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ABSTRACT

We consider numerical methods for nonstiff initial-value problems for Volterra integro-differential equations. Such

problems may be considered as initial-value problems for ordinary differential equations with expensive righthand side

functions because each righthand side evaluation requires the application of a quadrature formula. The often considerable

costs suggest the use of methods that require only one righthand side evaluation per step. One option is a conventional

linear multistep method. However, if a parallel computer system is available, then one might also look for methods

with more righthand sides per step, but such that they can all be evaluated in parallel. In this paper, we construct such

parallel methods and we show that on parallel computers they are by far superior to the conventional linear multistep

methods which do not have scope for parallelism. Moreover, the (real) stability interval is considerably larger.

1991 Mathematics Subject Classification:  65L06
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1. Introduction

We consider explicit numerical methods for nonstiff initial-value problems (IVPs) for Volterra

integro-differential equations (VIDEs) of the form

(1.1)
dy(t)

dt   = f(y(t), q(t)),  q(t) := ⌡⌠
t0 

 t

  k( y(t), y(x)) dx,      y, f, k ∈  Rd,   t0 ≤ t ≤ tend.

Such IVPs may be considered as IVPs for ordinary differential equations (ODEs) with expensive

righthand sides (RHSs) because each RHS evaluation requires the evaluation of the integral term q(t).

In the numerical solution of (1.1), the often considerable costs of the RHSs suggest the application of

methods that use only one RHS per step, such as in the conventional linear multistep methods, or if a

parallel computer system is available, methods of which all RHSs per step can be evaluated in

parallel. This leads us to consider methods of the form

(1.2) Yn+1 = (R⊗ I)Yn + h(S⊗ I)F(Yn, Qn),  n ≥ 1.
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Here, R and S denote k-by-k matrices, h is the stepsize tn+1 - tn, and ⊗  denotes the direct product

between matrices (Kronecker product). Each of the k components yn,i of the kd-dimensional solution

vector Yn represents a numerical approximation to y(tn-1 + aih) and each of the k components qn,i of

the kd-dimensional vector Qn represents a quadrature formula for q(tn-1 + aih). The vector a := (ai) is
called the abscissa vector, Yn is called the stage vector and its components yni the stage values.

Furthermore, for any vector Yn = (yni), F(Yn, Qn) contains the RHS values (f(yni, qni)). We shall

always assume that ak = 1.

Since the k components of F(Yn, Qn) can be computed in parallel (provided that k processors are

available), (1.2) requires only one effective righthand side evaluation per step (here, effective means

that RHSs that can be evaluated in parallel are evaluated in parallel).

In the ODE case (f  independent of q), the method (1.2) belongs to the wide class of general linear

methods (GLMs) introduced by Butcher in 1966 (see the text books [4] and [6] for a detailed

analysis). Examples of such GLMs are (i) linear multistep methods with a = (i - k + 1)T and a matrix

S whose first k-1 rows vanish, or (ii) the multi-block methods of Chu and Hamilton [5] characterized

by a = (i/k)T and by (in principle) full matrices R and S. Multiblock methods with general

(nonequidistant) abscissae have been considered in [7] as a special case of block Runge-Kutta

methods, but specific methods were only given for k = 2.

In this paper, we want to derive methods of the type (1.2) for VIDEs, that is, we should equip the

method with a quadrature method based on the y-values available at the points tni := tn-1 + aih. We

shall consider two options, viz. (i) quadrature formulas using all points {tni: n ≥ 1, 1 ≤ i ≤ k}, so-

called extended methods, and (ii) quadrature formulas only using the step points {tn: n ≥ 1}, so-called

mixed methods. In the case of extended methods, it will be an advantage if the points tni are more or

less equidistant. If the stage order of the GLM is sufficiently high, then this would make the

quadrature formula considerably more accurate than the conventional linear multistep approach where

only step points are available, or the explicit Runge-Kutta formulas where the off-step points cannot

be used because of their low stage order. However, a disadvantage is the large storage requirement if

many integration steps are involved. An alternative is the use of the storage economic mixed methods.

Since here only the step point values are involved in the quadrature formula, we should try to choose

the abscissae such that we have superconvergence at the step points. Given a sufficiently accurate

quadrature formula, the methods constructed in this paper have stage order k, step point order k+1,

and satisfactory large real stability boundaries.
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2. Construction of methods

Given a procedure to compute the quadrature terms, suitable methods can be constructed by imposing

consistency conditions on the arrays a, R and S. The consistency of (1.2) is defined by substitution

of the exact solution into the GLM and by requiring that the residue vanishes as h tends to zero. The

rate by which the residue tends to zero determines the order of consistency.  We shall call the GLM

(or the stage vector Yn+1) consistent of order p if the residue upon substitution of the exact solution

values y(tn + aih) into (1.2) is of order hp+1. Assuming that the quadrature formulas are sufficiently

accurate we find by expansion into Taylor series the consistency conditions

 (R + zS) exp(bz) - exp(az) = O(zp+1),   b := a - e,   e := (1, ... , 1)T,

where we used the componentwise notation of function of vectors, that is, for any vector v := (vi),
exp(v) denotes the vector with components exp(vi). This leads to the equations

Re = e,    Rbj + j Sbj-1 = aj,   j = 1, ... , p.

The error constants are given by the components of the vector

(2.1) C(p+1) := Rbp+1 + (p+1) Sbp - ap+1.

Let us introduce the k-by-p matrices U(p), V(p) and W(p):

(2.2) U(p) := (a, a2, ..., ap),   V(p) := (b, b2, ..., bp),   W(p) := (e, 2b, 3b2, ... , pbp-1).

The consistency conditions can now be expressed as

(2.3) Re = e,   RV(p) + SW(p) = U(p).

Given the abscissa vector a, the system (2.3) yields k(p+1) linear equations.

However, in order to have convergence, that is, yn+1,i → y(tn + aih) as h → 0 for all grid points in

the integration interval, the GLM should satisfy the necessary condition of zero-stability, that is, R

has its eigenvalues on the unit disk and the eigenvalues of modulus one have multiplicity one.

Therefore, in the construction of GLMs, one usually prescribes a (family of) zero-stable matrix R,

satisfying the condition Re = e, and next the remaining order conditions are solved.

2.1. Generalized Adams-Bashforth methods

In this paper, we confine our considerations to the case where the matrix R = eekT with ek denoting

the kth unit vector. Evidently, this matrix is zero-stable. Substitution into (2.3) and setting p = k, and

by virtue of our assumption ak = 1, yields the matrix

(2.4) S  = (U(k) - eekTV(k))W-1(k)  = U(k)W-1(k).
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The resulting methods may be considered as generalizations of the classical Adams-Bashforth

methods (AB methods), because just as in AB methods, each stage value is defined by the most recent

y-vector available and the k already computed RHS values. Furthermore, as with the k-step AB

methods, they have order p = k and possess a matrix R with one eigenvalue 1 and k-1 eigenvalues 0.

The methods {(1.2),(2.4)} will be referred to as Generalized Adams-Bashforth methods (GAB

methods).

In this paper, we shall choose one of the still free abscissae ai such that the GLM contains an

embedded formula for stepsize control. Suppose that ak-1 = 2. Then, yn+1,k - yn,k-1 provides an

O(hk+1) local error estimate. However, this estimate will be more effective if yn+1,k is of higher order

than yn,k-1. By virtue of the structure of R, this can be achieved by requiring that the kth component

Ck(k+1) of the error vector C(k+1) vanishes. This equation imposes a condition on the abscissae ai.

In order to derive a simple expression for this condition, we consider the equation in the system (1.2),

viz.

(2.5) yn+1,k = yn,k + h(ekTS⊗ I)F(Yn, Qn),

and we compare this equation with the relation

(2.6) y(tn+1) = y(tn) +  ⌡⌠
tn 

 tn+1

  f(y(t), q(t)) dt.

Thus, h(ekTS⊗ I)F(Yn, Qn) may be considered as an interpolatory quadrature formula for the integral

term in (2.6) using the quadrature points tni := tn-1 + aih = tn + bih, where bi := ai - 1. Such

quadrature formulas possess an approximation error of the form (see e.g. [1, p. 55])

1
k!    ⌡⌠

tn 

 tn+1

    πk(t)  
dkf(y(θ(t)), q(θ(t)))

dtk
   dt,   πk(t) :=  ∏

i=1

k
 (t - tni) ,

where f(y(t), q(t)) is assumed k times continuously differentiable on [tn,tn+1] and θ(t) assumes

values in the interval (tn,tn+1). Hence, the polynomial order of accuracy can be raised by one if the

integral of πk(t) over the interval [tn,tn+1] vanishes, that is, if the shifted abscissae bi satisfy the

relation

(2.7)  ⌡⌠
tn 

 tn+1

   πk(t) dt = hk+1 ⌡⌠
0 

 1

    ∏
i=1

k

 (x - bi)  dx = 0.

Imposing this superconvergence condition yields a (k-2)-parameter family of GAB methods of order

p = k+1. We remark that relation (2.7) can never be satisfied by abscissae ai in the interval [0,1], i.e.
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-1 ≤ bi ≤ 0. This follows from the fact that if the quantities bi would all be nonpositive, then πk(t) has

no zeros in the interval [tn,tn+1], so that the integral of πk(t) over the interval [tn,tn+1] cannot vanish.

If k = 2, then we obtain a uniquely defined third-order method with a = (5/3,1)T. In this case, the easy

error estimate mentioned above is not possible. However,  if k > 2, then we may set ak-1 = 2 to obtain

the local error estimate yn+1,k - yn,k-1. Observing that for ak = 1 and ak-1 = 2 the superconvergence

condition (2.7) is can always be satisfied by choosing the free abscissae ai symmetrically with respect

to 3/2, we are led to define

k even: k = 2:ak = 1, ak-1 =  
5
3
  ,

k ≥ 4:ak = 1, ak-1 = 2, ai = 3 - ak-i-1,  i = 1, ... , k-2.
(2.8)

k odd: k ≥ 3:ak = 1, ak-1 = 2, ak-2 =  3
2
  ,

k ≥ 5:ai = 3 - ak-i-2,  i = 1, ... , k-3.

Theorem 2.1. Let (2.8) be satisfied. Then, there exist an abscissae vector a such that:
        

(a)  If k ≥ 2, then the global order p = k+1.

(b)  If k ≥ 3, then the error estimate yn+1,k - yn,k-1 is of local order k+1. ♦

Condition (2.7) is always true for k odd. If k is even, then we have to spend one abscissae to satisfy

(2.7). The still remaining free abscissae may be chosen, for example such that the first k-1

components of the error vector C(k+1) are of small magnitude, or such that the stability region is

sufficiently large. Let us first try to reduce the magnitude of the error constants. Since we assumed

ak = 1, we may write C(k+1) = (k+1)Sbk - ak+1. We have minimized the error constants Ci(k+1),

i ≤ k-1 under the constraint that the norm of S does not increase too much. Thus, we expect that a

suitable choice for the free abscissae ai is obtained by minimizing the quantity

(2.9) G(a) := max
a

  { || (C1(k+1), ... , Ck-1(k+1)) || ∞ 
+ γ || S || ∞} ,

where γ denotes some constant.  

Table 2.1. Abscissa vectors, the norm G(a), and real stability boundaries.
------------------------------------------------------------------------------------------------------------

k aT for GAB methods G(a) βreal(AB) βreal(GAB)
------------------------------------------------------------------------------------------------------------

2 ( 5
3
   , 1) 1.88 1.0 0.63

3 ( 3
2
  , 2, 1) 4.07 0.53 0.48

4 ( 1741
1364

   , 2351
1364

   ,  2 , 1)  6.34 0.30 0.44

5 ( 1137
1024

   , 1935
1024

   ,  
3
2
  , 2, 1) 10.26 0.16 0.42
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6 ( 2480
2279

   , 2199
1643

   , 2730
1643

   , 4379
2279

   ,  2 , 1) 20.59 0.08 0.42

7 ( 865
944

   , 571
476

   , 857
476

   , 1967
944

   ,  
3
2
  , 2, 1) 48.32 0.04 0.41

------------------------------------------------------------------------------------------------------------

In Table 2.1, we have listed the GAB abscissa vectors obtained for  γ = 10-2 (this value was chosen

experimentally), together with the corresponding (local) minimum value of G(a) and the real stability

boundaries for both the AB and GAB methods (see also Section 2.2 for a discussion of the overall

stability of the VIDE method). It turns out that the abscissae in the 4-stage GAB method are

numerically equal to the Lobatto abscissae in the interval [1, 2]. For larger values of k, there is no

relation with the Lobatto points. The stability boundaries of the GAB methods are quite satisfactory,

so that there is no reason to look for abscissa vectors which yield still larger boundaries.

2.2. The starting vector and overall stability

The GLM (1.2) needs the starting vector Y1 ≈ y(t0 + aih). If all absissae are positive, then this

starting vector can be generated by a one-step method, e.g. a Runge-Kutta method. If one or more

abscissae are negative, then we need starting values at points left to t0. Since this is inconvenient in

practice, we follow another approach which is based on the redefinition of the points tn, n ≥ 1. Let

amin denote the minimal absissa value and define for n ≥ 1, tn := t0 + (n - amin)h (instead of the

original step points tn = t0 + nh). In particular, we have t1 = t0 + (1 - amin)h. Evidently, none of the

points t1i := t0 + (ai - amin)h are located to the left of t0. So by using a starting vector Y1 which

approximates the exact solution at these points, i.e. Y1 ≈ y(t1i), we do not anymore need starting

values at points left to t0. Now, let yRK(t) denote a Runge-Kutta approximation at the point t. Then

we may define the starting vector Y1 := (yRK(t0 + (ai - amin)h))T. In fact, we can also use this

starting vector in the case of positive abscissae with the advantage that the starting value

corresponding with amin is exact. Thus, given the quantities {a, h, R, S}, the starting procedure

Y1 = (yRK(t0 + (ai - amin)h))T, and the quadrature formulas qni, the method (1.2) completely

defines the sequence of vectors Y2, Y3, Y4, ... .   

Next we briefly discuss the overall stability of the VIDE method. Evidently, the overall stability is

influenced by the stability of the quadrature formula. A stable way of defining quadrature rules

converts the integral term into a differential equation and integrates this differential equation by a

sufficiently stable ODE solver. For that purpose, we introduce the function

(2.10) z(t,s) :=  ⌡⌠
t0 

s

  k(y(t), y(x)) dx.

By observing that q(t) = z(t,t), we see that we can apply the GLM (1.2) to the ODE (1.1), where the

values of q(t) needed by the GLM are obtained by integrating the initial-value problem

(2.11)
∂z(t,s)

∂s    = k(y(t), y(s)),    z(t,t0) = 0
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from s = t0 until s = t.

The underlying integrator should be sufficiently stable because the righthand side in (2.8) is affected

by the numerical errors due to the GLM integrator. One option is to apply the same GLM (1.2) as

used for integrating (1.1), to obtain an (R,S)-reducible method for VIDEs. If the GLM (1.2) is

sufficiently stable, then we may also expect overall stability. To be more precise, we should consider

the complete integration process, that is, the recursions

Yn+1 = (R⊗ I)Yn + h(S⊗ I)F(Yn, Qn),  n ≥ 1.

(2.12) Zn,ν+1 = (R⊗ I)Zn,ν + h(S⊗ I)K (Yn,Yν),  ν = 0, 1, ... , n-1,

Qn = Zn,n,   

where K (Yn,Yν) contains the kernel values (k(yni, yν i)). The linear stability of VIDE methods is

usual studied by means of the linear test equation (cf. [3])

(2.13)
dy(t)

dt    = ξy(t) + η ⌡⌠
t0 

 t

  y(x) dx.

By writing this equation as a system of the  two ODEs

(2.13')
dy(t)

dt    = ξy(t) + ηz(t),   
dz(t)
dt    = y(t),

one first shows that separately applying the GLM {a, R, S} to each of these two equations is

equivalent with applying it directly to the system (2.13'). Then, the following result is easily proved

(cf. [1, p. 470], [8]).

Theorem 2.2. Let S be the linear stability region of the GLM (1.2), defined by set of points z

where R + zS has its eigenvalues on the unit disk, and let λ and µ be defined by λ+µ = ξ , λµ = -η.

Then, with respect to the linear test equation (2.13), the set {(hξ,h2η): hλ∈ S, hµ∈ S} defines the

region of stability of the (R,S)-reducible GLM {(1.2), (2.12)}. ♦

If this theorem is applied to the case where ξ and η are real (which is relevant in the case of scalar

VIDEs) and if the GLM (1.2) has a real stability boundary βreal, then the (R,S)-reducible GLM has

the stability region (see Table 2.1 for the values of βreal corresponding to the AB and GAB methods)

-2βreal ≤ hξ ≤ 0,   -βreal2 ≤ h2η.

Remark 2.1. Equation (2.11) can of course be integrated by any GLM {a, R* , S*} with the same

abscissae vector a. This would lead to the recursion

 



Yn+1

hZn+1
  = M 



Yn

hZn
  ,   M :=   







R + hξS ηS

h2S* R*   .
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The stability region is now defined by the set {(hξ,h2η): | λ(M) | ≤ 1}, where the eigenvalues λ(M)

of the amplification matrix M are determined by its characteristic equation

det (R + hξS - λI) det (R* - λI - h2ηS*(R + hξS - λI)-1S) = 0. ♦

An advantage of the quadrature procedure (2.12) is that the high stage order of all stage values in Yn

and Yν can be fully exploited (this is not the case if the underlying method (1.2) is replaced by a

Runge-Kutta method). However, as already remarked in the introduction, a disadvantage of these

extended methods is the large storage requirement if many integration steps are involved.

An alternative is the use of mixed methods in which the quadrature formula is only based on the set of

step points {tν: ν = 0, ... , n} and the right end point t of the integration interval. Let the numerical

approximation to z(t,tν) be denoted by zν, let kν := k(yn,i, yν), and let the quadrature formula be of

the linear m-step form, that is, zν is defined as a linear combination of values zν-1, ... , zν-m and

kν, ... , kν-m. Then, by observing that the k-values indirectly depend on the z-values, we should at

least require that the linear m-step formula is stable. For example, let (2.11) be integrated by the

classical fourth-order Runge-Kutta method whose intermediate points coincide with the step points tn.

Then, this method is equivalent with the linear two-step method  

zν+1 = zν-1 + 2h( 
1
6
  kν-1 +  2

3
  kν +  1

6
  kν+1).

This method is easily recognized as the Simpson method which has a zero real stability boundary.

Thus, although the underlying Runge-Kutta method has a nonzero real stability boundary for ODEs of

the form z' = k(z), it does not have a nonzero real stability boundary in the present situation, because

the Runge-Kutta method has changed from a one-step method to a multistep method. However,

applying a multistep method to (2.11) leads to quadrature formulas that are equivalent with the same

multistep method. Hence, if these multistep methods are sufficiently stable (e.g. Adams-Moulton

methods), then the resulting quadrature method is also sufficiently stable.

3. Numerical comparisons

In order to isolate algorithmic properties from implementation properties, all methods were run with

fixed stepsizes. The accuracy was measured by the number of correct significant digits

csd := -log10(relative maximum error at the end point) and the computational effort by the total,

effective number of RHS evaluations N, that is, N refers to those RHS evaluations that have to be

done sequentially. Since the main computational cost of the whole algorithm consists of the evaluation

of RHS functions and since the computation of the RHSs is quite costly, the communication costs

will be negligible, so that N furnishes an estimate for the effective computational costs.

The VIDE algorithm consists of two main numerical procedures, viz. an ODE solver and a quadrature

procedure. For the quadrature procedure we took the 2-step, 3rd-order Adams-Moulton method (AM
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method) only based on step point values, using the trapezoidal rule to obtain the necessary starting

values. For the ODE solver we took k-stage GAB methods and classical k-stage (i.e. k-step) Adams

Bashforth methods, respectively denoted by GABk and ABk. Furthermore, in order to compare with

ODE methods requiring more than one effective RHS per step, we also applied the classical 4th-order

Runge-Kutta method (RK method). The methods were run on the following test problems:

(3.1)
dy
dt   =  

1
y  ln( 1+t

1+t/2 )  -  t  -   
1

(1+t)2
    +  ⌡⌠

t0 

 t

 
1

1 + (1+t)y(x)   dx,y(0) = 1,  0 ≤ t ≤ 1,

(3.2)
dy
dt   = - exp(y(t)3)   +  ⌡⌠

t0 

 t

  y(x) dx,  y(0) = 1,  0 ≤ t ≤ 1,

(3.3)
dy
dt   = - exp(y(t)8)   +  ⌡⌠

t0 

 t

  sin(y(t)y(x)) dx,  y(0) = 1,  0 ≤ t ≤ 1.

The first test problem is the often used example of Brunner and Lambert [3]. The second example is

more difficult because of the highly nonlinear ODE part. The third example is the most difficult

problem with increased nonlinearity (note also that  the kernel depends on both y(t) and y(x)).

Table 3.1 lists values of N and csd for k = 3, ... , 7. These figures show that for a given number of

stages the GAB methods are always considerably more accurate than the AB methods. In fact, in most

cases, the GAB methods produce about the same accuracy for 25% of the number of effective RHS

evaluations (this implies that on a sequential computer, the GAB4-AM method is about as efficient as

the AB4-AM method). Furthermore, it seems to pay to use ODE methods of higher order than the

quadrature formula. As to the performance of the RK method, we see that the RK-AM results are

more or less comparable with the ABk-AM results for k ≥ 4. Finally, we remark that the GAB

methods allow us to use extended quadrature formulas based on all available stage values, which will

again improve the accuracy when compared with the AB-AM and RK-AM methods.

Table 3.1. Correct number of significant digits at the end point  using 3rd-order AM quadrature.
----------------------------------------------------------------------------------------------------------------------

   Problem N AB3 GAB3 AB4 GAB4 AB5 GAB5 AB6 GAB6 AB7 GAB7 RK
----------------------------------------------------------------------------------------------------------------------

     (3.1) 10 2.9 5.2 3.7 5.5 3.3 5.4 3.7 5.1 3.4 5.8 3.8
20 4.0 6.7 4.7 6.7 3.8 7.0 4.4 6.4 4.2 6.9 4.4
40 4.5 8.6 5.8 7.9 5.6 8.5 5.4 7.6 5.2 7.8 5.5
80 5.5 8.8 7.1 9.0 6.7 9.0 6.5 8.5 6.2 8.8 6.7
160 6.2 9.6 6.7 10.0 6.1 9.8 7.5 9.4 7.4 9.7 7.5

        

  (3.2) 40 1.8 3.9 2.1 4.0 4.1 4.2 2.2 4.1 2.2 3.8 2.4
80 2.6 5.5 3.1 4.8 3.9 4.9 3.1 4.8 3.0 4.7 3.4
160 3.4 6.1 4.3 5.7 4.3 5.7 4.1 5.6 3.9 5.6 4.1
320 4.3 6.7 5.3 6.6 5.7 6.6 5.2 6.5 6.3 6.5 4.9

       

    (3.3) 40 0.4 2.2 0.8 2.5 0.9 2.9 1.0 3.9 1.3 2.9 0.6
80 1.2 3.1 1.5 3.6 1.8 4.2 1.9 4.4 2.3 4.0 1.7
160 2.0 4.2 2.5 4.7 2.9 5.4 3.0 5.1 3.9 4.9 2.8
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320 2.8 5.3 3.5 5.8 4.2 6.0 4.2 5.9 4.4 5.8 3.9
----------------------------------------------------------------------------------------------------------------------

4. Concluding remarks

In this paper, we constructed explicit k-stage GLMs with step point order k+1 and stage order k such

that all RHSs per step can be evaluated in parallel. Application to VIDEs with fixed stepsizes and a

3rd-order Adams-Moulton quadrature formula only based on step points showed a theoretical speed-

up by a factor about 4 with respect to Adams-Bashforth methods. These quite promising results

motivate future research in the following directions:

(i) providing the methods with an extended quadrature procedure based on all available stage

values and with automatic stepsize control based on the embedded local error estimate

yn+1,k - yn,k-1 (see Theorem 2.1).  

(ii) extension to parallel VIDE methods for stiff IVPs (in preparation, see [2]).

(iii) implementation on parallel computer systems.

These topics will be subject of future research.
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