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ABSTRACT

Many orbit problems in celestiahechanicsare described bynonstiff) initial-value problems (IVPs) fasecond-order
ordinary differential equations d¢he formy" = f(y). The most successful integration methads based on high-order
Runge-Kutta-Nystrom formulas. However, these methods were desigreshfantialcomputer systems. In thigaper,
we consider high-ordgrarallel methods thaare not based orRunge-Kutta-Nystrém formulas, but which fit into the
class of general linear methods. In each step, these methods compute blocks of k apmokitiatevalueqor stage
values) at k different points using thwnole previous block of solution values. The k stage valgsbe computed in
parallel, so that on a k-processor computer system such metfiecty/ely perform as a one-valmeethod. The block
methods considered in this paper are such that each equation defining a stage value resemblesulisitegaequation
of the familiar Stérmer-Cowell type. For k =4 and k = 5 we constructed expiB@t methods witlstageorder q = k
and step point order p = k+1 and implicit PSC methods with g = k+1 and p = k+2. @& We canconstruct explicit
PSC methods with g = k and p = k+2 and implicit PSC methods with g = k+1 and p = k+3. It turns déat khat5
the abscissae of the stage values can be chosen such that only k-1 stage ‘ealci@sionk have to be computed, so
that the number afomputationaktages, and hence the number of processathe number of starting valuereded,
reduces to k = k-1. The numerical examplesported in this papeshow that theeffective number of righthandide
evaluations required by a variable stepsize implementation of the 10thR8@emethod is 4 up to 3€imes lessthan
required by the Runge-Kutta-Nystrom cdd®PRIN (which isconsidered as one tifie mostefficient sequentiatodes
for second-order ODES). Furthermore, a comparison with the 12th-order pesodd&IRKN revealsthat thePSC code
is, in spite of its lower order, at least equally efficient, and in most cases more efficient than PIRKN
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1. Introduction
Many orbit problems incelestial mechanics adescribed by (nonstiffinitial-value problems (IVPs)
for the special second-order ordinary differential equation (ODE)

2
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where the righthandside does notontain the derivative of. The most successful integration
methods are based on high-order Runge-Kutta-Nystrom formulas. We mention the methods proposed
by Dormand and Prindg], by Fehlberg et al[4], and by Filippi andGraf [5, 6]. These methods
were designed fosequentiacomputersystems.The first high-order methods designed for use on a



parallel computers are the PIRKN (Parallel Iterat®lUnge-Kutta-Nystrom) methods due to
Sommeijer[11]. On aparallel computesystem these methodse by farsuperior tothe earlier
sequential Runge-Kutta-Nystrom methods which do not have any scope for parallelism.

In this paper, we consider high-ordearallel methodsthat arenot based on Runge-Kutta-Nystrom
formulas, but which fit into the class of gendmaéar methods. Ineachstep,these methods compute
blocks of k approximate solution valuésr stage values) at k different pointssing the whole
previous block of solutionalues.The k stage values can be computed in parallethabon a k-
processorcomputer systensuch methodeffectively perform as a one-valumethod. The block
methods considered in this paper are such that each equation defining a stage value releables a
multistep equation of the familiar Stormer-Cowgibe. Therefore, wehall call these block methods
parallel Stérmer-Cowell(PSC) methodsThey are the second-order-ODE analogue of the parallel
Adams methods for first-order ODEs proposed in [8].

For k =4 and k = 5 we constructed explicit PSC methods with stage order q = k and step point order
p = k+1 andmplicit PSC methods with g = k+1 and p k+2. For k> 6 we can construaxplicit
PSC methods with q = k and p = k+2 and implicit PSC methods with q = k+1 arkd-p. =It turns

out thatfor k = 5 theabscissae ahe stage values can be chosehthatonly k-1 stage values in
each block have to be computed, so that the numhlengbutationaktages, and hence the number of
processors and the number of starting values needed, reduteskelk

The PSC methods of this pamee uniquely defined by thetbscissa vector. Therefore, we spent a
lot of attention on the analytical evaluation of theabssae. For k = dnd k = 5, we succeeded in
deriving explicit expressions fothe alscissae. For k = @nd k = 7, theabscissaare partly given
explicitly and partly defined by a polynomial equation of degree 4. We shall deag rational
expressions for the coefficients of these polynomials, sdhikaisercan compute thabscissaand,

by means of the abscissae, the other method parameters with any accuracy desired.

An important aspect of block methods is their stability interval. In most lfetkodsthe stability
interval is relatively small. Therefore, we computed the statibityndary forall methods derived in
this paper. In some cases, gtability intervalturns out to be emptydowever, slightlyrelaxing the
definition by allowing that the eigenvalues of the stability matrix aredisk of radius 1 + 18, we
obtained acceptably large stability boundaries. For example, the explicit 828&gaethod of order

10 has astability boundary0.78. SincePSC methods, when run orparallel computesystem, are
effectively one-valuenethods, wecan comparehis value withthe stabilityboundary ofthe scaled
stability boundary of Runge-Kutta-Nystrém methods (thahis,stabilityboundary is divided by the
number of righthand side values per step). For exarti@é@th-order Runge-Kutta-Nystrommethod

of Dormand and Prince has a scaled stability boundary 0.32.

The numerical examples reported tims paper contain &wvo-body orbit problem, the nonlinear
Fehlberg problem often used as a stability test problem, and the seven-planet problem PLEI [7] which
is considered as a hard test probkemnumerical integration techniques (togethdth a number of
other 'real-life’ test poblems, thePLEI problemcanalso be found irthe CWI Test sefor IVP
solvers []). These examples show that ¢fffective number of righthanside evaluations required by
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a variable stepsize implementation of the 10th-order PSC method is 4 up to 30 times less than required
by the Runge-Kutta-Nystrom code DOPRIN (which is considered as onteomost efficient
sequential codetor second-order ODES). Furthermore, a comparison tihl2th-orderparalel

code PIRKN reveals that the PSC code is, in spite of its lower order, atdeadlyy efficient, and in

most cases more efficient than PIRKN.

2. General linear methods

In 1966 Butcherproposedhe general linear method (GLM) formularium ander to describe in a
unified way the many first-order-ODE methods available in the literature. Extetminfprmularium
to the second-order ODE (1.1) yields the method

(2.1)  Yne1= (RIDYn + RSONF(Y ) + RTODF(Yne1), N =0, 1, ... .

Here, | isthe k-by-k identity matrix, R, S and Tare k-by-k matrices,0 denotes theKronecker
product operator, h the stepsigeit- th, andeach of the kcomponentyn+1 j of the kd-dimensional
solution vectolY n+1 represents a numerical approximatioryft, + gh), to hy'(t, + gh) or "to any
other quantity which enables us to construct and describe useful methods" (see [Butch@89]).
The vectora := () is called theabscissa vectolY , thestage vectoand its componentg,; the stage
values Furthermore, for anyectorY, = (yni), F(Yn) contains the righthanside values(f(ym)).
Evidently, we can fix one of the abscissae without loss of generality. We shallpt a

The GLM (2.1) iscompletely determined by means of Hreays{R, S, T} and the starting vector
Yo = (y(tg + (g-1)h)) and defines irrachstep a newblock Y n+1 of solution valuesThus, given
{Yo, R, S, T}, (2.1) defines the sequence of block vectarsro, ... .

In this paper, weshall assume thaill components ofY h+1 represent numerical approximations to
solutionvaluesy(t, + gh) and we shall restricur considerations tthe casevhere T is aliagonal
matrix with diagonal entried. Such GLMs will be referred to as GLMs witlarallel stages, besause
all stage values can be computed in parallel. GLMs for second-order ODEs with a full matrix T will be
subject of future research.

2.1. Solution of the implicit relations
If the matrix T has one or more nonzero diagonal enffjgeenyn+1 j has to beobtained by solving

one or more (uncoupled) implicit relations of the form
(2.2) y-3ih%(y) = vni,

wherevp, represent a d-dimensional vector componeMpf= (ROI)Y, + h2(SO1)F(Y ). Notethat
the equations (2.2) can be solved concurrentlghatonly after completion of a full integration step
the processorsieed to exchange their computeults. The conventionaivay of solving (2.2) in
nonstiff situations is a fixed point iteration (briefly FP iteration) process of the form

2.3)  y0) =&h2(yE-D) +vni, j=1,
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wherey(0) represents an initial stage value iterate. Tlsigial iterates can be generated by the GLM
(2.1) with T = O and withthe sameabscissavector as the underlyingnplicit GLM. The process
(2.3) satisfies the error recursion

y0 -y = &h2(fy(D) - f(y)), j=1,

leading to the estimate

Iy® -y || < [8i] h* [ptray]| ||yG-) - v].
Hence, the convergence condition becomes

1
(24) h<——=—=
J|piotray||

Thus, we should take care ti@f is sufficiently small.

2.2. Consistency

Consistency is defined by substitutiontbé exacsolution intothe GLM and by requiringhat the
residue vanishes as h tends to zdiwe rate bywhich the residue tads to zero determindke order
of consistencyWe shall call the GLM (and the stage vedt@t 1) consistent obrder qif the residue
upon substitution of the exact solution valyés + gh) into (2.1) is of order #t2. The value of q is
often called thestage orderThe consistency condition leads to a set of order conditions to be satisfied
by the matrices R, S and T. &aldition, in order tdhave convergencéhe GLM should satisfy the
necessarygondition ofzero-stability that is, the matrix R should have its eigenvaluetherunitdisk
and the eigenvalues of modulus one should have multiplicity not greater than two.

From the consistency definition given above, the order conditions follow immedelgmplicity
of notation, we assumihat theODE is ascalarequation. Usinghe componentwise definition of
functions of vectors, that is, for any function g and veetave define g¢) := (g(v;)), we obtain on
substitution of the exact solution into (2.1) and expansion in a Taylor series

€n = RY(tp) + PSF(Y (tn)) + PTF(Y (th+1) - Y (th+1)

= c(-2)y(tn) + he(-1)y(D(tn) + ... + H+2c(q)y(a+2)ty,) + ha+3c(g+1)ya+3)Xty) + ...,
(2.5)

c(-2) :=Re-e, c(-1) :=Rb-a, c(j) = (j+—12)!(RbJ'+2 - aJ+2) + JlT (SbJ + TaJ) , =0,

whereb :=a- e, Y(ty) = y(tn-1 + gh) denotes the vector containitige exactstagevalues,and yi(t)

is the jth derivative of theolution. Hencerequiring thelocal error €, to be of order gq+2 in h, we
conclude that the stage values are (at least) consistent of oragy) e i@ for j = -2, -1, ... , g-1. The
components o€(q) may be considered as tloeal error constantsAlthough c(q) is the first error
vector thatdoes notvanish, itmay happenthat particularcomponents ofc(q) are zero. Thus,
particular stage equations may have a higher order of consistency.
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In the construction of GLMs, we shall start with a given zero-stable matrix R and a diagonal matrix T
with small, nonnegativeliagonalentries.The matrix S is then determined byposingthe order
conditions. From (2.5) it follows that we obtain stage order g = k if R and S satisfy

(26) Roi=d, j=0,1; RI+[(-1)SHi2=a-G-DTa2, 1)) := gy . =2, .., k+l.

Let us introduce the k-by-2 matriceg bind the k-by-k matricespand W;:

2.7)  Uc=(ex), Ve:=(x2 .. xkr1), wy = (2e, 6, ..., k(k+1xk-1).
The consistency conditions (2.6) can now be expressed as

(2.8) RU,=Us SWy=Va-RVp- TW,.

Given an abscisseector a with distinct abscissae, a zero-stablatrix R sasfying the condition
RUp = Uy, and any matrix T, we obtain a family of GLMs with stage order q = k by defining

(2.9)  S=(Va-RVp - TWa)WpL.

2.3. Linear stability
In this paper, the linear stability regiSris defined by the set of points tine complex z-planerhere
the matrix

(2.10) M(z) :=(1-zT) (R + z9

has its eigenvalues on the unit disk. The pro¢2s9 will be called linearly stable if the eigenvalues
A of the matrix Bof/dy are inS. Since the problengl.1) is itself only linearly stable if the
eigenvalues off/dy are negative, the intersection®fvith the negative axis is @jpecialinterest. If
[-B2, 0] is the largest interval containedSnthenf will be called thestability boundary

We shouldavoid the situationvherethe matrix M(I#A) becomes singar, i.e. B shouldnever be
equal to(3iA)1. This can only happen&\ > 0. Together with the requirement of linear stability, we
are led to the stepsize conditions

1 B
(2.11) h< , hs —/—
sp L A} \ /mAaX{ A}

Note that the nonsingularity condition is alwdgssrestrictive than the convergence condit{@m)
and less restrictive than the stability condition if rjiax< B2

3. Parallel Stormer-Cowell methods
In this paper, we restrict our considerations to GLMs where R is given by the zero-stable matrix



(3.1a) R :(0, ., 0,e-r, r), ik =1+ Kk-1.
It is easily verified thathis matrix has k-2 zereigenvalues antio eigenvalues 1, hence it is zero-
stable. On substitution of (3.1a) abd a - einto RUy = Uy, that is, into R=¢e, Rb =4, yields

a
(3.1b) r=e- ;-1

Thus, forany abscissae vecta; the matrix R defined by3.1) is zero-stable and it satisfies the
consistency condition R{= U, Each stage equation thfe GLM{(2.1),(3.1)} resembles thénear
multistep formula of Stérmer andowell, in the sensethat thenew y-value isdefined using two
precedingy-valuesand k precedind-values. Therefore, wshall call the GLM{(2.1),(3.1)} a
parallel Stormer-Cowelinethod or briefPSCmethod.

3.1. Order of accuracy at the step points
If the GLM (2.1) has stage order g, then its local error is given by (cf. (2.5))

(3.28) &n(q) = M 2e(q)y(a*+2)(tn) + MA*3(q+L)Ya+3Ntn) + ...

where again, for simplicity of notation, we assume thatODE is ascalarequation. Let us consider
how this local error is propagated by the GLM (2Lt a,, denote the global or accumulatedor,
i.e.Yn=Y(tn) + an. Then

F(Y (tn) + an) - F(Y (tn)) = Jhon + O@n?d),

where 4§ is the k-by-k diagonal matrix whose diagonal entries contain the derivatives of f with respect
to y at thepoints y(h-1+gh). Ignoring second-ordeerms inap, the GLM (2.1) propagates the
accumulated erraxy, according to

(3.2b) Op+1=Mpan+ Dren(@), Mn:= (1-h2Toh1) H(R+h2S3), Dy = (1-h2Tdhey) ™

Note that for the scalar test equation ¥y;the matrix M, reduces to the matrix MgN), whereM(.)
is the stability amplification matrix defined in (2.10). Suppose that the Végigr is exact atfs+1,
l.e.an-s+1=0. Then, the accumulated error over s steps is given by

(3.2")  0dn+1=Dnen(q) + MnDn-1€n-1(0) + MnMn.1Dn2en-2(q) + ...+ Mp ... Mn.s+Dn-s+En-s+10).

We are particularly interested in the accumulatiegh pointerrorsan+1 k. Since My = R + O(1?),

MnMpn.1= R2 + O(FP), ..., and because for PSC methods the first k-2 column wdrish, only the

last two components of §gj(q) play a role inthe O(l*9 and O(H*3) terms ofan+1,k In fact,

On+1,k = O3 if ck-1(0) = (@) = 0 andoin+1,k = O(H+4) if ck-1(a+1) = (g+1) = 0. Thus, in

PSC methods, we can achieve step point order p = gq+1 and p = g+2 (superconvergence) by imposing
conditions on the last two components of the error vecf(gysandc(g+1), respectively



In thefollowing, we distinguishbetweenexplicit PSCmethods (T = O) andmplicit PSC methods
(T # O). Inthe case oéxplicit PSC methodshe stageorder q = k, but ashown abovethe step
point order becomes p = k+1 if the abscissae can be chosen such that

(3.3a) &-1(k) = a(k) = 0.
and it can be raised to p = k+2 if in addition to (3.3a)
(3.3b) &-1(k+1) = (k+1) = 0.

If the method ismplicit, we first usethe matrix T to obtain stagaerder q =k+1. Givena, R, T and
defining S by (2.9), the error vectglk) can be written as

(k) = (k%zﬁ(Tm(k) -n(k)), mK) = (k+1)(k+2)ak - WaWp1bk),
(3.4)
n(K) := ak+2 - Rok+2 - (k+1)(k+2)(Va - RVp)Wp10k).

Hence,the stageordercan be raised to g = k+1 by settiodk) = 0, thatis, Tm(k) = n(k). Let the
abscissae vectarbe such thai(k) has nonzero entries. Then all stage values it (2.1) have
order of consistency q = k+1 if the matrices S and T are defined by

(3.5) T =diag(n(k)m1k)), S =(Va-RVp- TWg)WpL

We remark that the ith diagonal entry of T can be chosen arbitiaenever nik) and n(k) both
vanish. Furthermore, if itk) = 0 and (k) # 0, then the stagerder cannot be raised k3-1, unless
the ith row of S vanishes. Assuming thatkjp= 0 implies k) = 0, the step point order is raised to
p = k+2 if the abscissae can be chosen such that

(3.7a) &-1(k+1) = g(k+1) = 0,
and to p = k+3 if in addition
(3.7b) &-1(k+2) = «(k+2) = 0.

One option for the derivation ofsuperconvergent abscissag & to solve the (highly nonlinear)
conditions (3.3) and (3.7). However, it turmist that usingthe theory of quadratufermulas yields
more simple conditions for generating superconvergent abscissae.

3.2. Conditions for superconvergent abscissae using quadrature formulas
In the PSC case {(2.1),(3.1)}, the stage equations can be written as

(3.8)  Yn+g - (L -K)Yyn-1+3.1 - li¥n-1+a = h(eTSONF(Yn) + h25if(Yn+a), i=1,..,k



whereyn+g correspond witithe numerical approximation at the poigtet:= t, + 6h. We compare
these equations with their analytical analogue. The main tool is Taylor's theorem with remainder term
which yields for the solution of (1.1) the formula

t+A t+A
y(t+D) = y() +Ay'() + tf (t+A-x) y"()dx = y(t) + By'(t) + tJ (t+D-x) F(y(x))dx.

It can now be verified that the solution of (1.1) satisfies the relations

1
Y(tn+a) - (1 - DY(th-1+a.q) - Ty(tn) = a2h2 | Gi(E)f(y(ty + ahE)) dE,
0
(3.9) g(E)=1-E-(1-1) (baal-E) for 0<Z<beial,
gi(§) =1-¢ for bigl<g<i,

and where we assumdidat 0 < Ip.; < 1 + h (this impliesthat a # 0). If this constraint is not
satisfiedthen the functionighas to be redefined, but it turns out that the constraitihety does not
limit us in the construction of useful PSC methods.

Next, we approximate the integral termg®9) by aquadraturdormula. Since thefunctions g are
not differentiable, we use a formula basegmduct integrationUsing the pointsjt:‘.'1 (and 1 in the
case of implicit PSC methods) as quadrature points, we may write

1

3.10) | GEF(y(ta + ght)) dE = wirf(y(tn + hby)) + wiaf (y(tn + hip)) + ..
0

wherethe w;j are thecorresponding quadrature weights whieke thefunction g into account.
From (3.8), (3.9)and (3.10) it follows that therighthand sides in3.8) may be interpreted as
quadrature formulafor the integral terms i1§3.9). Let usdefine x+151 = 1 for all i. Then, the
quadrature points are given by the k pointgifh, j =1, ..., k} if the PSC method is explicit and by
the k+1 points {{g-1, j=1, ..., k+1} if the PSC method is implicit.

In the following formulas, we introduce the paramat#y indicate explicitt SC methods { = 0) and
implicit PSC methodst(= 1). It can be showthat the quadraturereights w;(t) corresponding with
the quadrature pointgdpl are given by (see e.g. [1, p. 886])

1

ktt &€& - b
wij(t) = 82h? J gi@)Lij(t,e)de, Lij(t.&) = ] al;jé n brr
0 r=1,

Hence, ReTSeg = wjj for j =1, ..., k and # = Twj k+1, SO that the matrices S and T are given by
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1
s=(aTse) = (a2] a@Liede). T =dad1a?] Gi(E)Lik(rE)E).
0 0

Theseexpressions fothe matrices S and T are equivalevith the expressiongderived in the
precedingsection, buthave the advantage that the entries are expliekjyressed in terms of the
abscissae. For example,can now immediatelyseenthat the ithrow of Sand T vanish if gis
identically zero. This happens if, and only if,lazg and a:% for some i k-2, say for i =k-2.

PSC methods with this propertare attractivefrom a computational point of view because the
corresponding stage equation reducegntey > = Yn-1+a.1, thatis, yn+1k-2=Yynk-1. Hence, the
(k-2)nd component d¥(Y n+1) equals the (k-1)st componentfefY ), so that th€k-2)nd processor

is not really needed, that is, computationally the PSC method has only k-1 stages. Thus, we have:

Theorem 3.1.Let all i be real and distinct, satisfying the constraint 81 +hQ,1=1, ..., k.
Then, the PSC method hds%kk-1 computational stages ifh :% and if lx.o = % 4

The quadrature error of the product integration formula (3.10) is given by

1
1 k
Qi = - g%h? | pO®6E)E, pE) =a@®E- 1 M E- ba1)
(k+1)! 0 =1
dk*TH(y(tn + 3h6)) dk+TH(y(tn + ahe))
(pl(T1e) = de|2+'[ = (ah)k+T d(ahg)k+T 1

whereB(&) assumes values ihe interval[0,1]. We remark thatthis error formulaholds for any
integrable function &) and sufficiently differentiable functidify(t)). By writing

WB(LO0) |, 1 o, PZA(L00)
% 2 5 o

Qi(1) = J e ¢(1,8(0) + & =

(k+T)'
} &,
and observing thagach differentiation of the functiap(t,0(&)) with respect td increases its order

with respect to h, we see that the order of the quadrature@frpincreases by one the quadrature
points {ha1:j=1, ..., k} satisfy the condition

1

(311a) | p(tE) de =0,
0

and by two if, in addition,
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1
3.11b) | Epi(t,E)dE = 0.
0

From the structure of the matrix R and the factdnHront of the derivative terms in tHRSC method
it follows that theseconditions need only to be satisfiat | = k-1, k (compareour discussion in
Section 3.1). The following theorem summarizes the above result.

Theorem 3.2.Let all  be real and distinct, satisfying the constraint g1 +h,i=1, ... , k.
Then, the PSC method has step point order

(a)p = k+1# if (3.11a) is satisfied for i = k-1,.k

(b) p=k+2# if both (3.11a) and (3.11b) are satisfied for i = k-®, k

Let usapply this theorenfior k = 3. Solving (3.11a) with i = 2, 3 usingaple yields anexplicit
fourth-order methodt(= 0) defined by

(3.12a) h= %\/22 - 24109 = 0.529005, =1+ by - (1 + )2 = 1.136518

and an implicit fifth-order method € 1) defined by

(3.12b) b =-1130- 10V129 = - 0.405238, p=12+3 by - 2(1+b)2= 0515271,

10

For k = 4, Maple offers already problems to findaamalyticalsolution. Anumerical approach yields
an explicit fifth-order method defined by

(3.13) h = 1.083424930, h= 2.283072685, H= 0.494330785.

For k> 5 we have to solve thiur equationg3.11) with i = k-1, k simultaneouslyThis direct

approach becomes quite cumbersome even when using numerical techniques, ucdeESEIRES an
accurate initiabpproximation to thesolution. Analternative is to assume that thbscissaeya is

given in advanceThen it ispossible toderive an analytically given polynomial equatiamose
solutions define superconvergent abscissae.

3.3. Superconvergent PSC methods
From now on, we assume thatias prescribed. Let k 4 and let the abscissagke givenfor j > 3.
Then we can write

k
pi(r.€) = € - lia D - bpai?) gi(r.€), q(r.€) := g@)E-1F M (€ - bal)
=3

where ¢(1,§) does notcontain unknown parameters. Similarly, for X 6 we assumehat the
abscissaejare given for p 5 and we write



11

4 k
pi(te) = 1 (&- ba-l) n(té), n(wg) = a@E-1r N ¢€-bal).

=1 =5

Furthermore, we define the integrals

1 1
(315)  §(0 = | @&)igi(tE) dE, ()= | (@) iri(r,E) dE.
0 0

Then, condition (3.11a) holds if the shifted abscisgant I satisfy the two equations
Ar:=b+bp,  Ap:i=biby,

where A and A are the solution of the two linear equations
(3.16a)  h(D)A1-lio(MA2=li2(T), i=k-1,k k4.

The coefficients jk (1), lio(t) and |2(t) do not depend oniband tp, so that they are completely
determined. Having computede quantities Aand A, theabscissae pand » are defined as the
roots of the equatiors Ajb +A>=0.

Likewise, (3.11a) and (3.11b) are both satisfied jfth, bz, and Iy satisfy the equations

B1:=by+ bp+ bg+ by, B2 := bibp + bz + bibs + bpbz + bpbs + bby,
B3 := bibpbs + byboba + bibgbs + pbgba,  Ba := bibpbaby,

where B, By, B3, and B, are the solution of the four linear equations

Ji3(1)B1 - J2(1)B2 + J1(1)B3 - Jo(T)Ba = Ja(1),
(3.16b) i=k-1,k, k=86,

Jia(1)B1 - 33(1)B2 + J2(1)B3 - J1(T)B4 = Js5(1),

in which the coefficients do not depend anliy, b3, and ka. The parametersibby, bz, and Iy are
now defined as the roots of the equatidn B1b3 + Byb2 - Bab + B4 = 0.

We recall that in théerivationsabove, it is assumetthat all a are distinct andhat the constraint
0 <1 =<1+ his satisfied for i = 1,... , k. Furthermore, we observihat using formula
manipulationsoftware enables us to finekact values forthe quantities Aand B, so that the
superconvergenocequations - A1b +A>=0 and B - B1b3 + Bob2 - B3b + B4 = 0 are obtained in
analytical form. The following theorem summarizes the preceding considerations:

Theorem 3.3.Let the quantities Aand B be defined by3.16a)and (3.16b), let all b be real and
distinct satisfying the constraint 0 «.b< 1 + i fori =1, ... , k. Then,the PSCmethodhas step
point order

(@)p = k+1+ if by and b satisfy # - Ajb +A2=0.

(b) p=k+2# if by, by, b, and y satisfy i - B1b3 + Bob? - B3b + B4 = 0.4
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By means of this theorem the polynomial equation to be satisfied ab#oessae of superconvergent
PSC methods carstraightforwardly be constructed, providétht theabscissag; = k-1 + 1 is
prescribed in advance. In the following, we shall always chogge=hl/2. This choice is motivated
by thefollowing observations: (ijhe methods defined b§8.12) and (3.13) showthat one of the
abscissaejlseems always to be closelif?, and (ii) if the method contains sufficiently many free
parameters, then wemay set ho = - 1/2, sothat by virtue of TheorenB8.1 the number of
computational stages is reduced to k-1.

In the Sections 3.4 and 3.5 below, we derive hth help ofMaple thesuperconvergence equations
b2 - Atb + A2 =0 and B - B1b3 + Bpb? - B3b + B4 = 0 in analyticaform for k = 4,... , 8 and
1= 0, 1. The resultingshifted) abscissaectorb (or approximations to it qre listed in Table3.1.
Since, in principle, we can associate with each abscissa vector both an Bgflioitethod (predictor
method) defined by {(2.9), T = O} and an implicit P®@thod (corrector method) defined 18.5),
we have also listed the orders of accuracy (poredPcor) Of the PCpairs (for aderivation of these
orders of accuracy, weefer to the Sections3.4 and 3.5). Finally, we listed the number of
computational stages ksee Theorem 3.1).

Table 3.1.Abscissa vectdn for PSC methods. Solutions of the superconvergence conditions.

k kK p Abscissa eq. b=a-e
37 + V229 37 - V229 1

4 4 (55) 3.17) = L= 200
80 -V163 80 +V163 11

5 4 (6,6) (3.18) = o 5 3 O
10 + V110 10 -V110 1

4 4 (4,6) (3.19) = 5 > 0
1335 -V13777089 1335 +V/13777089 1 1

5 4 () (3.20) 4872 4872 2 2 0

6 6 (8,8) (3.21)  0.220473884991749550773176296 0.78574817943@EB50898115
1.082801901339905567884428919 1.357404605658693883262925242
1
> 0

7 6 (9,9 (3.22)  1.35984980836284552448224743611.08550243286155484559219203238

0.7831415266517613622931020219 0.22366067273036013403372306979 - %

1

> 0

8 7 (10,10) (3.23)  1.34769190490729875418306514160 1.07208031244751681867238199782
0.78608615201785326002175468995 0.22516824834210228704446788414
3 1 1 0
20 2 2

6 6 (6,9 (3.24)  0.21755580207730697329345869375 0.80211953599522583518112647952
1.0973318873831938463954239359234878406687322980677477319902
1
= 0

2
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7 6 (7,10) (3.25) 1.31055925607203754003020571295 1.0503046858204850073846230065
0.77614140147425929479586597693 0.2261701100662944062560580057

1 1
2 2 0

8 7 (8,11) (3.26) 1.32926038747280407572724831106 1.07617474082873809284962387998

0.7912073263317798033138018502322305652889369376529159340900
37 1 1
= 0

3.4. PSC methods with k< 5
First we construct PSC methods with at most 5 stages using partTla@aem3.1. If PSCmethod
is explicit € = 0) and has 4 stages, then the method is uniquely defined by the equation

37 57 _ _1
(3.17) b?-mb+%-0, B=3.

Thus, (3.17) generates an explicit PSC method of order p = 5 and an implicit PSC method of order 5,
both with 4 parallel stages. The solutions of (3.17) can be found in Table 3.1 and turn out to be close
to the solutions (3.13) where we did not fix the abscissae ddvance.

For k = 5 wecan construct a one-parameter family of methodsrdér p = 6. Giverthe abscissa

bz, the abscissag land b follow from the superconvergence condition

74b32 - 195b3 + 124 114b32 - 248b3 + 131

- -1
(3.18) & - 20b32 - 74b3 + 57 b+ 2(20b32 - 74b3 +57) 0. y=73.

The free parametersltan be exploited by setting & -1/2, sothat we haveonly 4 computational
stages (see Theorem 3.1).
In a similar way, we find the implicit 4-stage PSC method of order 6 defined by

1 _ _1
(3.19) b?-b+4—0—0, @—E,

and the implicit 5-stage PSC method of order 7 with 4 computational stages defined by

445 1231 _ —-
(320) B-2Rb+22% =0fy=-

N[~

, =

N[~

3.5. PSC methods with k> 6
For k= 6 we can invoke part (b) of Theorem 3.1. Three types of PSC methods will be considered:

l. Explicit PSC methods of order k+2
[1. Implicit PSC methods of order k+3
I1l.  Predictor-corrector pairs of PSC methods of order (k+2,k+2).
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3.5.1. Explicit PSC methods of order k+2For k = 6 wehave a uniquely defined method of
order p = 8 defined by

193 10279, 17891, , 1597 _ _
(3.21) B - P+ s " Sas P T S0 B

NI~

For k> 7 we obtain methods of order p = k+2 with krée parameterssh ... , kx-3. For k = 7 we
used the free parametey o reduce the number of computational stages to 6 and found the equation

_ 235865 210776, _ 3139325 , 423971 _ _
(3.22) U - Gazs O * T4z ¥~ Te30776 0 " Teservs - OB

N[

b= 3

Finally, for k = 8 we have two free parameters. We ggt f/2and used bto reducehe size of the
error constant E(k+2) according to the approach described in Section 3.6, to obtain

b - 16493095751b3 + 117118655069b2 _ 217047351761b + 88026108193 _ 0
( ) 4814898736 28889392416 115557569664 346672708992 '
3.23

R N

3.5.2. Implicit PSC methods oforder k+3. Proceeding as in therevious section, we solve
the equations (3.16b) far= 1, to obtain a 6-stage, 9th-order method defined by

5015 18010 _ 67235 + 251147 _ -1
(3.24) b 1447 b + 4341 b 34728 b 972384 0. Iy 2

a 7-stage, 10th-order method with 6 computational stages

_ 9023504 157695722 _ 14440832, 4 71811311 _ -
(3.25) b 2683031b3 " 40245465 b 8049093 b 297197280 0. &

1
2

&
I
N[

and an 8-stage, 11th-order method wittomputational stageshosefree parametergowas used to
minimize the error constant E(k+3):

b - 10932630601866903 + 1293727397185447b2 _479656555759929 1 3874147299589559 _
31969569995869 319695699958690 25575655996695 15345393598017120

0,
(3.26)
_ 37 —
b:'>— 2_0 ’ QS— -

N[~

, by =

N[~

3.5.3. PC pairs of order (k+2, k+2).The explicit methods of Type dnd theimplicit methods

of Type Il constructed ithe two preceeding sectionsossess aoptimal order ofaccuracy k+2 and

k+3, respectively. A third option is to construct a PC pair wittséimeabscissae vector sutimat the
predictor is of order k+1 and the corrector of order k+2. This can be achieved by determining a single
shifted-abscissae vectbrsuch that (3.11a) is satisfied both tor 0 and fort = 1. Proceeding as in
Section 3.2, we first solve the four linear equations



(3.27) $B(1)B1 - J2(1)B2 + J1(1)B3 - Jo(T)B4 = J4(1), i=k-1,k, 1=0,1, k=6,

where §(1) is defined as in (3.15). The abscissaep, bz, and Iy are again defined as theots of
the superconvergence conditioh -bB1b3 + Bob? - B3b + B4 = 0. Thus, ifthis equationhas real,
distinctroots, then the resulting PC pdias orderk+1,k+2). However, it turngut that the actual
order is (k+2,k+2).

Theorem 3.4. Let thequantities B be defined by(3.27), let all j be realand distinctsuch that
O<h.i<1l+RQfori=1,.., k andlet by, bp, bs, by satisfy 14 - B1b3 + Byb? - B3b + B4 = 0.
Then, the abscissae vectdr generates an explidtSCmethod and ammplicit PSC method which
have both of step point order p = k+2

Proof. The proof consists of showinthat theequations(3.27) are identicalwith the equations
(3.16Db) obtained for = 0, i.e. with the equations

Ji3(0)B1 - 32(0)B2 + J1(0)B3 - Jo(0)Bs = J4(0),
(3.28) i=k-1,k, k6.
Ji4(0)B1 - 33(0)B2 + J2(0)B3 - 31(0)Bs = J5(0),

Evidently, the first two equations in (3.28) are identical with the two equatidids2n) obtained for
T = 0. Furthermore, by observirthat (1) satisfiesthe relation }+1(0) = a(Jij (1) + J (0)), it
follows that the last two equations in (3.28) can be written as

(33(0) + J3(1))B1 - (Ji2(0) + J2(1))B2 + (J1(0) + J1(1))B3 - (Jio(0) + Jo(1))B4
=34(0) + J4(1), i=k-1,k

which is by virtue ofthe first two equations 0f3.28) identical with the two equations in3.27)
obtained forr = 1. This proves the assertion of the theo#em.

Theorem3.4 implies thatfor k > 6 theabscissae vecto8.21) - (3.23)derived in Sectior8.4 not
only generate predictors of order k+2, but also correctors of order k+2.

3.6. Comparison of PSC methods

In order tocompare the accuracy of tharious PSOmethods we again considiére formula(3.2")

for the accumulatedrror an+1. The conventional approach is to compare Itical errors gj(q) by

means of the error constan{g)), c(q+1), ... given in (3.2a). However, th#dme amplifying effect of
the matrix M, is not taken int@account. Therefore, yfy&%rjsidbe accumulatedrror after s steps.
On substitution o€j(q) into (3.2°) and writingpk1 = oy I + O(h) inthe definition of M, and

Dy, we can easily find the first few terms of the expansion of the step point valye;of

Theorem 3.5.After s steps the accumulated step point error can be represented by

(3.29) dn+1 k=Aqe(@)T*2+ Ager £(G+1)H*3+ (Aqe2 £(q+2) + Byec(q))ha*4 + O(ha*5),

15
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where for all = 1 the row matrices jAare defined by

(3.30a) As = Yi*A(th)exT +y(*2(th-)ecTR +y(*A(th.0)exTRZ + ... +y(+2(tns+Pex RS L, j=q,

and where for s = 1, 2, 3 the row matricgsdde defined by

B =y 2t TR o1y = B+ @t 2O o T(RT TR+ )

(3.30b)
Bga:= By2+ Y@+ 2th ) — 3y (y( n) aJ(RTR + RS+ SR R2T + TR2).4

Because théirst k-2 columns of Rvanish, (3.30a) showthat the lastwo entries of As do not
vanish, so thathe terms obrder K*2 and §*3 in (3.29) are completely determined by the last two
components of(q) andc(q+1). Furthermore, because any two PSC methods with=h1/2 possess
a matrix R with identical entriesifg-1 and Rk, we seehat the lastwo entries of their £ matrices
alsoare identicalHence, if theirstage order g igqual,then the lastwo components o€(gq) and
c(g+1) may serve to compare their accuracy up to the ofidétdrms.

The term oforder K*4in (3.29) ismuch more complicated. Becauséuitns outthat Ag+2,£(0+2)
can be neglectedith respect to gs«(q), we concentrate on & Firstly, we observehat all k
components o€(q) play a role in the size of f&c(q). Secondlyunlike the matrices @, the matrix
Bgs may stongly differ for two different PSC methodsand thirdly, as isclearfrom (3.30b) its
structure becomes increasingigmplicated if sncreases. Let us considi¥e matrix B3, thatis, in
the order A*4term ofan+1 kwe consider the accumulation of local errors over three steps:

of
Bgz = Y2 t) —5y (y( n) exT(T+ RT + TR+ S + RTR + RS + SRR2T + TR2) + O(h).

Then, wemay define thdollowing 'error constantsassociated witlthe order W*2, ha+3 and +4
terms in the expansion af+1 k

E(@  =]ck-2(q), &(@)][,- E@@+1) =]|ck-2(a+1), &(Q+1)]|,

E(q+2) =|&(T + RT + S + RT + RS + S'R)c(q)}

Table 3.2.Characteristics of the PC pairs generated by the abscissa \efrtmrs Table 3.1

4 (3.17) 0 3505 4903 5 3.3 0.79 3.505 3.1105 4404 5 3.5 (-0.000, 0.03p 0.86
4 (3.19) | 6.204 3. 7104 12102 4 21 037] 0 1406 6.6104 6 4.3 ( 0.014, 0.14p 0.47

5318 0 1.906 93104 6 4.0 0.85| 1.906 9.3;07 4.2105 6 1.5 (- 0.000, 0.05§ 1.08
5 (3.20) | 2.904 9.8,05 65103 5 63 090 O 4707 3.0004 7 9.3 (-0.018, 0.09Y 0.59

6 (3.21)| O 0O 13104 8 30 074/ 0 121010 5206 8 7.1 (-0.008, 0.04] 1.01
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6 (3.24)| 8908 7.00108 1.3104 6 27 074 O 0O 4906 9 6.6 (-0.006, 0.04) 1.01
7 (3.22) 0 0O 4405 9 65080 0 73011 1506 9 13 (-0.007, 0.03p 0.98
7 (3.25) | 8.908 5408 5104 7 67 080 O 0O 16106 10 15 (-0.002, 0.03% 1.01
8 323)| O 0 3908 10 319078 0 25012 1.408 10 49 (- 0.022, 0.04) 0.66
8 (3.26) | 2.209 1.6109 5.2107 8 260 0.78) O 0 55010 11 42 (- 0.005, 0.04} 0.65

For the PSC methods generated by tladscissa vectors of Table 3.1, Table 3.2 lists the error
constants E(q), E(g+1) and E(q+2), where q = k and q = k+&xdicit andimplicit PSC methods,
respectively. As alreadgbserved, witheachabscissavector b, we can associateoth a predictor
defined by{(2.9), T = O} and a corrector defined K8.5). Therefore,Table 3.2 presentdoth
predictor and correctoralues. Evidently, iE(j) = Ofor j < p, then thePSC methodhas steppoint
order p. Hence, wehall call E(p) the principal error constant(note that comparing the accuracy of
two PSC methods by means of E(j) values is only possible if their stage order g is identical).

Of course the PSCmethod is only useful ithe values ofS;j| and|di| (in the case oimplicit PSC
methods) are sufficiently small and if the method is sufficiently stable. Ther&tbks 3.2 also lists
an upperbound for |§j| and the range & values. As to the stability, it turns disat in manycases
the stabilityboundaryp defined in Sectio2.6 is zero. However, if weelax the definition of the
stability region by allowing that the eigenvalues of M(z) are bounded bwith 0 <¢ << 1, then we
obtain quite substantial stability boundaf@seven for extremely smadl Fore = 106 we found the
values as listed in Table 3.2. In actual computation these values turn out to be sufficiently large in the
sense that the stepsize is prescribed by accuracy and not by stability.

4. Implementation aspects

When implementing the PSC methods constructed above, we have to decide about the computation of
the starting vectoY g needed to start theecursion(2.1), the localerror estimate, anthe stepsize
strategy. In the case of implicit PSC methods, we always started the iteratios ffingdictor formula
associated with the abscissa vector of the implicit PSC method.

The starting vectoYg = (y(tp + ih)) is most conveniently computed by means of a one-step method.

In all our experiments, weomputed the stage valuesYof by means of one (accepted) step of the
7th-order Runge-Kutta-Nystrom method @brmand and Princg]. Note that these k stage values

can be computed in parallel, dbat effectivelyonly one Dormand and Prince step riseded.
Furthermore, we remark that Runge-Kutta-Nystrom methods can be applied for negative stepsizes, so
that negative values of are allowed.

The numerical experiments presented in Sedi@nuse avariable stepsize implementation of PSC
methods, sdhat we shall brieflydiscussthe stepsize procedure appliecthis paper.The abscissae
obtained in the precedirgections assume constatepsizes, sthat weshouldeither allow h to be
variable in(2.1) and determinebscissae corresponding to nonconstant stepsizes h, or we should
replace in(2.1) the stage vector, corresponding tehe points f.1 + gh by a newstage vectoV
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corresponding to the points1 + ghnew The first option is not feasible, becauseduld mean that
the process described above should be performediesithestepsizechangesThe seconaption,
however, is quite straightforward. Let

hnew

(4.1)  Vn=(POl)Yn+RQUNF(Yn), 6= —F ,

where the k-by-k matrices P and Q are such\fhaiepresents aumerical approximation to thexact
solution valuey(th-1 + ahnew) = Y(tnh + bihnew). Proceeding as in Section 2.2, we find the conditions

(4.2) Poi+j(-1)Qbi-2=(8b)i, j=0,..,q

(cf. (2.6)). If g= k+1, then the interpolation error is of order k+2 in h. In orddwetp the entries of

P and Q ofacceptable magnituder larger values of k, wehould notallow P and Q to be full
matrices. Theminimal number of nonzero columns needed in the méRix)) to acleve order k+2
interpolation is k+2. Since the last two stage valué&,iare of increased accuracy and because of the
factor I in front of F(Y ), it follows from (4.1) that it is natural tcset the entries in thergt k-2
columns of P equal teero. Thusthe interpolation formul#4.1) isbased orthe lasttwo y-values

and on alf-values available fronthe precedingtep. Let P be thek-by-2 matrix containing the last
two columns of P. Then, (4.2) is equivalent with the condition

b1 bk-12 bi13 ... bkt E
(4.3) (P,QU=W, U:= bk b2 b3 ... bkl

W :=(e6b, ..., Pb)k+1).
0 2 6b ...k(k+1)3k'1E

Hence, the matrices P and Q follow frdhe formula(P*,Q) = WU-1. The magnitude of the entries
of P and Q increases strongly wllhand k. However, for@ = 3/2 and k = 8 (with abscissae as
defined inTable3.1), theirmagnitude is still acceptable (6 in trenge 12 td&0, the remainindess
than 4). We remark that if the interpolation form(#al) isbased orthe lasttwo f-valuesand on all
y-values,then the magnitude of the entries in P and Q is unacceptably(lgrdge about54000 for

0 =3/2 and k = 8).

As soon as wehange thestepsize, weapply the interpolation procedure descriladabve. Inthis
way, we achieve that we may always use the constant stepsize formula (2.1). Hovadsenmmians
that eachstepsize change implies the evaluationFg§¥ ). We can reduce these exirasts by
applying a stepsize strategy which keeps the number of stepsize changes low.

Apart from an interpolation procedure, we also need an error estimator in the case of cbeypsgies.
Observingthat thesolution valuesyn k-1, Yn+1,k andyn+1 k-1 correspond with t-values distance
h/2, we may use the Numerov formula

_1 h2
(4.4)  zn+1= E(Yn,k-1+)’n+1,k-1' @(f(Yn,k-l) +106(Yn+1,0 + f(Yn+1,k-J)))
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as a fourth-ordereference solutiofor appreciating the quality of tretep point valug/n+1 k. Note
that this formula onlyusesalready computegtalues. In choosinthe new stepsize, wadopted the
standard procedure used@DE solvers (see.g. [7, p. 167]with a slight modification irorder to
keep stepsize changes to a minimum. Let tol be a given tolerance parameter and define

Zn+1-Yn+1,k
max{ |yn+1,4,106}

5
err ::| |oo, H=h. min{ 1.5, max{ 0.5, 0.8 tg—rlr }}

This leads to the following stepsize strategy:

if 0.0l1tol<err<tol then hhew=h: perform next step
if err<0.01 tol then hpew= h": perform next step
if err=> tol then hnew=h": redo step.

5. Numerical experiments

In this section we illustrate the performance of B&C methods generated by thbscissae ofable
3.1. From now on, a PSC method is understood to be determined by (i) an abscisdadefatorg

the predictor-corrector pair and (ii)RE(CE)J" or PE(CEC iterationstrategy. We performechany
experiments on well-knowrtest problems taken fronthe literature ofwhich a few typical
performance tests will be reproducedtie tables ofesults below. In thestables,the accuracy is
defined by the number of correct dightst the end point (that is, the maximal absolute end point error
is written as 1@, and thetotal number of steps anttie totalnumber of sequential rightharsides
needed in the integratiqggrocess islenoted by Nand M, respectively. Furthermore, we present the
effective order of accuracy pbased on the two last computed resultdh@ncase of constant stepsize
experiments and on thinimal and maximal error toleranceresults inthe case of variable stepsize
experiments. The corresponding formulas foage respectively given by

51 . _ A(2hmin) = A(hmin) __ A(tolmin) — A(tolmax)
G4 P '0g10(2) ’ " M(tolmin) — M(tolmax)

5.1. Selection of the most efficient method

First we want to know whicPSCmethod is thenostefficient one. Itmay be expected thébr a
given number of iterations m, tHeE(CEJ"C mode yields the same or a higher accuracy than the
PE(CE) mode (note that these modes are equatpyensive). Thiglaim was carefully checked and
turned out to be true fall problems we tested. Furthermore, we obsetliatthe accuracgiid not
improve anymore by performing more thiavo iterations. Therefore, we onbyive resultsfor the
PEC andhe P(ECY mode. In order tseeclearly the algorithmigroperties of themethods, we
applied themwith fixed stepsizes. A comparison is presentedhm Tables5.1a, 5.1band5.1c,
respectively for methods with 4, 6 ancc@mputationaktagesthatis, methods requiring 4, 6 and 7
processors. For this comparson, we chose the TWOB problem [7, p.28& mterval[0,20] with
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excentricitye = 0.5, because the performance of the various methods on this problem turned out to be
representative for a large class of problems.

5.1.1. Four-processor methodsFrom Table 3.1 weelected théour abscissa vecto(8.17),
(3.18), (3.19)and (3.20) which generatePSC methods with 4 computationatages.The error
constants listed in Table 3.2, indicditat (3.18) and (3.20) generate thenostaccurate predictor and
corrector, respectively. Therefore, wrpect that thesabscissa vectorgenerate thenost efficient
PEC and P(EG)methods. This conclusion é®nfirmed by theesults ofTable5.1a(and bymany
other examples we tested). Taking into account that B(§@pout twice as costly &EC, this table
clearly shows tha§(3.18), PEC}, {(3.18), P(EC}, and {(3.20), P(EC¥} are themost efficient
methods respectively in tHew accuracy range (1 until 8igits, say), inthe middle-high accuracy
range (5 until 15 digits), and in the extremely high accuracy range (15 or more digits).

Table 5.1a.(A,N) - values for PSC methods with 4 computational stages applied to TWOB.

b mode p 80 160 320 640 1280 2560 5120 p°
(317) PEC 5 0.4 2.0 4.4 6.2 7.8 9.6 118 7.0
(3.18) 6 0.8 3.2 4.5 6.5 8.6 107 128 7.0
(3.19) 4 01 1.4 3.5 5.9 7.3 8.9 106 5.8
(3.20) 5 0.3 2.1 3.6 5.6 7.7 9.8 11.9 7.0
(317) P(ECE 5 1.4 3.1 4.9 6.6 8.1 9.6 11.1 5.0
(3.18) 6 1.4 42 7.1 8.9 12.2 12.8 145 57
(3.19) 6 0.9 2.6 4.4 6.4 85 106 127 7.0
(3.20) 7 13 3.0 6.1 7.9 101 124 14.8 8.0

5.1.2. Six-processor methods.PSC methods with 6 computationalagiesare generated by
(3.21), (3.22), (3.24)and (3.25). Table 3.2 indicates that(3.22) furnishesthe most accurate
predictor and(3.25) the most accurate correctoience, weanticipate thathese abscissa vectors
provide themost efficient PEC and P(EG) methods. However, it turnsut that the methods
generated by3.21) and (3.24) produce the sameesults aghe methods generated y.24) and
(3.25). This can be explained by observing that the principal error constgBt2gfand(3.24) are
extremely smallseeTable3.2), sothat the characteristics of tieethods generated Ki3.21) and
(3.22) closely resemble the characteristics of the methods generate(8.24) and (3.25),
respectively.The results presented ihable5.1b are typicalfor alarge number of experimentisat
we have carriedut. Fromthese figures wealraw the conclusiorthat {(3.21), PEC} or{(3.24),
PEC} is most efficient in the low accuracgnge, {(3.22), PEC} or {(3.25), PEC} isostefficient
in the middle-high accuracy range, and {(3.22), P@®) {(3.25), P(EC¥} is mostefficient in the
extremely high accuracy range.

Table 5.1b(A,N) - values for PSC methods with 6 computational stages applied to TWOB.

{(3.21), (3.24)} PEC {8,6} 0.8 4.0 6.4 8.4 106 129 153 7.9
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{(3.22), (3.25)} {9, 7} 0.6 3.8 6.2 8.8 11.5 14.2 17.0 9.1
{(3.21), (3.24)} P(EJG {8,9} 2.9 5.1 7.1 9.8 12.5 15.2 17.8 8.7
{(3.22), (3.25)} {9,10} 1.7 5.1 8.0 10.7 13.6 16.6 10.0

5.1.3. Seven-processor methods.All error constants listed infable 3.2 for the 7-
computational-stage methods associated (@tB3) and (3.26) are extremelysmall. Therefore, it is
dangerous to base conclusions on their magnitude, because the higher-order error ctesiplais
a more dominant rolenless we usenrealistic smallstepsizes. Orhe basis ofmany numerical
experiments, we founthat in genera(3.23) generates more efficieRSC methods thar(3.26). A
typical performance is listed in Table 5.1c.

Table 5.1c.(A,N) - values for PSC methods with 7 computational stages applied to TWOB.

b mode p 80 160 320 640 1280 2560 p°
(3.23) PEC 10 1.5 5.0 8.2 11.6 15.4 11.0
(3.26) 8 08 5.2 7.7 9.9 127 157 100
(323) P(ECY 10 33 6.0 96  12.9 16.7 13.0
(3.26) 1 19 50 8.3 11.6 15.0 11.3

5.1.4. Summary of recommendedmethods. For a fewaccuracyranges {\1,A»], Table 5.2
summarizes the most efficient PSC methods of this paper for 4, 6 and 7 processor computer systems.

Table 5.2. Most efficient PSC methods.

Processors BA<5 5<A<15 A=>15
4 {(3.18), PEC} {(3.18), P(EC} {(3.20), P(ECY¥}
6 {(3.21), PEC} {(3.22), PEC} {(3.25), P(EG}
7 {(3.23), PEC} {(3.23), PEC} {(3.23), PEC}

5.2. Comparison with other codes

In this section, we compare thariable steprersion of our most powerfldSC methodthatis, the
10th-order methodi(3.23), PEC} usingautomaticstepsize control as described in Section 4, with
one of thebest sequential codavailable in theliterature, viz. the 7th-ordervariable stepcode
DOPRIN [7], and with anothemparallel code, viz.the 12th-ordervariable step RRKN code of
Sommeijerf11]. We present theotal number of sequential rightharsiides Mneeded to produce a
given number of correct digit& (including the righthandides togenerate the starting values by
means of DOPRIN). The M values were obtained by runtiiadpOPRIN. PIRKNandPSC codes
with tolerances 18, 102, ... and by linear interpolation of theand logg(M) values produced. The
Tables 5.3 - 5.5 show results fitve two-body orbit problem fromthe Toronto test s¢9] (see also
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[11, (3.1)] onthe interval[0,20] with excentricitye = 0.9, the oftenused Fehlbergtability test
problem (sed11,(3.2)]) onthe interval ﬁ ,10], and thePLEI problem[7, p.237]. Forthese
problems,the initial step used by DOPRIN and K¢3.23), PEC} was p = 0.01, 0.1and0.01,
respectively.

Table 5.3.(A,M) - values for the orbit problem.

A 5 6 7 8 9 10 11 12 13 14 15 “p
DOPRIN 1365 1598 1782 2515 3267 3938 4587 5598 6754 8049 13277 8.7
PIRKN 475 521 572 654 806 994 1205 1445 1698 1986 2239.9

{(3.23), PEC} 294 335 401 483 585 720 896 1122 1401 1751 21892.4

DOPRIN 886 1276 1793 2545 3485 4759 6423 8779 12217 16746 23121 32162 44571 7.2
PIRKN 362 427 508 604 724 868 1041 1249 1499 1799 2185 2653 3216

12.6

{(3.23), PEC} 154 193 238 277 330 409 505 613 740 889 1069 1270 15D&

A 5 6 7 8 9 10 11 12 13 14 15 Tp
DOPRIN 1444 1743 2154 2674 3165 3673 4380 5668 7691 10853 15295 9.8
PIRKN 511 586 680 795 938 1116 1337 1581 1864 2199 2544.3

{(3.23), PEC}312368 436 540 666 807 991 1229 1446 1987 2519.0

6. Concluding remarks

In this paper, weconstructedparallel Stérmer-Cowell type methodd®SC methods) with orders
ranging from p = 4 until p = 11 for parallel computer systems with 4 until 7 processors. Of these PSC
methods thelOth-order, 7-processonethodturns out to be mostffective for high-precisionorbit
computations. This methaglas compared withDOPRIN, one of themost efficient sequential code
currently available, and with PIRKN, a 12th-order, 6-processor code. In terths witalnumber of
righthand side evaluations neededha integratiorprocessthe speed-up othe PSC method with
respect to DOPRIN ranges from 4 in the low accuracy range up to 30 higthaccuracyange, and

with respect to PIRKN, the PSC method is at least equally efficient and at best twice as fast.
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