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Parallel Methods for Nonstiff VIDES

Dedicated to Professor Phil Anselone at the occasion of his retirement

P.J. van der Houwen
CWwWI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

We considemumerical methods for nonstiff initial-value problems Yolterra integro-differential equationsSuch
problems may beonsidered asitial-value problems foordinary differential equationsith expensiverighthandside
functions because each righthand side evaluation requires the application of a quadrature formula. déreidésable
costs suggest the use of methods that require only one righgltgndvaluation pestep.Oneoption is aconventional
linear multistep methodHowever, if a parallel computer system is available, thennoight also lookfor methods
with more righthand sides per step, but such that tdaeyall be evaluated inparallel. In this paper, we construsich
parallel methods and wshow that on parallel computers thae by farsuperior to the conventional linearultistep
methods which do not have scope for parallelism. Moreover, the (real) stability interval is considerably larger.

1991 Mathematics Subject ClassificatioB5L06

Keywords and Phrase¥olterra integro-differential equations, general linear methods, parallelism.
Note: Work carried out under project MAS 1.4 - Exploratory research: Analysis of ODEs and PDEs.

1. Introduction
We considerexplicit numericalmethods for nonstiffinitial-value problems (IVPs) forVolterra
integro-differential equations (VIDES) of the form

t
dy(t
ﬁi) =f(y(t), Q(t)), q(t) = I k(y®), yx))dx, vy, f,kORY, tg<t<teng
to

(1.1)

Such IVPsmay be considered d¥Ps for ordinarydifferential equations (ODEs)ith expensive
righthand sides (RHSs) because each RHS evaluation requires the evaluation of theenteggl
In the numerical solution of (1.1), the often considerable costs of the RHSs shggasplication of
methods that use only one RHS per step, such as in the conveliiesramultistepmethods, or if a
parallel computesystem is available, methods of whielh RHSs per stepcan be evaluated in
parallel. This leads us to consider methods of the form

(1.2)  Yne1= (RIDYn + h(SU)F(Yn, Qp), n= 1.
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Here, Rand S denot&-by-k matrices, h ishe stepsizent - th, andO0 denotes the direct product
between matrices (Kronecker product). Each of the k compoygitsf the kd-dimensional solution
vectorYp represents a numerical approximatiog(q.1 + gh) andeach of the kcomponents), j of
the kd-dimensional vect®,, represents a quadrature formulad,.1 + gh). The vecton := (g) is
called theabscissavector, Y, is called thestage vectorand its componentg,; the stage values
Furthermore, for any vectaf, = (Yni), F(Yn, Qn) contains the RHS value(sf(ym, qm)). We shall
always assume thag & 1.

Since the k components B{Y ,, Qn) can be computed in parall@rovidedthat k processors are
available), (1.2) requires only omrdfectiverighthand side evaluation per stgere,effectivemeans
that RHSs thatanbe evaluated in parallate evaluated in parallel).

In the ODE case { independent of]), the method1.2) belongs tdhe wide class ofgeneral linear
methods (GLMs) introduced by Butcher 1966 (seethe textbooks [4] and [6] for adetailed
analysis). Examples of such GLMs are (i) linear multistep methodsawif- k + 1)T and amatrix

S whose first k-1 rows vanish, or (ii) the multi-block methods of ChuHardilton [5] characterized
by a = (i’/k)T and by (in principle) full matrices R and S. Multiblockethods withgeneral
(nonequidistant) abscissae have been considerdgd] ins aspecial case of block Runge-Kutta
methods, but specific methods were only given for k = 2.

In this paper, we want tderive methods of the tydé.2) for VIDESs, thatis, we shouldequip the
method with a quadrature method basedhary-values available at theoints 4 := ty-1 + gh. We
shall considetwo options, viz.(i) quadrature formulaasingall points {t,i; n= 1, 1< i < k}, so-
calledextendednethods, and (ii) quadrature formulas only using the step pointsXt1}, so-called
mixedmethods. In the case of extended methods, it will badeantage if thgoints t,; are more or
less equidistant. Ithe stageorder ofthe GLM is sufficiently high, then thiswould make the
quadrature formula considerably more accurate than the conventional linear multistep aphevach
only step pointare available, or the explidRunge-Kutta formulas wheitbe off-step pointscannot
be used because of their low stage order. However, a disadvantage is the large storage requirement i
many integration steps are involved. An alternative is the use of the storage economimethasds.
Since here only the step point values are involved in the quadfatomela, we should try to choose
the abscissae sudhat we havesuperconvergence at tiséep points. Given a sufficientlgccurate
quadraturdormula, the methods constructed tinis paper have stage order k, step point okedr,
and satisfactory large real stability boundaries.



2. Construction of methods

Given a procedure to compute the quadrature terms, suitable methods can be constructed by imposing
consistency conditions on the arraysR and S. Theonsistency 0{1.2) isdefined by substitution

of the exact solution into the GLM and by requirihgt theresidue vanishes as h tends to zero. The

rate by which the residue tends to zero determinesrttez of consistency We shallcall the GLM

(or the stage vectorh+1) consistent obrder pif the residueupon substitution ofhe exactsolution
valuesy(t, + gh) into (1.2) is oforder P*1. Assumingthat the quadraturrmulasare sufficiently

accurate we find by expansion into Taylor series the consistency conditions

(R + z9 exp(bz) - exdaz) = O(#*Y, b:=a-e e:=(1,.., T,

where we usethe componentwise notation of function\afctors,thatis, for any vectorv := (vj),
exp(v) denotes the vector with components(@xp This leads to the equations

Re=e, FRoi+jSil=a, j=1,..,p.
The error constants are given by the components of the vector
(2.1) C(p+1) := FoP+l+ (p+1) DP - aP+l,
Let us introduce the k-by-p matrices U(p), V(p) and W(p):
22) U@ =(a a2 ...aP), V(p):=(b,b2 ..,bP), W(p):=(e 20, B2, ..., pp-1).
The consistency conditions can now be expressed as
(2.3) Re=e, RV(p) + SW(p) = U(p).

Given the abscissa vectarthe system (2.3) yields k(p+1) linear equations.

However, in order to have convergence, thagasa i — y(tnh + ah) as h— 0 forall grid points in
the integratiorinterval, the GLM should satisfythe necessarcondition of zero-stability thatis, R
has itseigenvalues on the undisk andthe eigenvalues omodulus one havenultiplicity one.
Therefore, in the construction &LMs, one usually prescribes (family of) zero-stable matrix R,
satisfying the condition &= e, and next the remaining order conditions are solved.

2.1. Generalized Adams-Bashforth methods

In this paper, we confine our considerationsh® casavherethe matrix R =eg,T with ex denoting

the kth unit vector. Evidently, this matrix is zero-stable. Substitution into (2.3) and setting p = k, and
by virtue of our assumptiork& 1, yields the matrix

(2.4) S =(U(K) - eaTV(K))W-1K) = UK)W-L(K).
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The resulting methods may be considered as generalizations of the classical Adams-Bashforth
methods (AB methods), because just as in AB methods, each stage value is defined byréentost
y-vector availableand the k already computd&®HS values. Furthermore, agith the k-step AB
methods, they have order p = k and possess a matrix R withigemealue 1 an#él-1 eigenvalues 0.
The methodg[(1.2),(2.4)} will be referred to asGeneralizedAdams-Bashforth method&GAB
methods).

In this paper, weshall choose one of the still fresbscissae jasuchthat the GLM contains an
embedded formuldor stepsize controlSupposethat &.1 = 2. Then,yn+1 k - Yn k-1 provides an
O(hk+1) local error estimate. However, this estimate will be more effectiyg ifxis of higher order
thanyp k-1, By virtue of the structure of R, thzan be achieved by requirinigat thekth component
Ck(k+1) of the error vecto€(k+1) vanishes. Thigquation imposes a condition tre abscissaeja

In order to derive a simple expression for this condition, we consider the equation in the gy8)em (
viz.

(2.5)  Yn+1,k=Ynk + hEexTSODF(Yn, Qn),

and we compare this equation with the relation

th+1
(2.6)  Y(tn+d) = y(tn) + tI f(y(), a() dt.

n

Thus, hé&TSOI)F(Yn, Qn) may be considered as an interpolatgmadrature formuléor the integral
term in (2.6) usingthe quadraturgoints i := t,.1 + gh = t, + h, where b:= g - 1. Such
quadrature formulas possess an approximation error of the form (see e.qg. [1, p. 55])

dt, m(t) = [ (t - tni) ,

L gki(y(em). a(e)) K
1 )
KT tf () —> dlkq

n i=1

Wheref(y(t), q(t)) is assumed kimes continuously differentiable onpfth+1] and 6(t) assumes
values in the interval {ftn+1). Hence,the polynomialorder ofaccuracy can be raised by one if the
integral of T(t) over the interval [k,th+1] vanishesthatis, if the shiftedabscissae jbsatisfy the
relation

th+1 1 K
@7 | m@d=r1] [ (x-b) dx=o0.
tn 0 i1

Imposing this superconvergence condition yields a (k-2)-parafaetdy of GAB methods obrder
p = k+1. We remark that relation (2.7) can never be satisfied by absgissabeainterval[0,1], i.e.
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-1 < bj < 0. This follows from the fact that if the quantitigsamuld all be nonpositivehenti(t) has
no zeros in the intervalftn+1], so that the integral afk(t) over the interval f}th+1] cannot vanish.

If k = 2, then we obtain a uniquely defined third-order method avith(s/3,7)T. In this casethe easy
error estimate mentioned above is not possible. However, if k > 2, then we may s& ¢ obtain
the local error estimatgn+1 k - Yn k-1. Observingthatfor ac = 1 and g1 = 2 the superconvergence
condition (2.7) is can always be satisfied by choosing the free abscgissamnaetrically with respect
to 3/2, we are led to define

keven: k=2:a=1, a<-1:§,
k=4:=1, &1=2,3=3- &-j-1, i=1, .., k2.
(2.8)

kodd: k=>3:a=1, a<-1:2,a(-2:%,
k=>5:3=3- &.j-2, i=1, .., k3.

Theorem 2.1.Let (2.8) be satisfied. Then, there exist an abscissae \estwh that:

(a) If k=2, then the global order p = k+1.
(b) If k=3, then the error estimay@+1 k- Yn k-1is of local order k+1¢

Condition (2.7) is always true for k odd. If k is evéimen we have tgpend one abscissae to satisfy
(2.7). The still remaining freeabscissaemay be chosen, forexample such that the first k-1
components of therror vectorC(k+1) are of smallmagnitude, or suckhat the stabilityregion is
sufficiently large.Let us firsttry to reduce the magnitude of teeror constantsSince we assumed
ac = 1, we may writeC(k+1) = (k+1)$k - ak+1. We have minimized therror constants (k+1),

I < k-1 underthe constraint that theorm of S does nahcrease toanuch. Thus, weexpect that a
suitable choice for the free abscissgis abtained by minimizing the quantity

(2.9) 6@ = max{|| (Cak+1), .., Gea(k+D)) ||, +V[IS||,.}

wherey denotes some constant.

Table 2.1.Abscissa vectors, the norm & and real stability boundaries.

k al for GAB methods &) BrealAB)  Brea(GAB)
5
2 (2.1 1.88 1.0 0.63
3 (.29 4.07 0.53 0.48
1741 2351
4 s 22 2. 6.34 0.30 0.44
1137 1935 3
5 s 22 2 10.26 0.16 0.42



2480 2199 2730 4379

6 2279 ' 1643 ' 1643 ' 2279 ° 2 ']) 20.59 0.08 0.42
865 571 857 1967 3

7 (52 21 851 B9 3 5) 48.32 0.04 0.41

In Table 2.1, we have listed the GAB abscissa vedbtainedfor y = 102 (this valuewas chosen
experimentally), together with the corresponding (looahimum value of Gf) and thereal stability
boundaries for botthe AB and GAB method&ee also SectioR.2 for a discussion ahe overall
stability of theVIDE method). It turns outhat theabscissae inhe 4-stage GAB method are
numerically equal to the Lobattabscissae ithe interval[l, 2]. Forlarger values of k, there is no
relation with the Lobatt@oints. The stabilityboundaries othe GAB methods are quisatisfactory,
so that there is no reason to look for abscissa vectors which yield still larger boundaries.

2.2. The starting vector and overall stability

The GLM (1.2) needsthe starting vectolr'1 = y(to + gh). If all absissaeare positive, then this
starting vector can be generated bgne-step method.g. aRunge-Kutta method. If one anore
abscissa@arenegative, then we need starting values at pdafitto to. Since this is inconvenient in
practice, we follow another approach which is basetherredefinition of thgoints f,, n> 1. Let
amin denote the minimakbsissavalue and defindor n > 1, {, := fgp + (n - @nin)h (instead of the
original step points,t= tg + nh). In particular, wéave §{ = o + (1 - anin)h. Evidently, none of the
points tj := to + (§ - amin)h are located to the left 0f.t So by using a startingector Y 1 which
approximates thexactsolution at thesgoints, i.e.Y1 = y(t1j), we do not anymore need starting
values at pointgeft to fo. Now, let yrk(t) denote a Runge-Kutta approximatiortta point t. Then
we may define the starting vect¥r = (yRK(to + (g - amm)h))T. In fact, wecanalso use this
starting vector in the case of positiabscissae withthe advantage that thstarting value
corresponding with @i is exact. Thusgiven the quantitiesd, h, R, S}, the starting procedure
Y1 = (yRK(to + (g - aﬂin)h))T, and the quadraturtormulas gnj, the method(1.2) completely
defines the sequence of vect¥ts Y3, Ya, ... .

Next we brieflydiscussthe overall stability of th&IDE method. Evidentlythe overall stability is
influenced by the stability of the quadratdogmula. A stableway of defining quadrature rules
convertsthe integral term into a differential equatiend integrates this differential equation by a
sufficiently stable ODE solver. For that purpose, we introduce the function

S
(2.10)  z(t,s) := tj k(y(), y(x)) dx.
0

By observing thaty(t) = z(t,t), we see that we can apply the GLM (1.2)rte ODE (1.1), where the
values ofg(t) needed by the GLM are obtained by integrating the initial-value problem

oz(t,
(2.11) % =k(y(®, y(s), z(tto) =0



froms =puntil s =t.

The underlying integrator should be sufficiently stable because the rightitknoh (2.8) is affected

by the numericaérrors due taghe GLM integrator.Oneoption is to apply the same GLKL.2) as

used forintegrating(1.1), toobtain an(R,S)-reduciblemethodfor VIDEs. If the GLM (1.2) is
sufficiently stable, then we may also expect overall stability. To be more precise, we should consider
the complete integration process, that is, the recursions

Yn+1= (RODYn + h(SI)F(Yn, Qn), n= 1.
(2.12) Znv+1 = (RONZpy + h(SI)K(Yn,Yy), v=0, 1, ..., n-1,
Qn=Znn

whereK (Y n,Yy) contains the kernel value(sk(yni, yvi)). The linear stability oIDE methods is
usual studied by means of the linear test equation (cf. [3])
dy(t) :
y
(213) g =&+ ntf y(x) dx.
0

By writing this equation as a system of the two ODEs

d d
213) M ey enze, B =y,

one firstshowsthat separatelyapplying the GLM f, R, S} to each of thesetwo equations is
equivalent with applying it directly to thsysten(2.13"). Thenthe following result is easily proved
(cf. [1, p. 470], [8]).

Theorem 2.2. Let S be the linear stability region of the GL{.2), defined by set of points z
where R + zS has its eigenvalues on the unit disk, andded be defined b+ =&, Al = -n.
Then, withrespect to the linear test equati¢h13), the set {(i&,h2n): hAoS, huoS} defines the
region of stability of the (R,S)-reducible GLM {(1.2), (2.12%.

If this theorem is applied tthe casevhereé andn are real (which is relevant in the case of scalar
VIDEs) and if the GLM(1.2) has a readtability boundaryBrea, then the(R,S)-reducible GLM has
the stability region (see Table 2.1 for the valuefgfi corresponding to the AB and GAB methods)

-2Breal< hE <0, PBrealf < hn.

Remark 2.1. Equation (2.11) can of course be integratechty GLM {a, R*, S’} with the same
abscissae vecter This would lead to the recursion

OYe+ip 0Y¥nQ _ HR+hES ns{
hZp 0~ Mohz, 00 M= 5 2 RO



The stability region is now defined by the set&(#n): | A\(M) | < 1}, wherethe eigenvaluea(M)
of the amplification matrix M are determined by its characteristic equation

det(R + FES -Al) det(R* - Al - h2nS (R + S -Al)-1S) = 0.4

An advantage of the quadrature procedure (2.12) is thdtighestage order ddll stage values iy,
andY can befully exploited (this is nothe case if the underlying meth¢dl.2) isreplaced by a
Runge-Kutta methodHowever, asalready remarked in thietroduction, a disadvantage of these
extendednethods is the large storage requirement if many integration steps are involved.

An alternative is the use afixedmethods in which the quadrature formula is only based on the set of
step points §: v = 0, ... , n}and the right end point t of the integratioterval. Letthe numerical
approximation tc(t,t,) be denoted by, letk, :=k(yn,, yv), andlet thequadrature formula be of

the linear m-stefporm, thatis, zy is defined as a linear combination of valags;, ... , zy-m and

Ky, ... ,Ky-m- Then, by observing thdhe k-values indirectly depend ahe z-values, we should at
least require that the linean-step formula isstable. For exampldet (2.11) be integrated by the
classical fourth-order Runge-Kutta method whose intermediate points coincide with the steg,.points t
Then, this method is equivalent with the linear two-step method

— 1 2 1
Zy+1 =2Zy-1 t Zf'(g Ky-1 + 3 Ky + 5 kv+1)-

This method is easily recognized the Simpsonmethod whichhas a ero real stabilitypoundary.

Thus, although the underlying Runge-Kutta method has a nonzero real stability boundary for ODEs of
the formz' =Kk(z), it doesnothave a nonzero real stability boundanthe presensituation, beause

the Runge-Kutta methodhas changed from a one-step method to a multistegthod. However,
applying a multistep method {@.11) leads to quadrature formuléizat are equivalerwith the same
multistep method. Hence, ithese multistep methods are sufficiently stat@dey. Adams-Moulton
methods), then the resulting quadrature method is also sufficiently stable.

3. Numerical comparisons

In order toisolate algorithmic properti€som implementatiorpropertiesall methods were run with

fixed stepsizes.The accuracywas measured by the number of correct significant digits

csd :=-logjo(relative maximumerror atthe end point) and the computational effort by tbtalf
effectivenumber ofRHS evaliations N, thats, N refers to those RHS/&uations thahaveto be

done sequentially. Since the main computational cost of the whole algorithm consists of the evaluation
of RHS functionsand since the computation of tR&Ss isquite costly, the communicatiorcosts

will be negligible, so that N furnishes an estimate for the effective computational costs.

The VIDE algorithm consists of two main numerical procedures, viz. an ODE solver and a quadrature
procedure. For the quadrature procedure we toeR-step, 3rd-ordeAdams-Moulton method (AM
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method) only based on step pouatiues, usinghe trapezoidal rule to obtain tlmecessary starting
values. For the ODE solver we took k-stage GAB methods and classical Kistagestep) Adams
Bashforth methods, respectively denoted by GABk and ABK. Furthermore, in oEnpare with
ODE methods requiring more than one effective RHS per step, we also dpeliddssicafith-order
Runge-Kutta method (RK method). The methods were run on the following test problems:

dy 1 1+t 1 1
(3.1) Gt =y In(1+—t/2 -t - W +tf T+ (1+)y(X) dx,y(0)=1, xt<1,
0
t
(3.2) % =-exdy(t)3) + I y(x) dx, y(0)=1, xt<l,
to
t
d
(33) G = - exfy®?) +tJ sin(y()y(x)) dx, y(0)=1, Gt<1.
0

The first test problem is the oftersedexample ofBrunner and_ambert[3]. The seondexample is

more difficult because of the highly nonlin€@bE part. The third example is thenost difficult
problem with increased nonlinearity (note also that the kernel depends on both y(t) and y(x)).

Table 3.1 lists values of N and csd for k =.3,, 7. These figureshow thatfor a given number of
stages the GAB methods are always considerably more accurate than the AB methods. In fact, in most
cases, the GAB methods produce alibatsame accuradgr 25% ofthe number of effective RHS
evaluations (this implies that on a sequential computer, the GAB4-AM method is about as efficient as
the AB4-AM method). Furthermore, it seems to pay to @&E methods of higher order than the
guadraturdormula. As tothe performance of the Rikhethod, we se¢hat the RK-AMresults are

more orless comparable witlithe ABk-AM results for k> 4. Finally, weremark that the GAB
methods allow us to use extended quadrature formulas basdldaonilablestagevalues, whichwill

again improve the accuracy when compared with the AB-AM and RK-AM methods.

Table 3.1.Correct number of significant digits at the end point using 3rd-order AM quadrature.

Problem N AB3 GAB3 AB4 GAB4 AB5 GAB5S AB6 GABG6 AB7 GAB7 RK

2.9 5.2 3.7 5.5 3.3 54 3.7 5.1 3.4 58 3.8

20 4.0 6.7 4.7 6.7 3.8 7.0 4.4 6.4 4.2 6.9 4.4

40 45 8.6 5.8 7.9 5.6 8.5 5.4 7.6 5.2 7.8 5.5

80 5.5 8.8 7.1 9.0 6.7 9.0 6.5 8.5 6.2 8.8 6.7

160 6.2 9.6 6.7 10.0 6.1 9.8 7.5 9.4 7.4 9.7 7.5

(3.2) 40 1.8 3.9 2.1 4.0 4.1 4.2 2.2 4.1 2.2 38 24
80 2.6 5.5 3.1 4.8 3.9 4.9 3.1 4.8 3.0 4.7 3.4

160 3.4 6.1 4.3 5.7 4.3 5.7 4.1 5.6 3.9 56 4.1

320 4.3 6.7 5.3 6.6 5.7 6.6 5.2 6.5 6.3 6.5 4.9

(3.3) 40 0.4 2.2 0.8 2.5 0.9 29 1.0 3.9 1.3 29 0.6
80 1.2 3.1 15 3.6 1.8 4.2 1.9 4.4 23 40 1.7

160 2.0 4.2 2.5 4.7 29 54 3.0 5.1 3.9 49 2.8
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320 2.8 5.3 3.5 5.8 4.2 6.0 4.2 5.9 4.4 5.8 3.9

4. Concluding remarks

In this paper, we constructed explicit k-stage GLMs with step point order k+1 and stage sudbr k
that allRHSsper stepcan be evaluated in parall@pplication to VIDEswith fixed stepsizes and a
3rd-order Adams-Moulton quadrature formula only based on step phiotged aheoreticalspeed-
up by a factor about 4 with respect to Adams-Bashforéthods.These quitepromising results
motivate future research in the following directions:

() providing the methodsvith an extended quadrature procedure baseall@vailablestage

values and withautomaticstepsize control based dhe embedded locarror estimate
Yn+1,k- Yn k-1 (see Theorem 2.1).

(i) extension to parallel VIDE methods for stiff IVPs (in preparation, see [2]).
(i) implementation on parallel computer systems.

These topics will be subject of future research.
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