
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Parallel Stömer-Cowell methods for highh-precision orbit computations

P.J. van der Houwen, E. Messina, J.J.B. de Swart

Modelling, Analysis and Simulation (MAS)

MAS-R9812 July 31, 1998

Report MAS-R9812
ISSN 1386-3703

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Parallel Störmer-Cowell Methods for
High-Precision Orbit Computations

P.J. van der Houwen1, E. Messina2 & J.J.B. de Swart1

1 CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
2 Dip. di Matematica e Applicazioni "R. Caccippoli", University of Naples "Federico II"

Via Cintia, I-80126 Naples, Italy

ABSTRACT
Many orbit problems in celestial mechanics are described by (nonstiff) initial-value problems (IVPs) for second-order

ordinary differential equations of the form y" = f(y). The most successful integration methods are based on high-order

Runge-Kutta-Nyström formulas. However, these methods were designed for sequential computer systems. In this paper,

we consider high-order parallel methods that are not based on Runge-Kutta-Nyström formulas, but which fit into the

class of general linear methods. In each step, these methods compute blocks of k approximate solution values (or stage

values) at k different points using the whole previous block of solution values. The k stage values can be computed in

parallel, so that on a k-processor computer system such methods effectively perform as a one-value method. The block

methods considered in this paper are such that each equation defining a stage value resembles a linear multistep equation

of the familiar Störmer-Cowell type. For k = 4 and k = 5 we constructed explicit PSC methods with stage order q = k

and step point order p = k+1 and implicit PSC methods with q = k+1 and p = k+2. For k ≥ 6 we can construct explicit

PSC methods with q = k and p = k+2 and implicit PSC methods with q = k+1 and p = k+3. It turns out that for k ≥ 5

the abscissae of the stage values can be chosen such that only k-1 stage values in each block have to be computed, so

that the number of computational stages, and hence the number of processors and the number of starting values needed,

reduces to k* = k-1. The numerical examples reported in this paper show that the effective number of righthand side

evaluations required by a variable stepsize implementation of the 10th-order PSC method is 4 up to 30 times less than

required by the Runge-Kutta-Nyström code DOPRIN (which is considered as one of the most efficient sequential codes

for second-order ODEs). Furthermore, a comparison with the 12th-order parallel code PIRKN reveals that the PSC code

is, in spite of its lower order, at least equally efficient, and in most cases more efficient than PIRKN.

1991 Mathematics Subject Classification: 65L06
Keywords and Phrases: numerical analysis, general linear methods, orbit equations, parallelism.
Note: Work carried out under project MAS 1.4 - Exploratory research: Analysis of ODEs and PDEs.

1. Introduction

Many orbit problems in celestial mechanics are described by (nonstiff) initial-value problems (IVPs)

for the special second-order ordinary differential equation (ODE)

(1.1)
d2y
dt2

 = f(y), y, f ∈ Rd, t ≥ t0,

where the righthand side does not contain the derivative of y. The most successful integration

methods are based on high-order Runge-Kutta-Nyström formulas. We mention the methods proposed

by Dormand and Prince [3], by Fehlberg et al. [4], and by Filippi and Gräf [5, 6]. These methods

were designed for sequential computer systems. The first high-order methods designed for use on a

2

parallel computers are the PIRKN (Parallel Iterated Runge-Kutta-Nyström) methods due to

Sommeijer [11]. On a parallel computer system these methods are by far superior to the earlier

sequential Runge-Kutta-Nyström methods which do not have any scope for parallelism.

In this paper, we consider high-order parallel methods that are not based on Runge-Kutta-Nyström

formulas, but which fit into the class of general linear methods. In each step, these methods compute

blocks of k approximate solution values (or stage values) at k different points using the whole

previous block of solution values. The k stage values can be computed in parallel, so that on a k-

processor computer system such methods effectively perform as a one-value method. The block

methods considered in this paper are such that each equation defining a stage value resembles a linear

multistep equation of the familiar Störmer-Cowell type. Therefore, we shall call these block methods

parallel Störmer-Cowell (PSC) methods. They are the second-order-ODE analogue of the parallel

Adams methods for first-order ODEs proposed in [8].

For k = 4 and k = 5 we constructed explicit PSC methods with stage order q = k and step point order

p = k+1 and implicit PSC methods with q = k+1 and p = k+2. For k ≥ 6 we can construct explicit

PSC methods with q = k and p = k+2 and implicit PSC methods with q = k+1 and p = k+3. It turns

out that for k ≥ 5 the abscissae of the stage values can be chosen such that only k-1 stage values in

each block have to be computed, so that the number of computational stages, and hence the number of

processors and the number of starting values needed, reduces to k* = k-1.

The PSC methods of this paper are uniquely defined by their abscissa vector. Therefore, we spent a

lot of attention on the analytical evaluation of the abscissae. For k = 4 and k = 5, we succeeded in

deriving explicit expressions for the abscissae. For k = 6 and k = 7, the abscissae are partly given

explicitly and partly defined by a polynomial equation of degree 4. We shall derive exact rational

expressions for the coefficients of these polynomials, so that the user can compute the abscissae and,

by means of the abscissae, the other method parameters with any accuracy desired.

An important aspect of block methods is their stability interval. In most block methods, the stability

interval is relatively small. Therefore, we computed the stability boundary for all methods derived in

this paper. In some cases, the stability interval turns out to be empty. However, slightly relaxing the

definition by allowing that the eigenvalues of the stability matrix are in a disk of radius 1 + 10-6, we

obtained acceptably large stability boundaries. For example, the explicit 8-stage PSC method of order

10 has a stability boundary 0.78. Since PSC methods, when run on a parallel computer system, are

effectively one-value methods, we can compare this value with the stability boundary of the scaled

stability boundary of Runge-Kutta-Nyström methods (that is, the stability boundary is divided by the

number of righthand side values per step). For example, the 7th-order Runge-Kutta-Nyström method

of Dormand and Prince has a scaled stability boundary 0.32.

The numerical examples reported in this paper contain a two-body orbit problem, the nonlinear

Fehlberg problem often used as a stability test problem, and the seven-planet problem PLEI [7] which

is considered as a hard test problem for numerical integration techniques (together with a number of

other 'real-life' test problems, the PLEI problem can also be found in the CWI Test set for IVP

solvers []). These examples show that the effective number of righthand side evaluations required by

3

a variable stepsize implementation of the 10th-order PSC method is 4 up to 30 times less than required

by the Runge-Kutta-Nyström code DOPRIN (which is considered as one of the most efficient

sequential codes for second-order ODEs). Furthermore, a comparison with the 12th-order paralel

code PIRKN reveals that the PSC code is, in spite of its lower order, at least equally efficient, and in

most cases more efficient than PIRKN.

2. General linear methods

In 1966 Butcher proposed the general linear method (GLM) formularium in order to describe in a

unified way the many first-order-ODE methods available in the literature. Extending this formularium

to the second-order ODE (1.1) yields the method

(2.1) Yn+1 = (R⊗ I)Yn + h2(S⊗ I)F(Yn) + h2(T⊗ I)F(Yn+1), n = 0, 1,

Here, I is the k-by-k identity matrix, R, S and T are k-by-k matrices, ⊗ denotes the Kronecker

product operator, h the stepsize tn+1 - tn, and each of the k components yn+1,i of the kd-dimensional

solution vector Yn+1 represents a numerical approximation to y(tn + aih), to hy'(tn + aih) or "to any

other quantity which enables us to construct and describe useful methods" (see Butcher [2, p. 339]).

The vector a := (ai) is called the abscissa vector, Yn the stage vector and its components yni the stage

values. Furthermore, for any vector Yn = (yni), F(Yn) contains the righthand side values (f(yni)).

Evidently, we can fix one of the abscissae without loss of generality. We shall put ak = 1.

The GLM (2.1) is completely determined by means of the arrays {R, S, T} and the starting vector

Y0 ≈ (y(t0 + (ai-1)h)) and defines in each step a new block Yn+1 of solution values. Thus, given

{ Y0, R, S, T}, (2.1) defines the sequence of block vectors Y1, Y2,

In this paper, we shall assume that all components of Yn+1 represent numerical approximations to

solution values y(tn + aih) and we shall restrict our considerations to the case where T is a diagonal

matrix with diagonal entries δi. Such GLMs will be referred to as GLMs with parallel stages, because

all stage values can be computed in parallel. GLMs for second-order ODEs with a full matrix T will be

subject of future research.

2.1. Solution of the implicit relations
If the matrix T has one or more nonzero diagonal entries δi, then yn+1,i has to be obtained by solving

one or more (uncoupled) implicit relations of the form

(2.2) y - δih2f(y) = vni,

where vni represent a d-dimensional vector component of Vn := (R⊗ I)Yn + h2(S⊗ I)F(Yn). Note that

the equations (2.2) can be solved concurrently, so that only after completion of a full integration step

the processors need to exchange their computed results. The conventional way of solving (2.2) in

nonstiff situations is a fixed point iteration (briefly FP iteration) process of the form

(2.3) y(j) = δih2f(y(j-1)) + vni, j ≥ 1,

4

where y(0) represents an initial stage value iterate. These initial iterates can be generated by the GLM

(2.1) with T = O and with the same abscissa vector as the underlying implicit GLM. The process

(2.3) satisfies the error recursion

y(j) - y = δih2(f(y(j-1)) - f(y)), j ≥ 1,

leading to the estimate

|| y(j) - y || ≤ |δi| h2 || ∂f/∂y|| || y(j-1) - y|| .

Hence, the convergence condition becomes

(2.4) h <
1

|| δi∂f/∂y||
 .

Thus, we should take care that |δi| is sufficiently small.

2.2. Consistency

Consistency is defined by substitution of the exact solution into the GLM and by requiring that the

residue vanishes as h tends to zero. The rate by which the residue tends to zero determines the order

of consistency. We shall call the GLM (and the stage vector Yn+1) consistent of order q if the residue

upon substitution of the exact solution values y(tn + aih) into (2.1) is of order hq+2. The value of q is

often called the stage order. The consistency condition leads to a set of order conditions to be satisfied

by the matrices R, S and T. In addition, in order to have convergence, the GLM should satisfy the

necessary condition of zero-stability, that is, the matrix R should have its eigenvalues on the unit disk

and the eigenvalues of modulus one should have multiplicity not greater than two.

From the consistency definition given above, the order conditions follow immediately. For simplicity

of notation, we assume that the ODE is a scalar equation. Using the componentwise definition of

functions of vectors, that is, for any function g and vector v, we define g(v) := (g(vi)), we obtain on

substitution of the exact solution into (2.1) and expansion in a Taylor series

εn := RY(tn) + h2SF(Y(tn)) + h2TF(Y(tn+1)) - Y(tn+1)

= c(-2)y(tn) + hc(-1)y(1)(tn) + ... + hq+2c(q)y(q+2)(tn) + hq+3c(q+1)y(q+3)(tn) + ... ,
(2.5)

c(-2) :=Re - e, c(-1) :=Rb - a, c(j) :=
1

(j+2)! (Rbj+2 - aj+2) +
1
j! (Sbj + Taj) , j ≥ 0,

where b := a - e, Y(tn) = y(tn-1 + aih) denotes the vector containing the exact stage values, and y(j)(t)

is the jth derivative of the solution. Hence, requiring the local error εn to be of order q+2 in h, we

conclude that the stage values are (at least) consistent of order q if c(j) = 0 for j = -2, -1, ... , q-1. The

components of c(q) may be considered as the local error constants. Although c(q) is the first error

vector that does not vanish, it may happen that particular components of c(q) are zero. Thus,

particular stage equations may have a higher order of consistency.

5

In the construction of GLMs, we shall start with a given zero-stable matrix R and a diagonal matrix T

with small, nonnegative diagonal entries. The matrix S is then determined by imposing the order

conditions. From (2.5) it follows that we obtain stage order q = k if R and S satisfy

(2.6) Rbj = aj, j = 0, 1; Rbj + j(j-1)Sbj-2 = aj - j(j-1)Taj-2 , π(j) :=
j!

(j-2)! , j = 2, ... , k+1.

Let us introduce the k-by-2 matrices Ux and the k-by-k matrices Vx and Wx:

(2.7) Ux := (e, x), Vx := (x2, ..., xk+1), Wx := (2e, 6x, ... , k(k+1)xk-1).

The consistency conditions (2.6) can now be expressed as

(2.8) RUb = Ua, SWb = Va - RVb - TWa .

Given an abscissa vector a with distinct abscissae, a zero-stable matrix R satisfying the condition

RUb = Ua, and any matrix T, we obtain a family of GLMs with stage order q = k by defining

(2.9) S = (Va - RVb - TWa)Wb-1.

2.3. Linear stability

In this paper, the linear stability region S is defined by the set of points in the complex z-plane where

the matrix

(2.10) M(z) := (I - zT)-1(R + zS)

has its eigenvalues on the unit disk. The process (2.1) will be called linearly stable if the eigenvalues

λ of the matrix h2∂f/∂y are in S . Since the problem (1.1) is itself only linearly stable if the

eigenvalues of ∂f/∂y are negative, the intersection of S with the negative axis is of special interest. If

[-β2, 0] is the largest interval contained in S, then β will be called the stability boundary.

We should avoid the situation where the matrix M(h2λ) becomes singular, i.e. h2 should never be

equal to (δiλ)-1. This can only happen if δiλ > 0. Together with the requirement of linear stability, we

are led to the stepsize conditions

(2.11) h <
1

max
δiλ>0

 { δiλ}
 , h <

β

max
λ

 { λ }
 .

Note that the nonsingularity condition is always less restrictive than the convergence condition (2.4)

and less restrictive than the stability condition if max |δi| < β-2.

3. Parallel Störmer-Cowell methods

In this paper, we restrict our considerations to GLMs where R is given by the zero-stable matrix

6

(3.1a) R = (0, ..., 0, e - r, r), rk = 1 + rk-1.

It is easily verified that this matrix has k-2 zero eigenvalues and two eigenvalues 1, hence it is zero-

stable. On substitution of (3.1a) and b = a - e into RUb = Ua, that is, into Re = e, Rb = a, yields

(3.1b) r = e -
a

ak-1 - 1 .

Thus, for any abscissae vector a, the matrix R defined by (3.1) is zero-stable and it satisfies the

consistency condition RUb = Ua. Each stage equation of the GLM {(2.1),(3.1)} resembles the linear

multistep formula of Störmer and Cowell, in the sense that the new y-value is defined using two

preceding y-values and k preceding f-values. Therefore, we shall call the GLM {(2.1),(3.1)} a

parallel Störmer-Cowell method or briefly PSC method.

3.1. Order of accuracy at the step points

If the GLM (2.1) has stage order q, then its local error is given by (cf. (2.5))

(3.2a) εn(q) := hq+2c(q)y(q+2)(tn) + hq+3c(q+1)y(q+3)(tn) +

where again, for simplicity of notation, we assume that the ODE is a scalar equation. Let us consider

how this local error is propagated by the GLM (2.1). Let αn denote the global or accumulated error,

i.e. Yn = Y(tn) + αn. Then

F(Y(tn) + αn) - F(Y(tn)) = Jnαn + O(αn2),

where Jn is the k-by-k diagonal matrix whose diagonal entries contain the derivatives of f with respect

to y at the points y(tn-1+aih). Ignoring second-order terms in αn, the GLM (2.1) propagates the

accumulated error αn according to

(3.2b) αn+1 = Mnαn + Dnεn(q), Mn := (I - h2TJn+1)-1(R + h2SJn), Dn := (I - h2TJn+1)-1.

Note that for the scalar test equation y' = λy, the matrix Mn reduces to the matrix M(h2λ), where M(.)

is the stability amplification matrix defined in (2.10). Suppose that the vector Yn-s+1 is exact at tn-s+1 ,

i.e. αn-s+1 = 0. Then, the accumulated error over s steps is given by

(3.2') αn+1 = Dnεn(q) + MnDn-1εn-1(q) + MnMn-1Dn-2εn-2(q) + ... + Mn ... Mn-s+2Dn-s+1εn-s+1(q).

We are particularly interested in the accumulated step point errors αn+1,k. Since Mn = R + O(h2),

MnMn-1 = R2 + O(h2), ..., and because for PSC methods the first k-2 columns of Rj vanish, only the

last two components of Djεj(q) play a role in the O(hq+2) and O(hq+3) terms of αn+1,k. In fact,

αn+1,k = O(hq+3) if ck-1(q) = ck(q) = 0 and αn+1,k = O(hq+4) if ck-1(q+1) = ck(q+1) = 0. Thus, in

PSC methods, we can achieve step point order p = q+1 and p = q+2 (superconvergence) by imposing

conditions on the last two components of the error vectors c(q) and c(q+1), respectively

7

In the following, we distinguish between explicit PSC methods (T = O) and implicit PSC methods

(T ≠ O). In the case of explicit PSC methods, the stage order q = k, but as shown above, the step

point order becomes p = k+1 if the abscissae can be chosen such that

(3.3a) ck-1(k) = ck(k) = 0.

and it can be raised to p = k+2 if in addition to (3.3a)

(3.3b) ck-1(k+1) = ck(k+1) = 0.

If the method is implicit, we first use the matrix T to obtain stage order q = k+1. Given a, R, T and

defining S by (2.9), the error vector c(k) can be written as

c(k) :=
1

(k+2)! (Tm(k) - n(k)) , m(k) := (k+1)(k+2)(ak - WaWb-1bk),
(3.4)

n(k) := ak+2 - Rbk+2 - (k+1)(k+2)((Va - RVb)Wb-1bk).

Hence, the stage order can be raised to q = k+1 by setting c(k) = 0, that is, Tm(k) = n(k). Let the

abscissae vector a be such that m(k) has nonzero entries. Then all stage values in the GLM (2.1) have

order of consistency q = k+1 if the matrices S and T are defined by

(3.5) T = diag (n(k)m-1(k)), S = (Va - RVb - TWa)Wb-1.

We remark that the ith diagonal entry of T can be chosen arbitrary whenever mi(k) and ni(k) both

vanish. Furthermore, if mi(k) = 0 and ni(k) ≠ 0, then the stage order cannot be raised to k+1, unless

the ith row of S vanishes. Assuming that mi(k) = 0 implies ni(k) = 0, the step point order is raised to

p = k+2 if the abscissae can be chosen such that

(3.7a) ck-1(k+1) = ck(k+1) = 0,

and to p = k+3 if in addition

(3.7b) ck-1(k+2) = ck(k+2) = 0.

One option for the derivation of superconvergent abscissae ai, is to solve the (highly nonlinear)

conditions (3.3) and (3.7). However, it turns out that using the theory of quadrature formulas yields

more simple conditions for generating superconvergent abscissae.

3.2. Conditions for superconvergent abscissae using quadrature formulas

In the PSC case {(2.1),(3.1)}, the stage equations can be written as

(3.8) yn+ai - (1 - ri)yn-1+ak-1 - riyn-1+ak = h2(eiTS⊗ I)F(Yn) + h2δif(yn+ai), i = 1, ... , k,

8

where yn+θ correspond with the numerical approximation at the point tn+θ := tn + θh. We compare

these equations with their analytical analogue. The main tool is Taylor's theorem with remainder term

which yields for the solution of (1.1) the formula

y(t+∆) = y(t) + ∆y'(t) + ⌡⌠
t

 t+∆

 (t+∆-x) y"(x)dx = y(t) + ∆y'(t) + ⌡⌠
t

 t+∆

 (t+∆-x) f(y(x))dx.

It can now be verified that the solution of (1.1) satisfies the relations

y(tn+ai) - (1 - ri)y(tn-1+ak-1) - riy(tn) = ai2h2 ⌡⌠
0

 1

 gi(ξ)f(y(tn + aihξ)) dξ,

(3.9) gi(ξ) = 1 - ξ - (1 - ri) (bk-1ai-1 - ξ) for 0 ≤ ξ ≤ bk-1ai-1,

gi(ξ) = 1 - ξ for bk-1ai-1 ≤ ξ ≤ 1,

and where we assumed that 0 < bk-1 ≤ 1 + bi (this implies that ai ≠ 0). If this constraint is not

satisfied, then the function gi has to be redefined, but it turns out that the constraint on the bi does not

limit us in the construction of useful PSC methods.

Next, we approximate the integral terms in (3.9) by a quadrature formula. Since the functions gi are

not differentiable, we use a formula based on product integration. Using the points bjai-1 (and 1 in the

case of implicit PSC methods) as quadrature points, we may write

(3.10) ⌡⌠
0

 1

 gi(ξ)f(y(tn + aihξ)) dξ = wi1f(y(tn + hb1)) + wi2f(y(tn + hb2)) + ... ,

where the wij are the corresponding quadrature weights which take the function gi into account.

From (3.8), (3.9) and (3.10) it follows that the righthand sides in (3.8) may be interpreted as

quadrature formulas for the integral terms in (3.9). Let us define bk+1ai-1 = 1 for all i. Then, the

quadrature points are given by the k points {bjai-1, j = 1, ... , k} if the PSC method is explicit and by

the k+1 points {bjai-1, j = 1, ... , k+1} if the PSC method is implicit.

In the following formulas, we introduce the parameter τ to indicate explicit PSC methods (τ = 0) and

implicit PSC methods (τ = 1). It can be shown that the quadrature weights wij (τ) corresponding with

the quadrature points bjai-1 are given by (see e.g. [1, p. 886])

wij (τ) = ai2h2 ⌡⌠
0

 1

 gi(ξ)Lij (τ,ξ)dξ, Lij (τ,ξ) := ∏
r=1, r≠j

k+τ

aiξ - br
bj - br

 .

Hence, h2eiTSej = wij for j = 1, ... , k and h2δi = τwi,k+1, so that the matrices S and T are given by

9

S = (eiTSej) = (ai2⌡⌠
0

 1

 gi(ξ)Lij (τ,ξ)dξ), T = diag(τai2⌡⌠
0

 1

 gi(ξ)Li,k+1(τ,ξ)dξ).

These expressions for the matrices S and T are equivalent with the expressions derived in the

preceding section, but have the advantage that the entries are explicitly expressed in terms of the

abscissae. For example, it can now immediately seen that the ith row of S and T vanish if gi is

identically zero. This happens if, and only if, ak-1 = 3
2
 and ai = 1

2
 for some i ≤ k-2, say for i = k-2.

PSC methods with this property are attractive from a computational point of view because the

corresponding stage equation reduces to yn+ak-2 = yn-1+ak-1, that is, yn+1,k-2 = yn,k-1. Hence, the

(k-2)nd component of F(Yn+1) equals the (k-1)st component of F(Yn), so that the (k-2)nd processor

is not really needed, that is, computationally the PSC method has only k-1 stages. Thus, we have:

Theorem 3.1. Let all bi be real and distinct, satisfying the constraint 0 < bk-1 ≤ 1 + bi, i = 1, ... , k.

Then, the PSC method has k* = k-1 computational stages if bk-1 = 1
2
 and if bk-2 = - 1

2
 .♦

The quadrature error of the product integration formula (3.10) is given by

Qi =
1

(k+τ)!
 ai2h2 ⌡⌠

0

 1

 pi(τ,ξ)φi(τ,θ(ξ))dξ, pi(τ,ξ) := gi(ξ)(ξ - 1)τ ∏
j=1

k
 (ξ - bjai-1)

φi(τ,θ) :=
dk+τf(y(tn + aihθ))

dθk+τ = (aih)k+τ
dk+τf(y(tn + aihθ))

d(aihθ)k+τ ,

where θ(ξ) assumes values in the interval [0,1]. We remark that this error formula holds for any

integrable function g(ξ) and sufficiently differentiable function f(y(t)). By writing

Qi(τ) =
ai2h2

(k+τ)!
 ⌡⌠

0

 1

 pi(τ,ξ){ φi(τ,θ(0)) + ξ
∂φi(τ,θ(0))

∂ξ
 + 1

2
 ξ2

∂2φi(τ,θ(0))
∂ξ2 + . . .

} dξ,

and observing that each differentiation of the function φi(τ,θ(ξ)) with respect to ξ increases its order

with respect to h, we see that the order of the quadrature error Qi(τ) increases by one if the quadrature

points {bjai-1: j = 1, ... , k} satisfy the condition

(3.11a) ⌡⌠
0

 1

 pi(τ,ξ) dξ = 0,

and by two if, in addition,

10

(3.11b) ⌡⌠
0

 1

 ξpi(τ,ξ) dξ = 0.

From the structure of the matrix R and the factor h2 in front of the derivative terms in the PSC method

it follows that these conditions need only to be satisfied for i = k-1, k (compare our discussion in

Section 3.1). The following theorem summarizes the above result.

Theorem 3.2. Let all bi be real and distinct, satisfying the constraint 0 < bk-1 ≤ 1 + bi, i = 1, ... , k.

Then, the PSC method has step point order

(a)p = k+1+τ if (3.11a) is satisfied for i = k-1, k.
(b) p = k+2+τ if both (3.11a) and (3.11b) are satisfied for i = k-1, k.♦

Let us apply this theorem for k = 3. Solving (3.11a) with i = 2, 3 using Maple yields an explicit

fourth-order method (τ = 0) defined by

(3.12a) b1 = 1
2
 22 − 2 109 ≈ 0.529005, b2 = 1 +

7
10

 b1 - 1
10

 (1 + b1) 2 = 1.136518

and an implicit fifth-order method (τ = 1) defined by

(3.12b) b1 = - 1
10

 130 − 10 129 ≈ - 0.405238, b2 =
13
10

 +
3
2
 b1 - 1

2
 (1 + b1) 2 = 0.515271.

For k = 4, Maple offers already problems to find an analytical solution. A numerical approach yields

an explicit fifth-order method defined by

(3.13) b1 ≈ 1.083424930, b2 ≈ 2.283072685, b3 ≈ 0.494330785.

For k ≥ 5 we have to solve the four equations (3.11) with i = k-1, k simultaneously. This direct

approach becomes quite cumbersome even when using numerical techniques, unless we can guess an

accurate initial approximation to the solution. An alternative is to assume that the abscissae ak-1 is

given in advance. Then it is possible to derive an analytically given polynomial equation whose

solutions define superconvergent abscissae.

3.3. Superconvergent PSC methods

From now on, we assume that ak-1 is prescribed. Let k ≥ 4 and let the abscissae aj be given for j ≥ 3.

Then we can write

pi(τ,ξ) = (ξ - b1ai-1)(ξ - b2ai-1) qi(τ,ξ), qi(τ,ξ) := gi(ξ)(ξ - 1)τ ∏
j=3

k
 (ξ - bjai-1)

where qi(τ,ξ) does not contain unknown parameters. Similarly, for k ≥ 6 we assume that the

abscissae aj are given for j ≥ 5 and we write

11

pi(τ,ξ) = ∏
j=1

4
 (ξ - bjai-1) ri(τ,ξ), ri(τ,ξ) := gi(ξ)(ξ - 1)τ ∏

j=5

k
 (ξ - bjai-1) .

Furthermore, we define the integrals

(3.15) Iij (τ) := ⌡⌠
0

 1

 (aiξ) jqi(τ,ξ) dξ, Jij (τ) := ⌡⌠
0

 1

 (aiξ) jri(τ,ξ) dξ.

Then, condition (3.11a) holds if the shifted abscissae b1 and b2 satisfy the two equations

A1 := b1 + b2, A2 := b1b2,

where A1 and A2 are the solution of the two linear equations

(3.16a) Ii1(τ)A1 - Ii0(τ)A2 = Ii2(τ), i = k-1, k, k ≥ 4.

The coefficients Ii1(τ), Ii0(τ) and Ii2(τ) do not depend on b1 and b2, so that they are completely

determined. Having computed the quantities A1 and A2, the abscissae b1 and b2 are defined as the

roots of the equation b2 - A1b + A2 = 0.

Likewise, (3.11a) and (3.11b) are both satisfied if b1, b2, b3, and b4 satisfy the equations

B1 := b1 + b2 + b3 + b4, B2 := b1b2 + b1b3 + b1b4 + b2b3 + b2b4 + b3b4,

B3 := b1b2b3 + b1b2b4 + b1b3b4 + b2b3b4, B4 := b1b2b3b4,

where B1, B2, B3, and B4 are the solution of the four linear equations

Ji3(τ)B1 - Ji2(τ)B2 + Ji1(τ)B3 - Ji0(τ)B4 = Ji4(τ),
(3.16b) i = k-1, k, k ≥ 6,

Ji4(τ)B1 - Ji3(τ)B2 + Ji2(τ)B3 - Ji1(τ)B4 = Ji5(τ),

in which the coefficients do not depend on b1, b2, b3, and b4. The parameters b1, b2, b3, and b4 are

now defined as the roots of the equation b4 - B1b3 + B2b2 - B3b + B4 = 0.

We recall that in the derivations above, it is assumed that all ai are distinct and that the constraint

0 < bk-1 ≤ 1 + bi is satisfied for i = 1, ... , k. Furthermore, we observe that using formula

manipulation software enables us to find exact values for the quantities Ai and Bi, so that the

superconvergence equations b2 - A1b + A2 = 0 and b4 - B1b3 + B2b2 - B3b + B4 = 0 are obtained in

analytical form. The following theorem summarizes the preceding considerations:

Theorem 3.3. Let the quantities Ai and Bi be defined by (3.16a) and (3.16b), let all bi be real and

distinct satisfying the constraint 0 < bk-1 ≤ 1 + bi for i = 1, ... , k. Then, the PSC method has step

point order

(a)p = k+1+τ if b1 and b2 satisfy b2 - A1b + A2 = 0.

(b) p = k+2+τ if b1, b2, b3, and b4 satisfy b4 - B1b3 + B2b2 - B3b + B4 = 0.♦

12

By means of this theorem the polynomial equation to be satisfied by the abscissae of superconvergent

PSC methods can straightforwardly be constructed, provided that the abscissa ak-1 = bk-1 + 1 is

prescribed in advance. In the following, we shall always choose bk-1 = 1/2. This choice is motivated

by the following observations: (i) the methods defined by (3.12) and (3.13) show that one of the

abscissae bi seems always to be close to 1/2, and (ii) if the method contains sufficiently many free

parameters, then we may set bk-2 = - 1/2, so that by virtue of Theorem 3.1 the number of

computational stages is reduced to k-1.

In the Sections 3.4 and 3.5 below, we derive with the help of Maple the superconvergence equations

b2 - A1b + A2 = 0 and b4 - B1b3 + B2b2 - B3b + B4 = 0 in analytical form for k = 4, ... , 8 and

τ = 0, 1. The resulting (shifted) abscissa vector b (or approximations to it) are listed in Table 3.1.

Since, in principle, we can associate with each abscissa vector both an explicit PSC method (predictor

method) defined by {(2.9), T = O} and an implicit PSC method (corrector method) defined by (3.5),

we have also listed the orders of accuracy p := (ppred,pcorr) of the PC pairs (for a derivation of these

orders of accuracy, we refer to the Sections 3.4 and 3.5). Finally, we listed the number of

computational stages k* (see Theorem 3.1).

Table 3.1. Abscissa vector b for PSC methods. Solutions of the superconvergence conditions.
--

k k* p Abscissa eq. b = a - e
--

4 4 (5,5) (3.17)
37 + 229

20
37 - 229

20
1
2
 0

5 4 (6,6) (3.18) 80 - 163
66

 80 + 163
66

 - 1
2
 1

2
 0

4 4 (4,6) (3.19)
10 + 110

20 10 - 110
20 1

2
 0

5 4 (5,7) (3.20) 1335 - 13777089
4872

 1335 + 13777089
4872

 - 1
2
 1

2
 0

6 6 (8,8) (3.21) 0.220473884991749550773176296 0.785748179438222426650898115
1.082801901339905567884428919 1.357404605658693883262925242
1
2
 0

7 6 (9,9) (3.22) 1.35984980836284552448224743611.08550243286155484559219203238

0.7831415266517613622931020219 0.22366067273036013403372306979 - 1
2

1
2
 0

8 7 (10,10) (3.23) 1.34769190490729875418306514160 1.07208031244751681867238199782
0.78608615201785326002175468995 0.22516824834210228704446788414

 39
20

 - 1
2
 1

2
 0

6 6 (6,9) (3.24) 0.21755580207730697329345869375 0.80211953599522583518112647952
1.09733188738319384639542393592 1.34878406687322980677477319902
1
2
 0

13

7 6 (7,10) (3.25) 1.31055925607203754003020571295 1.0503046858204850073846230065
0.77614140147425929479586597693 0.2261701100662944062560580057

- 1
2
 1

2
 0

8 7 (8,11) (3.26) 1.32926038747280407572724831106 1.07617474082873809284962387998
0.79120732633177980331380185023 0.22305652889369376529159340900

 37
20

 - 1
2
 1

2
 0

--

3.4. PSC methods with k ≤ 5

First we construct PSC methods with at most 5 stages using part (a) of Theorem 3.1. If PSC method

is explicit (τ = 0) and has 4 stages, then the method is uniquely defined by the equation

(3.17) b2 - 37
10

 b + 57
20

 = 0, b3 = 1
2
 .

Thus, (3.17) generates an explicit PSC method of order p = 5 and an implicit PSC method of order 5,

both with 4 parallel stages. The solutions of (3.17) can be found in Table 3.1 and turn out to be close

to the solutions (3.13) where we did not fix the abscissae b3 in advance.

For k = 5 we can construct a one-parameter family of methods of order p = 6. Given the abscissa

b3, the abscissae b1 and b2 follow from the superconvergence condition

(3.18) b2 -
74b32 - 195b3 + 124

20b32 - 74b3 + 5 7
 b +

114b32 - 248b3 + 131

2(20b32 - 74b3 + 57)
 = 0, b4 = 1

2
 ,

The free parameter b3 can be exploited by setting b3 = -1/2, so that we have only 4 computational

stages (see Theorem 3.1).

In a similar way, we find the implicit 4-stage PSC method of order 6 defined by

(3.19) b2 - b + 1
40

 = 0, b3 = 1
2
 ,

and the implicit 5-stage PSC method of order 7 with 4 computational stages defined by

(3.20) b2 - 445
812

 b + 1231
2436

 = 0,b3 = - 1
2
 , b4 = 1

2
 ,

3.5. PSC methods with k ≥ 6

For k ≥ 6 we can invoke part (b) of Theorem 3.1. Three types of PSC methods will be considered:

I. Explicit PSC methods of order k+2

II. Implicit PSC methods of order k+3

III. Predictor-corrector pairs of PSC methods of order (k+2,k+2).

14

3.5.1. Explicit PSC methods of order k+2. For k = 6 we have a uniquely defined method of

order p = 8 defined by

(3.21) b4 - 193
56

 b3 + 19279
4704

 b2 - 17891
9408

 b + 1597
6272

 = 0, b5 = 1
2
 .

For k ≥ 7 we obtain methods of order p = k+2 with k-6 free parameters b5, ... , bk-3. For k = 7 we

used the free parameter b5 to reduce the number of computational stages to 6 and found the equation

(3.22) b4 - 235865
68324

 b3 + 210776
51243

 b2 - 3139325
1639776

 b + 423971
1639776

 = 0, b5 = - 1
2
 , b6 = 1

2
 .

Finally, for k = 8 we have two free parameters. We set b6 = -1/2 and used b5 to reduce the size of the

error constant E(k+2) according to the approach described in Section 3.6, to obtain

b4 - 16493095751
4814898736

 b3 + 117118655069
28889392416

 b2 - 217047351761
115557569664

 b + 88026108193
346672708992

 = 0,

(3.23)

b5 = 39
20

 , b6 = - 1
2
 , b7 = 1

2
 .

3.5.2. Implicit PSC methods of order k+3. Proceeding as in the previous section, we solve

the equations (3.16b) for τ = 1, to obtain a 6-stage, 9th-order method defined by

(3.24) b4 - 5015
1447

 b3 + 18010
4341

 b2 - 67235
34728

 b + 251147
972384

 = 0, b5 = 1
2
 ,

a 7-stage, 10th-order method with 6 computational stages

(3.25) b4 - 9023504
2683031

 b3 + 157695722
40245465

 b2 - 14440832
8049093

 b + 71811311
297197280

 = 0, b5 = - 1
2
 , b6 = 1

2

,

and an 8-stage, 11th-order method with 7 computational stages whose free parameter b5 was used to

minimize the error constant E(k+3):

 b4 - 109326306018669
31969569995869

 b3 + 1293727397185447
319695699958690

 b2 - 479656555759929
255756559966952

 b + 3874147299589559
15345393598017120

 =

0,
(3.26)

 b5 = 37
20

 , b6 = - 1
2
 , b7 = 1

2
 .

3.5.3. PC pairs of order (k+2, k+2). The explicit methods of Type I and the implicit methods

of Type II constructed in the two preceeding sections possess an optimal order of accuracy k+2 and

k+3, respectively. A third option is to construct a PC pair with the same abscissae vector such that the

predictor is of order k+1 and the corrector of order k+2. This can be achieved by determining a single

shifted-abscissae vector b such that (3.11a) is satisfied both for τ = 0 and for τ = 1. Proceeding as in

Section 3.2, we first solve the four linear equations

15

(3.27) Ji3(τ)B1 - Ji2(τ)B2 + Ji1(τ)B3 - Ji0(τ)B4 = Ji4(τ), i = k-1, k, τ = 0, 1, k ≥ 6,

where Jij (τ) is defined as in (3.15). The abscissae b1, b2, b3, and b4 are again defined as the roots of

the superconvergence condition b4 - B1b3 + B2b2 - B3b + B4 = 0. Thus, if this equation has real,

distinct roots, then the resulting PC pair has order (k+1,k+2). However, it turns out that the actual

order is (k+2,k+2).

Theorem 3.4. Let the quantities Bi be defined by (3.27), let all bi be real and distinct such that

0 < bk-1 ≤ 1 + bi for i = 1, ... , k, and let b1, b2, b3, b4 satisfy b4 - B1b3 + B2b2 - B3b + B4 = 0.

Then, the abscissae vector b generates an explicit PSC method and an implicit PSC method which

have both of step point order p = k+2.

Proof. The proof consists of showing that the equations (3.27) are identical with the equations

(3.16b) obtained for τ = 0, i.e. with the equations

Ji3(0)B1 - Ji2(0)B2 + Ji1(0)B3 - Ji0(0)B4 = Ji4(0),
(3.28) i = k-1, k, k ≥ 6.

Ji4(0)B1 - Ji3(0)B2 + Ji2(0)B3 - Ji1(0)B4 = Ji5(0),

Evidently, the first two equations in (3.28) are identical with the two equations in (3.27) obtained for

τ = 0. Furthermore, by observing that Jij (τ) satisfies the relation Ji,j+1(0) = ai(Jij (1) + Jij (0)), it

follows that the last two equations in (3.28) can be written as

(Ji3(0) + Ji3(1))B1 - (Ji2(0) + Ji2(1))B2 + (Ji1(0) + Ji1(1))B3 - (Ji0(0) + Ji0(1))B4

= Ji4(0) + Ji4(1), i = k-1, k

which is by virtue of the first two equations of (3.28) identical with the two equations in (3.27)

obtained for τ = 1. This proves the assertion of the theorem.♦

Theorem 3.4 implies that for k ≥ 6 the abscissae vectors (3.21) - (3.23) derived in Section 3.4 not

only generate predictors of order k+2, but also correctors of order k+2.

3.6. Comparison of PSC methods

In order to compare the accuracy of the various PSC methods we again consider the formula (3.2')

for the accumulated error αn+1. The conventional approach is to compare the local errors εj(q) by

means of the error constants c(q), c(q+1), ... given in (3.2a). However, then the amplifying effect of

the matrix Mn is not taken into account. Therefore, we consider the accumulated error after s steps.

On substitution of εj(q) into (3.2') and writing Jn+1 =
∂f(y(tn))

∂y I + O(h) in the definition of Mn and

Dn, we can easily find the first few terms of the expansion of the step point value of αn+1.

Theorem 3.5. After s steps the accumulated step point error can be represented by

(3.29) αn+1,k = Aqsc(q)hq+2 + Aq+1,sc(q+1)hq+3 + (Aq+2,sc(q+2) + Bqsc(q))hq+4 + O(hq+5),

16

where for all s ≥ 1 the row matrices Ajs are defined by

(3.30a) Ajs := y(j+2)(tn)ekT + y(j+2)(tn-1)ekTR + y(j+2)(tn-2)ekTR2 + ... + y(j+2)(tn-s+1)ekTRs-1, j ≥ q,

and where for s = 1, 2, 3 the row matrices Bjs are defined by

Bq1 := y(q+2)(tn)
∂f(y(tn))

∂y ekTT, Bq2 := Bq1 + y(q+2)(tn-1)
∂f(y(tn))

∂y ekT(RT + TR + S)
(3.30b)

Bq3 := Bq2 + y(q+2)(tn-2)
∂f(y(tn))

∂y ekT(RTR + RS+ SR + R2T + TR2).♦

Because the first k-2 columns of Rj vanish, (3.30a) shows that the last two entries of Ajs do not

vanish, so that the terms of order hq+2 and hq+3 in (3.29) are completely determined by the last two

components of c(q) and c(q+1). Furthermore, because any two PSC methods with bk-1 = 1/2 possess

a matrix R with identical entries Rk,k-1 and Rk,k, we see that the last two entries of their Ajs matrices

also are identical. Hence, if their stage order q is equal, then the last two components of c(q) and

c(q+1) may serve to compare their accuracy up to the order hq+3 terms.

The term of order hq+4 in (3.29) is much more complicated. Because it turns out that Aq+2,sc(q+2)

can be neglected with respect to Bqsc(q), we concentrate on Bqs. Firstly, we observe that all k

components of c(q) play a role in the size of Bqsc(q). Secondly, unlike the matrices Ajs, the matrix

Bqs may strongly differ for two different PSC methods, and thirdly, as is clear from (3.30b) its

structure becomes increasingly complicated if s increases. Let us consider the matrix Bq3, that is, in

the order hq+4 term of αn+1,k we consider the accumulation of local errors over three steps:

Bq3 = y(q+2)(tn)
∂f(y(tn))

∂y ekT(T + RT + TR + S + RTR + RS + SR + R2T + TR2) + O(h).

Then, we may define the following 'error constants' associated with the order hq+2, hq+3 and hq+4

terms in the expansion of αn+1,k:

E(q) = || ck-1(q), ck(q)|| ∞, E(q+1) = || ck-1(q+1), ck(q+1)|| ∞,

E(q+2) = | ekT(T + RT + S* + R2T + RS* + S*R)c(q)|.

Table 3.2. Characteristics of the PC pairs generated by the abscissa vectors b from Table 3.1
--

 predictor corrector
 --- ---

k b E(k) E(k+1) E(k+2) p σ β* E(k+1) E(k+2) E(k+3) p σ δi β*

--

4 (3.17) 0 3.510-5 4.910-3 5 3.3 0.79 3.510-5 3.110-5 4.410-4 5 3.5 (- 0.000, 0.036) 0.86

4 (3.19) 6.210-4 3.710-4 1.210-2 4 21 0.37 0 1.410-6 6.610-4 6 4.3 (0.014, 0.146) 0.47

5 (3.18) 0 1.910-6 9.310-4 6 4.0 0.85 1.910-6 9.310-7 4.210-5 6 1.5 (- 0.000, 0.058) 1.08

5 (3.20) 2.910-4 9.810-5 6.510-3 5 63 0.90 0 4.710-7 3.010-4 7 9.3 (- 0.018, 0.097) 0.59

6 (3.21) 0 0 1.310-4 8 30 0.74 0 1.210-10 5.210-6 8 7.1 (- 0.008, 0.041) 1.01

17

6 (3.24) 8.910-8 7.010-8 1.310-4 6 27 0.74 0 0 4.910-6 9 6.6 (- 0.006, 0.041) 1.01

7 (3.22) 0 0 4.410-5 9 65 0.80 0 7.310-11 1.510-6 9 13 (- 0.007, 0.036) 0.98

7 (3.25) 8.810-8 5.410-8 5.110-4 7 67 0.80 0 0 1.610-6 10 15 (- 0.002, 0.035) 1.01

8 (3.23) 0 0 3.910-8 10 319 0.78 0 2.510-12 1.410-8 10 49 (- 0.022, 0.040) 0.66

8 (3.26) 2.210-9 1.610-9 5.210-7 8 260 0.78 0 0 5.510-10 11 42 (- 0.005, 0.044) 0.65
--

For the PSC methods generated by the abscissa vectors b of Table 3.1, Table 3.2 lists the error

constants E(q), E(q+1) and E(q+2), where q = k and q = k+1 for explicit and implicit PSC methods,

respectively. As already observed, with each abscissa vector b, we can associate both a predictor

defined by {(2.9), T = O} and a corrector defined by (3.5). Therefore, Table 3.2 presents both

predictor and corrector values. Evidently, if E(j) = 0 for j < p, then the PSC method has step point

order p. Hence, we shall call E(p) the principal error constant (note that comparing the accuracy of

two PSC methods by means of E(j) values is only possible if their stage order q is identical).

Of course, the PSC method is only useful if the values of |Sij | and |δi| (in the case of implicit PSC

methods) are sufficiently small and if the method is sufficiently stable. Therefore, Table 3.2 also lists

an upperbound σ for |Sij | and the range of δi values. As to the stability, it turns out that in many cases

the stability boundary β defined in Section 2.6 is zero. However, if we relax the definition of the

stability region by allowing that the eigenvalues of M(z) are bounded by 1+ε with 0 < ε << 1, then we

obtain quite substantial stability boundaries β*, even for extremely small ε. For ε = 10−6 we found the

values as listed in Table 3.2. In actual computation these values turn out to be sufficiently large in the

sense that the stepsize is prescribed by accuracy and not by stability.

4. Implementation aspects

When implementing the PSC methods constructed above, we have to decide about the computation of

the starting vector Y0 needed to start the recursion (2.1), the local error estimate, and the stepsize

strategy. In the case of implicit PSC methods, we always started the iteration by the predictor formula

associated with the abscissa vector of the implicit PSC method.

The starting vector Y0 ≈ (y(t0 + bih)) is most conveniently computed by means of a one-step method.

In all our experiments, we computed the stage values of Y0 by means of one (accepted) step of the

7th-order Runge-Kutta-Nyström method of Dormand and Prince [3]. Note that these k stage values

can be computed in parallel, so that effectively only one Dormand and Prince step is needed.

Furthermore, we remark that Runge-Kutta-Nyström methods can be applied for negative stepsizes, so

that negative values of bi are allowed.

The numerical experiments presented in Section 5.2 use a variable stepsize implementation of PSC

methods, so that we shall briefly discuss the stepsize procedure applied in this paper. The abscissae

obtained in the preceding sections assume constant stepsizes, so that we should either allow h to be

variable in (2.1) and determine abscissae corresponding to nonconstant stepsizes h, or we should

replace in (2.1) the stage vector Yn corresponding to the points tn-1 + aih by a new stage vector Vn

18

corresponding to the points tn-1 + aihnew. The first option is not feasible, because it would mean that

the process described above should be performed each time the stepsize changes. The second option,

however, is quite straightforward. Let

(4.1) Vn = (P⊗ I)Yn + h2(Q⊗ I)F(Yn), θ =
hnew

h ,

where the k-by-k matrices P and Q are such that Vn represents a numerical approximation to the exact

solution values y(tn-1 + aihnew) = y(tn + bihnew). Proceeding as in Section 2.2, we find the conditions

(4.2) Pbj + j(j-1)Qbj-2 = (θb)j , j = 0, ... , q

(cf. (2.6)). If q ≥ k+1, then the interpolation error is of order k+2 in h. In order to keep the entries of

P and Q of acceptable magnitude for larger values of k, we should not allow P and Q to be full

matrices. The minimal number of nonzero columns needed in the matrix (P,Q) to achieve order k+2

interpolation is k+2. Since the last two stage values in Yn are of increased accuracy and because of the

factor h2 in front of F(Yn), it follows from (4.1) that it is natural to set the entries in the first k-2

columns of P equal to zero. Thus, the interpolation formula (4.1) is based on the last two y-values

and on all f-values available from the preceding step. Let P* be the k-by-2 matrix containing the last

two columns of P. Then, (4.2) is equivalent with the condition

(4.3) (P*,Q) U = W, U :=

1 bk-1 bk-12 bk-13 . . . bk-1k+1

1 bk bk2 bk3 . . . bkk+1

0 0 2e 6b . . . k(k+1)bk-1

 , W := (e,θb, ..., (θb)k+1).

Hence, the matrices P and Q follow from the formula (P* ,Q) = WU-1. The magnitude of the entries

of P and Q increases strongly with θ and k. However, for θ = 3/2 and k = 8 (with abscissae as

defined in Table 3.1), their magnitude is still acceptable (6 in the range 12 to 60, the remaining less

than 4). We remark that if the interpolation formula (4.1) is based on the last two f-values and on all

y-values, then the magnitude of the entries in P and Q is unacceptably large (up to about 54000 for

θ = 3/2 and k = 8).

As soon as we change the stepsize, we apply the interpolation procedure described above. In this

way, we achieve that we may always use the constant stepsize formula (2.1). However, it also means

that each stepsize change implies the evaluation of F(Vn). We can reduce these extra costs by

applying a stepsize strategy which keeps the number of stepsize changes low.

Apart from an interpolation procedure, we also need an error estimator in the case of stepsize changes.

Observing that the solution values yn,k-1, yn+1,k and yn+1,k-1 correspond with t-values at distance

h/2, we may use the Numerov formula

(4.4) zn+1 = 1
2
 (yn,k-1 + yn+1,k-1 -

h2

48
 (f(yn,k-1) +10f(yn+1,k) + f(yn+1,k-1)))

19

as a fourth-order reference solution for appreciating the quality of the step point value yn+1,k. Note

that this formula only uses already computed values. In choosing the new stepsize, we adopted the

standard procedure used in ODE solvers (see e.g. [7, p. 167]) with a slight modification in order to

keep stepsize changes to a minimum. Let tol be a given tolerance parameter and define

err := |
 zn+1 - yn+1,k

 max{ |yn+1,k|,10-6} |∞, h* = h . min { 1.5, max { 0.5, 0.8

5

tο l
err } } .

This leads to the following stepsize strategy:

if 0.01 tol < err < tol then hnew = h: perform next step

if err ≤ 0.01 tol then hnew = h*: perform next step

if err ≥ tol then hnew = h*: redo step.

5. Numerical experiments

In this section we illustrate the performance of the PSC methods generated by the abscissae of Table

3.1. From now on, a PSC method is understood to be determined by (i) an abscissa vector b defining

the predictor-corrector pair and (ii) a PE(CE)m or PE(CE)mC iteration strategy. We performed many

experiments on well-known test problems taken from the literature of which a few typical

performance tests will be reproduced in the tables of results below. In these tables, the accuracy is

defined by the number of correct digits ∆ at the end point (that is, the maximal absolute end point error

is written as 10-∆, and the total number of steps and the total number of sequential righthand sides

needed in the integration process is denoted by N and M, respectively. Furthermore, we present the

effective order of accuracy p*, based on the two last computed results in the case of constant stepsize

experiments and on the minimal and maximal error tolerance results in the case of variable stepsize

experiments. The corresponding formulas for p* are respectively given by

(5.1) p* :=
∆(2hmin) − ∆(hmin)

log10(2) , p* :=
∆(tolmin) − ∆(tolmax)

M(tolmin) − M(tolmax)
 .

5.1. Selection of the most efficient method

First we want to know which PSC method is the most efficient one. It may be expected that for a

given number of iterations m, the PE(CE)mC mode yields the same or a higher accuracy than the

PE(CE)m mode (note that these modes are equally expensive). This claim was carefully checked and

turned out to be true for all problems we tested. Furthermore, we observed that the accuracy did not

improve anymore by performing more than two iterations. Therefore, we only give results for the

PEC and the P(EC)2 mode. In order to see clearly the algorithmic properties of the methods, we

applied them with fixed stepsizes. A comparison is presented in the Tables 5.1a, 5.1b and 5.1c,

respectively for methods with 4, 6 and 7 computational stages, that is, methods requiring 4, 6 and 7

processors. For this comparson, we chose the TWOB problem [7, p.236] on the interval [0,20] with

20

excentricity ε = 0.5, because the performance of the various methods on this problem turned out to be

representative for a large class of problems.

5.1.1. Four-processor methods. From Table 3.1 we selected the four abscissa vectors (3.17),

(3.18), (3.19) and (3.20) which generate PSC methods with 4 computational stages. The error

constants listed in Table 3.2, indicate that (3.18) and (3.20) generate the most accurate predictor and

corrector, respectively. Therefore, we expect that these abscissa vectors generate the most efficient

PEC and P(EC)2 methods. This conclusion is confirmed by the results of Table 5.1a (and by many

other examples we tested). Taking into account that P(EC)2 is about twice as costly as PEC, this table

clearly shows that {(3.18), PEC}, {(3.18), P(EC)2}, and {(3.20), P(EC)2} are the most efficient

methods respectively in the low accuracy range (1 until 5 digits, say), in the middle-high accuracy

range (5 until 15 digits), and in the extremely high accuracy range (15 or more digits).

 Table 5.1a. (∆,N) - values for PSC methods with 4 computational stages applied to TWOB.
 --
 b mode p 80 160 320 640 1280 2560 5120 p*

 --
(3.17) PEC 5 0.4 2.0 4.4 6.2 7.8 9.6 11.8 7.0
(3.18) 6 0 . 8 3 . 2 4 . 5 6.5 8.6 10.7 12.8 7.0
(3.19) 4 0.1 1.4 3.5 5.9 7.3 8.9 10.6 5.8
(3.20) 5 0.3 2.1 3.6 5.6 7.7 9.8 11.9 7.0

(3.17) P(EC)2 5 1.4 3.1 4.9 6.6 8.1 9.6 11.1 5.0
(3.18) 6 1.4 4.2 7 . 1 8 . 9 1 2 . 2 1 2 . 8 14.5 5.7
(3.19) 6 0.9 2.6 4.4 6.4 8.5 10.6 12.7 7.0

 (3.20) 7 1.3 3.0 6.1 7.9 10.1 12.4 1 4 . 8 8.0
 --

5.1.2. Six-processor methods. PSC methods with 6 computational stages are generated by

(3.21), (3.22), (3.24) and (3.25). Table 3.2 indicates that (3.22) furnishes the most accurate

predictor and (3.25) the most accurate corrector. Hence, we anticipate that these abscissa vectors

provide the most efficient PEC and P(EC)2 methods. However, it turns out that the methods

generated by (3.21) and (3.24) produce the same results as the methods generated by (3.24) and

(3.25). This can be explained by observing that the principal error constants of (3.21) and (3.24) are

extremely small (see Table 3.2), so that the characteristics of the methods generated by (3.21) and

(3.22) closely resemble the characteristics of the methods generated by (3.24) and (3.25),

respectively. The r esults presented in Table 5.1b are typical for a large number of experiments that

we have carried out. From these figures we draw the conclusion that {(3.21), PEC} or {(3.24),

PEC} is most efficient in the low accuracy range, {(3.22), PEC} or {(3.25), PEC} is most efficient

in the middle-high accuracy range, and {(3.22), P(EC)2} or {(3.25), P(EC)2} is most efficient in the

extremely high accuracy range.

 Table 5.1b. (∆,N) - values for PSC methods with 6 computational stages applied to TWOB.
 --

b mode p 80 160 320 640 1280 2560 5120 p*

 --
{ (3.21), (3.24)} PEC { 8, 6} 0 . 8 4 . 0 6 . 4 8.4 10.6 12.9 15.3 7.9

21

{ (3.22), (3.25)} { 9, 7} 0.6 3.8 6.2 8 . 8 1 1 . 5 1 4 . 2 1 7 . 0 9.1

{ (3.21), (3.24)} P(EC)2 { 8, 9} 2.9 5.1 7.1 9.8 12.5 15.2 17.8 8.7
{ (3.22), (3.25)} { 9,10} 1.7 5.1 8.0 10.7 13.6 16.6 10.0

 --

5.1.3. Seven-processor methods. All error constants listed in Table 3.2 for the 7-

computational-stage methods associated with (3.23) and (3.26) are extremely small. Therefore, it is

dangerous to base conclusions on their magnitude, because the higher-order error constants may play

a more dominant role unless we use unrealistic small stepsizes. On the basis of many numerical

experiments, we found that in general (3.23) generates more efficient PSC methods than (3.26). A

typical performance is listed in Table 5.1c.

Table 5.1c. (∆,N) - values for PSC methods with 7 computational stages applied to TWOB.

b mode p 80 160 320 640 1280 2560 p*

(3.23) PEC 10 1 . 5 5.0 8 . 2 1 1 . 6 1 5 . 4 11.0
(3.26) 8 0.8 5 . 2 7.7 9.9 12.7 15.7 10.0

(3.23) P(EC)2 10 3.3 6.0 9.6 12.9 16.7 13.0
(3.26) 11 1.9 5.0 8.3 11.6 15.0 11.3

5.1.4. Summary of recommended methods. For a few accuracy ranges [∆1,∆2], Table 5.2

summarizes the most efficient PSC methods of this paper for 4, 6 and 7 processor computer systems.

Table 5.2. Most efficient PSC methods.

Processors 0 ≤ ∆ ≤ 5 5 ≤ ∆ ≤ 15 ∆ ≥ 15

4 {(3.18), PEC} {(3.18), P(EC)2} {(3.20), P(EC)2}
6 {(3.21), PEC} {(3.22), PEC} {(3.25), P(EC)2}
7 {(3.23), PEC} {(3.23), PEC} {(3.23), PEC}

5.2. Comparison with other codes

In this section, we compare the variable step version of our most powerful PSC method, that is, the

10th-order method {(3.23), PEC} using automatic stepsize control as described in Section 4, with

one of the best sequential code available in the literature, viz. the 7th-order variable step code

DOPRIN [7], and with another parallel code, viz. the 12th-order variable step PIRKN code of

Sommeijer [11]. We present the total number of sequential righthand sides M needed to produce a

given number of correct digits ∆ (including the righthand sides to generate the starting values by

means of DOPRIN). The M values were obtained by running the DOPRIN. PIRKN and PSC codes

with tolerances 10-1, 10-2, ... and by linear interpolation of the ∆ and log10(M) values produced. The

Tables 5.3 - 5.5 show results for the two-body orbit problem from the Toronto test set [9] (see also

22

[11, (3.1)] on the interval [0,20] with excentricity ε = 0.9, the often used Fehlberg stability test

problem (see [11,(3.2)]) on the interval [π/2 ,10], and the PLEI problem [7, p.237]. For these

problems, the initial step used by DOPRIN and by {(3.23), PEC} was h0 = 0.01, 0.1 and 0.01,

respectively.

Table 5.3. (∆,M) - values for the orbit problem.
--
 ∆ 5 6 7 8 9 10 11 12 13 14 15 p*

--
DOPRIN 1365 1598 1782 2515 3267 3938 4587 5598 6754 8049 13277 8.7
PIRKN 475 521 572 654 806 994 1205 1445 1698 1986 223915.9
{(3.23), PEC} 294 335 401 483 585 720 896 1122 1401 1751 218912.4
--

Table 5.4. (∆,M) - values for the Fehlberg problem.

∆ 5 6 7 8 9 10 11 12 13 14 15 16 17 p*

DOPRIN 886 1276 1793 2545 3485 4759 6423 8779 12217 16746 23121 32162 44571 7.2

PIRKN 362 427 508 604 724 868 1041 1249 1499 1799 2185 2653 3216
12.6
{(3.23), PEC} 154 193 238 277 330 409 505 613 740 889 1069 1270 150812.1

Table 5.5. (∆,M) - values for the PLEI problem.
 --

 ∆ 5 6 7 8 9 10 11 12 13 14 15 p*

 --
DOPRIN 1444 1743 2154 2674 3165 3673 4380 5668 7691 10853 15295 9.8
PIRKN 511 586 680 795 938 1116 1337 1581 1864 2199 256114.3
{(3.23), PEC}312368 436 540 666 807 991 1229 1446 1987 251911.0

 --

6. Concluding remarks

In this paper, we constructed parallel Störmer-Cowell type methods (PSC methods) with orders

ranging from p = 4 until p = 11 for parallel computer systems with 4 until 7 processors. Of these PSC

methods the 10th-order, 7-processor method turns out to be most effective for high-precision orbit

computations. This method was compared with DOPRIN, one of the most efficient sequential code

currently available, and with PIRKN, a 12th-order, 6-processor code. In terms of the total number of

righthand side evaluations needed in the integration process, the speed-up of the PSC method with

respect to DOPRIN ranges from 4 in the low accuracy range up to 30 in the high accuracy range, and

with respect to PIRKN, the PSC method is at least equally efficient and at best twice as fast.

References

[1] Abramowitz, M. & Stegun, I.A. [1964]: Handbook of mathematical functions, Dover.
[2] Butcher, J.C. [1987]: The numerical analysis of ordinary differential equations, Runge-Kutta

and general linear methods, Wiley, New York.

23

[3] Dormand, J.R. & Prince, P.J. [1978]: New Runge-Kutta algorithms for numerical simulation
in dynamical astronomy, Celestial Mechanics 18, 223-232.

[4] Fehlberg, S., Filippi, S. & Gräf, J. [1986]: A Runge-Kutta-Nyström formula pair of order
10(11) for differential equations of the form y" = f(x,y), Z. Angew. Math. Mech. 66, 265-
270.

[5] Filippi, S. & Gräf, J. [1985]: A Runge-Kutta-Nyström formula pair of order 11(12) for
differential equations of the form y" = f(x,y) (in German), Computing 34, 271-282.

[6] Filippi, S. & Gräf, J. [1986]: New Runge-Kutta-Nyström formula pairs of order 8(7), 9(8),
10(9) and 11(10) for differential equations of the form y" = f(x,y), J. Comput. Appl. Math. 14,
361-370.

[7] Hairer, E., Nørsett, S.P. & Wanner, G. [1987]: Solving ordinary differential equations, Vol.
I. Nonstiff problems, Springer-Verlag, Berlin.

[8] Houwen, P.J. van der and Messina, E. [1998]: Parallel Adams methods, submitted to J .
Comput. Appl. Math.

[9] Hull, T.E., Enright, W.H., Fellen, B.M. & Sedgwick, A.E. [1972]: Comparing numerical
methods for ordinary differential equations, SIAM J. Numer. Anal. 9, 603-637.

[10] Lioen, W.M., Swart, J.J.B. de & Veen, W.A. van der [1996]: Test set for IVP solvers, CWI
Report NM-R9615, Amsterdam. Available at http://www.cwi.nl/cwi/projects/IVPtestset/.

[11] Sommeijer, B.P. [1993]: Explicit high-order Runge-Kutta-Nyström methods for parallel
computers, Appl. Numer. Math. 13, 221-240.

