh). Furthermore, weestrictour considerations tthe case
where T is aliagonalmatrix with nonnegativediagonal entrie®j. Such GLMswill be referred to as
GLMs with parallel stages.

2.1. Solution of the implicit relations
If the matrix T has one or more nonzero diagonal enffjgbenyn+1 j has to beobtained by solving

an (uncoupled) implicit relation of the form
(2.2) 'y -oihf(y) = vni,

wherevy; is thecorresponding d-dimensional vector componen¥ gf.= (RO1)Y + h(SI)F(Yp).
Note that theequationg2.2) can besolved concurrentlyThe conventionalvay of solving (2.2) in
nonstiff situations is a fixed point iteration (briefly FP iteration) process of the form

(2.3)  yO =§hf(y(D) +vyi, j21,

wherey(0) represents an initial stage value iterate. Tlsitial iterates can be generated by the GLM
(2.1) with T = O and withthe sameabscissavector as the underlyingnplicit GLM. A sufficient
condition for the convergence of the process (2.3) is

1

2.4 h<—T7— .
(2.4) di|jof/ay||

Thus, inthe construction oGLMs with parallel stages, we shoulthke care thad; is sufficiently
small.

2.2. Consistency
Consistency is defined by substitutiontbé exacsolution intothe GLM and by requiringhat the
residue vanishes as h tends to zdiwe rate bywhich the residue tads to zero determindle order



of consistencyWe shall call the GLM (and the stage vedt@t1) consistent obrder pif the residue
upon substitution of the exact solution valyésg + gh) into (2.1) is of orderMl. This leads to a set
of order conditions to be satisfied hiye matrices R, S and T. laddition, in order tohave
convergencethe GLM should satisfythe necessarcondition ofzero-stability thatis, the matrix R
should have its eigenvalues on the udisk andthe eigenvalues omodulus one shoulchave
multiplicity not greater thaf.

From the consistency definition giveabove,the order conditions follow immediately. Lébr any
function g, the vector g be defined byg(g)). Then, on substitution of the exact solution if@al)
and requiring the Taylor series expansion of the residue to be of order Ipyields

(2.5) (R + h9 exp(bh) - (I - hT) exp(ah) = O(P*1), b :=a-e.

In the construction of GLMs, we shall start with a given zero-stable matrix R and a diagonal matrix T.
The matrix S is then determined lmposingthe order conditions. Froni2.5) it easilyfollows that
we obtain order of consistency p = k if

(26) Re=e Si1=7 (a-Rol) -Tail, j=1,..,k
Let us introduce the k-by-k matriceg ¥nd W:

2.7) V= (% .xk), W= (e 2¢, 32, .., k1),
The consistency conditions (2.6) can now be expressed as

(2.8) Re=e, SWh=Va-RVp- TW,.

Given an abscissaector a with distinct abscissae, a zero-stabiatrix R sasfying the condition
Re =eand a matrix T, we obtain a family of kth-order GLMs by defining

(2.9)  S=(Va-RVp - TWa)WpL.

In the case of the predictor formula needed in the FP itenatamess, weet T = O, sdhat the S is
completely defined as soonass prescribed. In the next section, we try to choose the absessa
a and the matrix Buchthat theorder ofthe corrector is greater thanukderthe constraint that the
diagonal entries of T are nonnegative and sufficiently small.

3. Construction of GLMs with parallel stages
If the GLM (2.1) is consistent of order k, then its error constardgsgiven by the components of the
vector

(3.1) CK) := ﬁ (Rk+1 + (k+1) (Sbk+ Tak) - ak+1) .



Hence, givera, R T, and defining S by (2.9), this error vector can be written as

1
(32) C(K:= gy (TeK) -ak)

where the vectong(k) andq(k) are defined by

(3.3)  p(k) = (k+1)(ak - WaWp1bk), q(k) := ak+L - Rok+L - (k+1)((Va - RVp)Wp10K).

The order can be raised to k+1 by sett@{@) = 0, thatis, Tp(k) = q(k). Observingthat d; may be
chosen arbitrary whenevei(l) and g(k) both vanish, we have the following theorem:

Theorem 3.1. Let p(k) andq(k) be defined by3.2) wherethe matrix R is a given zero-stable
matrix, and let the abscissae veadre such that if an entry pfk) vanishesthen the corrgsonding
entry ofq(k) also vanishes. Then all stage valuethen GLM (2.1) have order of consistency k+1 if
the matrices S and T are defined by

(3.4) T=diag(qp-i(k)). S =(Va-RVp - TWo)WpL. ¢

3.1. Parallel Adams-Moulton and Adams-Bashforth methods

Let us choose the zero-stable matrix Bed, that is, each stagalueyn+1 k is defined byyn, k and
the last k evaluations df Suchstage equations aresry similar tothe classical Adams-Moulton
formula, andtherefore we shaltall the special family ofGLMs with R =eg! and T diagonal,
parallel Adams-Moulton methodsr briefly PAM methods

For PAM methods, the quantitipsandq defined in (3.3) are given by

(3.5) p(k) = (k+1)fak - WaWp1bK), q(k) = ak+1 - (k+1)VaWplbK,

A second consequence of the choice Bed' is that we can obtaiorder k+2accuracy if the last
component of the second error vector

1
Ck+1) = Ty (Rbk+2 + (k+2) (DKL + Tak+l) - ak+2)

vanishes. In order to derive a simple expression for this condition, we consider the last equation in the
system (2.1), viz.

(3.6) Yn+1,k=Ynkt hexTSoI)F(Yn) + MOKf(Yn+1,K,

and we compare this equation with the continuous analogue satisfied $glutien of(1.1), i.e. the
relation



th+1
(3.7)  Y(tnrd) =yt + | f(y(®) dt.

th

Thus, h&TSOI)F(Up) + hdkf(un+1,k) may be considered as anerpolatory quadrature formula for
the integral term ir{3.7) usingthe k quadratur@oints {tni, i =1, ... , k} and the additional point
th+1 k With tj = .1 + gh. Assumingthat f(y(t)) is sufficiently differentiable, suclyuadrature

formulas possess a quadrature error of the form (see e.g. [1, p. 886])

th+1
Qk+1:= (kil)! tf Ok+1(1) Gk+1(t) dt,
k dk+1f(v(o(t
G+ 2(t) 1= (E- Tez ) [] (€t Gira()) 1= (Etigl( ) :

i=1

wheref(t) assumes values in the intervaltft1). Defining the polynomial Band the integral(q)

1
k
(38) B = []0x-b) . (@)= | X Bq) dx,
i=1 0

and substitutingnt-1 k= th + h, i =ty + h, where pb:= g - 1, we can write

1

(3.9) (k+1)! Que1= M2 | (x - 1) Bi(X) Gt + xh) dx = #+2([11(k) - lo(K)] Gwa(tn) +
0

+ hla(K) - 1] Giraltn) + 3 h2[15(K) - 12(K)] Gkralt) + -.)-

Hence,the order ofaccuracy of the method can be raised by ong(k) I= 11(k). Imposingthis
superconvergence condition yields a (k-2)-parameter famiBAdA methods of order p = k+2 (we
recall that R = 0). For k = 2, we immediately fingh = by = 1/2, so that the abscissae=a3/2.

For k> 3 we shall exploit the additional degrees of freedonthiyosingb suchthat the predictor
formula to be used to start the FP iterajiwacess (se&ection2.1) becomes also superconvergent.
Let us define the predictor by the GLM (2.1) with

(3.10) R=eaT, S=WWy,l T=0,

wherethe abscissavector is the same as in tiRAM corrector. Themethod{(2.1),(3.9)} will be
called a parallel Adams-Bashforth method and is denotdelA3, Proceeding as above, we find for
the approximation error the relation

1

(3.11)  KIQk=Hh*1 [ By(x) gtn + xh) dx = t+1(1o(k) gk(tn) + h (k) Gk(tn) +
0



+ 2 h212(K)g"k(tn) + ).
Thus, we have the result:

Lemaa 3.1. The PAB andPAM methods are respectively ofder k+1 and k+2 ithe abscissae
vector is such thatg(k) = I11(k) = 0.4

It is easily verified that for k = 3 these conditions are satisfied by

6+\/€5 6-‘\/?3

312) =", b=—55—, b=0.

If k > 4, then we have a (k-3)-parameter family sflutions. The following theorem is
straightforwardly verified.

Lemma 3.2.Let k=>4 and let the shifted abscissadbé chosen symmetrically in the interval I].
Then, b(k) = I1(k) = 0 for k odd anddg(k) - 211(k) = O for k even#

From this theorem, wenmediately conclude thdbr k odd the Lobatto points in the interval[1,1]
generate PAB methods ofder k+1 andPAM methods of ordek+2. The question now arises
whether this is also true if k Bven or equivalently, doesy(k) also vanish inhe case of amven
number of Lobatto points in the interval [1,1]. These Lobatto points are given bylpkx = 0, and
by bh =2z, 1=2, .. ,k-1, where zis the(i-1)st zero ofthe derivative of the shifted Legendre
polynomial R-1(2x-1) (seee.g. [1, p. 888]). Hence,B) = cx(x-1)Pk-1(2x-1), where ¢ issome
constant. Transformation tihe interval[-1,1], integration by parts andbservingthat R(y) = y

yields
1 1 1
lok) = ¢ x(-DPia(@x1) dx = -5 [ yPcay) dy=-S | Puy)Picaty) dy
0 -1 -1

which does vanish for k 3.

Theorem 3.1. Let k= 4 andlet the shifted abscissae;j lbe defined by the Lobattpoints in the
interval [1,1]. Then, the PAB methods are of order k+1 and the PAM methods of order k+2.

In computing the matrices S and cbrresponding tdhe Lobattopoints, itturned outthat for

4 <k < 8, the last component dbth vectorg(k) andq(k) are of quite small magnitudeessthan
1018), so that the value diy is more oressfree (cf. (3.2)). In our egeriments, we have chosen
ok = 0.15 for &< k < 8.

The Lobatto-based PAM methods are only useful if the size of the entries of S, T, thadrettor of
error constants

(3.13)  E(K) := (Ca(k+1), Go(k+1), .. , Gea(k+1), Ge(k+2)).



is acceptably small. Table 3.1 lists the abscissa vactbe diagonal entries of JE(K)||,,» and||]|..
for 2< k < 8. In allcasesthe value of||E(K)||,, is quite acceptable-dowever,the value of||S||,,
rapidly increases with k and becomes inconveniently ltogé& > 7. Therefore, it is of interest to
construct PAM methods in which the abscisaee chosersuchthat ||E(K)||,, is minimizedunder the
constraint thafjS||,, is small.

Table 3.1a.PAB and PAM methods.

Lobatto points Abscissae obtained by minimization
K a  apt=(a)  [E®@ [Slk a  apt=(3) [E®L [S]k
3/2 0.38 0.093 1.1
1 0.17
(16 - \6)/10 0.18 0.047 2.2
(16 +V6)/10 0.33
1 0
2 0.27 0.013 7.1
(15 +\/_)/10 0.21
(15 -v5)/10 0.10
1 0.15
2 0.23 2.803 28 2 0.23 3.90-3 27
1.8273268354 0.20 1.808994654 0.20
1.5 0.14 1.463543856 0.13
3-a 0.06 1.148203456 0.05
1 0.15 1 0.15
2 0.20 5.Q0-4 118 2 0.20 5804 115
1.8825276620 0.18 1.885275365 0.18
1.6426157582 0.14 1.630711359 0.14
3-a 0.04 1.083979860 0.03
3-a3 0.09 1.320847699 0.09
1 0.15 1 0.15
2 0.17 8.10-5 522 2 0.10 8.605 502
1.9151119481 0.16 1.922202399 0.17
1.7344243967 0.14 1.731517951 0.14
1.5 0.10 1.472403452 0.10
3-a 0.03 1.062674121 0.03
3-a3 0.07 1.226601360 0.06
1 0.15 1 0.15
2 0.16 1.205 2386 2 0.15 1.305 4094
1.9358700743 0.15 1.898303060 0.14
1.7958500907 0.13 1.801012442 0.13
1.6046496090 0.11 1.636888160 0.11
3-a 0.02 1.028569475 0.00
3-a3 0.05 1.243500553 0.06
3-4 0.08 1.528856627 0.10
1 0.15 1 0.15
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For that purpose, we first derive theneralsolution to the superconvergence condition of Lemma 3.1
by expressing the abscissaeland lx-1 explicitly in terms of the other abscissae. tet k.o + k-
1 andmt ;= bx-2bk-1. Then (k) can be written as

1p(K) = lp+3(k-3) - Ip+2(k-3)0 + Ip+1(K-3)TL

so that the superconvergence condition leads to a kystem foro = Iyx.o + k-1 andmt = by-oby-1.
Hence, solving this linear system fwiandr, the shifted abscissag-pand Ix.; are thesolutions of
the equation ®- ob + 1= 0, provided that this equation has real zeros. Thus, we have:

Theorem 3.2.Let k> 4 and leto andt be defined by.
(3.14) b(k-3)o - I1(k-3)t=13(k-3), B(k-3)0 - Io(k-3)11 = I4(k-3).

Then, the PAB an@’AM methods are respectively ofder k+1 and k+2 it2 > 4 and if kx.o and
bk.1 satisfy the equation?s ob +m=0. ¢

Next, we restricted the entries of T to the interval [0, 0.5] and minimized the quantity
(3.15) EQ)|k + LISk - K) -

where ¢ = 0 if||||,, < k and ¢ = 1 otherwise. In thigay, wecomputedfor 4 < k < 8 theabscissa
vectora, the matrices T,||E(K)||,, and || S||,- It turned outthat for k = 4, weagain obtained the
Lobatto points. For § k < 8, we found the results as listed in Table 3.1. These figures thiabvior
5< k<7 the values of[E(k)||,, and|[S||., are close to thse obtainedor the Lobattopoints. Only for
k = 8,||E(K)|}. is slightly reduced, however at the cost of a much larger vallj|of

3.2. Stability
Thelinear stability regionS of the GLM (2.1) isdefined by the set gioints inthe complex z-plane
where the matrix

(3.16) M(z) :=(1-zT)Y(R + z9

has itseigenvalues within the unit circle. Thgrocess (2.1)will be called linearly stableif the
eigenvalues of the matr>0fidy are inS. The negative interval Breay 0) and the imaginarpterval

(0, iBimag of maximal lengthwhich is contained irS is called thereal and imaginary stability
boundary respectively. Approximate values to thedsoundariesare listed in the Table3.2a and

3.2b respectively for the PAM methods with the Lobatto abscissae and wihgbtissae obtained by
minimization (see Table 3.1). These boundaries are quite acceptable, except for the imaginary stability
boundaries othe 2-stage and 4-sta&AM methods. However, if wkok atthe intersection of the
regionS" defined by the points z wheM(z) haseigenvalues of modulusssthansay 1.001 then

we obtainB*imag= 0.75 for k = 2 an@"imag= 0.78 for k = 4.

Table 3.2a.PAM stability boundaries Table 3.2b.PAM stability boundaries
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associated with Table 3.1a. associated withable
3.1b.
k 2 3 4 5 6 7 8 k 5 6 7 8
Breal 2.39 1.36 0.88 0.96 0.46 0.36 0.17 Breal 0.92 0.41 0.31 0.15
Bimag0-12 1.14 0.23 0.84 0.44 0.35 0.17 Bimag0.81 0.40 0.30 0.15

4. Numerical experiments

In this section we illustrate the performance of a few of the parallel GLMs constru¢herprevious
sections. In order to clearly see the algorithmic effects, we used a fixed sttpsiegy.The implicit
relations were solved by Fieration(see Section 2) with a fixed number of iteratiémisall stages.
The tables ofesults listthe totalnumber of sequential rightharsidesneeded to produce a given
number of correct digitd at the end pointhatis, the maximalabsolute end point error is written as
102 (negative values are indicated by -).

We tested the k-stag@AM methods of order p = k+2 for k = 6, 7, 8 witlobatto abscissae. The
starting values were obtained the 8th-order Runge-Kutta method of Dormand-Prif@gand the
predictor needed to start the FP iteration me(208) wasdefined by the PAB metho8.10) with
the same LobattabscissaeThe resulting predictor-corrector method is denotedPBBM. We
distinguishthe P(EC)" mode and thé®(EC)"-1E mode of the PABMmethod. On a k-processor
computersystem,each of these modes requirerighthand sides per stepat have to be computed
sequentially.

We selected the following well-known test problems (cf. [10, p.174]), viz. the Fehlberg problem

y1'= 2ty Iog(maX{yz, 103}), w(0) =1,
(4.1) O<t<5,
yo'=-2ty Iog(ma)e[yl, 103}), w(0) = e,

the Euler problem JACB [10, p. 237]

y1' = Yy2ys, y1(0) = O,
(4.2)  y'=-nys, y2(0) =1, 0O<t< 20,
y3' = - .51\y2, y3(0) =1,

and the Orbit problem TWOB [10, p.237]

y1' =ys, y1(0) = 1 -¢,
y2' = ya, y2(0) = 0,
, -Y1
(4.3) y3'= (Y12 + y,2)372 - y3(0) = 0, 0<t< 20.

Y4 = (Y12 + y22)3/2 y4(0) = 1-¢ €55,
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4.1. Comparison of the PE, PEC, PECE and PECEC modes

First we want to know in whahode the PABMs areost efficient. We testethe PE, PEC,PECE

and PECEC modes. The PABMs with 6, 7 and 8 stages were rufobofaxamplegnot only the

three test problems given above) and in most daseBEC mode turned out to be thmostefficient

mode. A typical performance is given in the Tables 4.1 and 4.2 for the Fehlberg and Euler problems.

Table 4.1.Number of sequential righthand side evaluations for the Fehlberg problem (4.1).

Method A=5 A=6 A=7 A=8 A=9 A=10

PABM(PE) 222 274 338 431 622 873
PABM(PEC) 218 267 317 382 585 809
PABM(PECE) 270 349 445 569 697 847
PABM(PECEC) 273 349 447 563 699 867

Method A=5 A=6 A=7 A=8 A=9 A=10

PABM(PE) 96 123 158 210 281 374
PABM(PEC) 88 111 141 180 232 302
PABM(PECE) 103 135 173 221 283 363
PABM(PECEC) 105 137 177 223 283 363

4.2. Comparison with other methods

The PAMs in PEC mode were compared with a few methods from the literature, viz.

DOPRI  Dormand-Prince method of order 8 using 13 stages

ABM  Adams Moulton of order 8, 9 and 10 using AB predictors of order 7, 8 and 9
ABR  Adams-Bahsforth-Radau methods of order 8 and 9 constructed in [13] and [21]

The ABR methods arealso parallel predictor-correctomethods in whichthe predictor and the
corrector are again of the form (2.1) but based on Radau absdibgsaeorrectouses anondiagonal

matrix T and the FP iteration process is applied dynamically.

The Tables 4.3, 4.4 and 4.5 list the results obtained (the results by the ABR methods of order 8 and 9
were taken fronj13] and[21], respectively. Furthermore, wisted the'speed-downfactors of all
methods with respect tihe 10th-order PABM(PEC) method arttie effectiveorder of accuracy

defined by pf := (A2 - A1) logio(h1ho ), where (h,A1) and (3,A2) correspond withhe results of
highest and lowest accuracy, respectively.

Table 4.3.Number of sequential righthand side evaluations for the Fehlberg problem (4.1).



DOPRI
ABM(PECEC)
ABR
PABM(PEC)

ABM(PECEC)
ABR
PABM(PEC)

ABM(PECEC)
PABM(PEC)

12

934 1244 1608 2085 2690 8.4 3.7-59
677 8101044 1536 2161 8.4 3.0-4.7
335 430 532 689 846 9.1 13-19
267 317 382 585 809 8.81.2-1.38
653 8531110 1437 1850 8.8 27-4.0
256 361 466 571 677 95 11-15
223 276 351 445 558 10.6 1.0-1.2
570 719 916 1139 1383 10.6 2.6-3.0
223 267 318 380 456 12.7 1

DOPRI
ABM(PECEC)
ABR
PABM(PEC)

ABM(PECEC)
ABR
PABM(PEC)

ABM(PECEC)
PABM(PEC)

8 379
8 221
8 160
8 88
9 198
9

9 76
10 203
10 72

505 685 901 1189 1567 8.1 53-85
266 379 575 798 1085 7.2 31-59
192 223 293 379 506 10.0 2.2 - 2.7
111 141 180 232 302 9312-16
278 394 514 658 834 8.0 26-45
117 169 221 273 325 9.0 14-18
95 119 148 184 233 103 1.1-13
266 338 404 501 689 9.4 28-3.7
84 101 121 149 185 12.2 1

DOPRI
ABM(PECEC)
PABM(PEC)

ABM(PECEC)
PABM(PEC)

ABM(PECEC)
PABM(PEC)

8 1418
8 1014
8 409
9 1144
9 332

10 1046
10 276

1834 2367 3030 3862 4862
1380 2293 3172 4304 5794
570 738 945 1207 1554
1548 2014 2586 3291 4188
386 510 715 9461227
1314 1585 1783 2365 3590
336 477 604 741 892

9.3 5.1-55
6.6 3.7-6.5
8.6 15-1.7
8.9 4.1 -4.7
8.8 12-14
9.3 3.8-4.0
9.8 1
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