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ABSTRACT

We consider explicit methods for initial-value problems for special second-order ordinary differential
equations where the righthand side does not contain the derivative of y and where the solution components
are known to be periodic with frequencies wj lying in agiven nonnegative interval [w,@]. The aim of the
paper is to exploit this extrainformation and to modify a given integration method in such away that the
method parameters are "tuned" to the interval [w,®]. Such an approach has already been proposed by
Gautschi in 1961 for linear multistep methods for first-order differential equations in which the dominant
frequencies wj are a priori known. In this paper, we only assume that the interval [w,@)] is known. Two
"tuning" techniques, respectively based on a least squares and a minimax approximation, are considered
and applied to the classical explicit Stormer-Cowell methods and the recently developed parallel explicit
Stormer-Cowell methods.
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1. Introduction
We consider explicit methods for nonstiff initial-value problems (IVPs) for the special second-order
ordinary differential equation (ODE)

2
@y Y=, v.fORY tost<teny
where the righthand side does not contain the derivative of y. On a set of subintervals, the solution of
this IV P can be piecewise approximated by a sum of complex exponential functionslike

where the vectors a; and the frequencies wj are such that the approximation error is small in some
sense. These frequencies wj will be referred to as dominant frequencies. For a given subinterval and
tolerance, many trigonometric approximations like (1.2) are possible, and for a given s the
approximation error can be made smaller as the length of the subinterval decreases. We are
particularly interested in the case where the solution of (1.1) can be approximated such that in all
subintervals (i) the values of | aj||., are of modest magnitude and (ii) the frequencies wy are located in
agiven, relatively small, nonnegative interval [w,@] (in Section 2.3.1, we shall show that this is not
an exceptional situation). The aim of the paper is to exploit this extra information on the solution by



modifying a given integration method for (1.1) in such away that the method parameters are "tuned"

to theinterval [w,®]. A related approach has already been proposed by Gautschi in 1961 [2]. He
considered linear multistep methods for first-order ODES whose solutions are known to have a priori

given, dominant frequencies wj, and he "tuned" the linear multistep coefficients to these dominant
frequencies. However, instead of assuming that the location of the dominant frequenciesis given, we
only assume that the interval [w,@)] is available. By using a minimax technique, we will "tune" the
coefficients of the integration method to thisinterval. The tuning will of course be more effective as
- wissmaler.

In [5] we applied the minimax approach to linear multistep methods for first-order ODEs. In this
paper, we analyse this approach for two families of second-order ODE methods, viz. the classical

explicit Stormer-Cowell methods (see e.g. [3, p.422]) and the parallel explicit Stérmer-Cowell

methods developed in [4]. In addition, we show that in general the minimax approach is superior to a
tuning technique based on least squares minimization. The minimax and least squares versions of the
Stormer-Cowell methods will be called oscillatory Stormer-Cowell methods.

2. The numerical schemes
The methods studied in this paper are of the explicit general linear method (GLM) form

(2.1) Yne1 = (RODY + h2(SONF(Y), n=0,1, ...

Here R and S are k-by-k matrices with k > 2, O the Kronecker product, h denotes the stepsize
tn+1 - th, and each of the k components yn+1 j of the kd-dimensional solution vector Y n+1 represents a
numerical approximation to y(tn + gh). The vector a := (aj-) is called the abscissa vector, the
quantities Y the stage vectors and their components yp,; the stage values. Furthermore, for any vector
Yn= (ynj), F(Yn) contains the righthand side values (f(ynj)). The abscissae g are assumed to be
distinct with a, = 1.

The GLM (2.1) is completely determined by the matrices {R, S} and the starting vector
Yo = (y(to + (g-1)h)). Thus, given { Yo, R, S}, (2.1) defines the sequence of vectors Y1, Yo, ... .
Evidently, each step requires the evaluation of the k righthand side functions f(yy;), but they can be
evaluated in parallel, so that effectively the GLM requires only one righthand side function per step.

2.1. The local error

Thelocal error is defined by the residue upon substitution of the exact solution into the GLM. Therate
by which the residue tends to zero ash — 0 determines the order of consistency. We shall call the
GLM (and the stage vector Y n+1) consistent of order g if the residue upon substitution of the exact
solution values y(tn + gh) into (2.1) is of order ha*2, The value of q is often called the stage order.
Given the vector a, the consistency condition leads to a set of order conditions to be satisfied by the
matrices R and S. In addition, in order to have convergence, the GLM has to satisfy the necessary



condition of zero-stability, that is, the matrix R should have its eigenvalues on the unit disk and the
eigenvalues of modulus one should have multiplicity not greater than two.

From the consistency definition given above, the order conditions follow immediately. For simplicity
of notation, we assume that the ODE is a scalar equation. Here, and in the sequel of this paper, we
will use the componentwise definition of functions of vectors, that is, for any function g and vector v,
we define g(v) := (g(Vj)). Then, substituting the exact solution into (2.1), we define the local error

(2.2) g(t,h) := RY (t) + h2SF(Y (1)) - Y (t + h)

=(R+r2 5, ~9) exp(bh &) - exp(an 3))y® = o(h & )yco),

where b := a - e, e being the vector with unit entries, Y (t) denotes the vector containing the exact
stage values, and

(2.3) @2) = (R + z29) exp(bz) - exp(az).
Let usexpand @in the Taylor series

@2) =Cc2+C1z + ...+ Z9%2¢cq +
(2.4)

c-2:=Re-e c.1:=Rb-a ¢:= (J+2),(Rbl+2 aJ+2)+-— Shi, j=0.

Furthermore, let us choose the matrix R such that c-o = ¢.1 = 0. By defining the matrices

C:= (Co, very Ck- 1) Uy = ;' v2, .., (I(-l:!-]_)!vk+1)’
(2.5a8)
1
X = (e b, 2| ,ka'l),

we find that the matrix S and the error matrix C are related by the formula
(2.5b) SX - C=Uj; - RUp,.

The conventional way of constructing IVP solvers chooses distinct abscissae g (so that X is
nonsingular) and defines S by (2.5b) with C = O yielding methods with stage order q = k. By a
judicious choice of a one may increase the order of accuracy at the step pointst, to obtain step point
order p > q (superconvergence at the step points).

2.2. Stormer-Cowell methods
The definition of the classical explicit k-step Stérmer-Cowell (SC) methods with (step point) order
p =k canbefoundine.g.[3, p. 422]. These methods fit into the GLM format (2.1) with

26a) a=(2k 3k ..,-1,01)7, R=ﬁ @ = r=(0..,0-12)",



where the vector s is determined by substituting (2.6a) into (2.5b) and setting C = O. Because the
(shifted) abscissae bj are distinct, X isinvertible, and since s™ = TS, it follows from (2.5b) that

(2.6b) ST =eT(Ua- RUp)XL.

Note that ynj = yn-1j+1 for j = 1, ..., k-1, so that the first k-1 components f(yp;) of F(Yn) are
available from the preceding step. Hence, (2.6) defines aclassical linear multistep type method with
only one new righthand side evaluation per step.

In [4] we derived parallel Stormer-Cowell (PSC) methods by allowing Sto be afull matrix satisfying
(2.5b) with C = O, and by defining R according to the (zero-stable) matrix

a

R:(O,...,O,e-r,r), r==e€ - ak-1 -1

(2.78)

(note that the consistency conditions c-2 = ¢-1 = 0 are now automatically satisfied). Since the (shifted)
abscissae b are distinct, S can be defined by

(27b)  S=(Ua- RUp)XL,

to obtain PSC methods with stage order g = k. However, in [4] it was shown that the abscissa vector
a can be chosen such that the step point order p > k. In addition, in a few cases it is possible to
choose a such that instead of k computational stages only k-1 computational stages are involved, that
is, only k-1 distinct righthand side functions, and hence only k-1 processors, are needed per step. For
future reference, Table 2.1 lists the abscissa vector a, the number of computational stages k™ and the
order p.

Table 2.1. Abscissa vector a, computational stages k™, and step point order p for PSC methods.

k kK p a
57 + V 229 57-V229 3

Sl 20 20 > 1
146 - V163 146 +V163 1 3

5 4 6 66 66 2 2 1

6 6 8  1.220473884991749550773176295  1.785748179438222426650898115
2.082801901339905567884428919  2.357404605658693883262925242 % 1

7 6 9  1.223660672730360134033723070  1.783141526651761362293102021
2.085502432861554845592192032  2.359849808362845524482247436 % % 1

8 7 10 1.225168248342102287044467884  1.786086152017853260021754689
2.072080312447516818672381998  2.347691904907298754183065141 % % g



2.3. Oscillatory Stormer-Cowell methods

Suppose that the components of the exact solution y(t) are expanded piecewise on subintervals with
respect to the eigenfunctions { exp(At): A 0 C} of the operator d/dt. Then, it follows from (2.2) that
the local error €(t,h) can be expanded in the functions { ((hA)exp(At): A 0 C}, i.e.

(2.2)  gth) = a1@hA)et + axhng)e? 2 + .. + ag®(h)eMs, Aj o Co,

where the qj are the coefficient vectors and Co denotes the set in the complex plane containing the s
parameters Aj needed in the expansion of the components of y(t). The expansion (2.2') shows that the
magnitude of the local error can be minimized by minimizing the function @(z) in the domain hCp. In
this paper, we consider the case where Cp = [iw,iW@)], that is y(t) can be approximated piecewise by
trigonometric formulas of the form (1.2). The oscillatory Stérmer-Cowell methods (briefly OSC
methods) and the parallel OSC methods (POSC methods) constructed in this section use the same
matrix R and the same abscissa vector a as defined in (2.6a) and in {(2.7a), Table 2.1}, respectively.
However, the matrix S will be chosen such that in some sense the function (z) is minimized on
[ihw,ih®]. Before discussing this minimization, we consider the piecewise trigonometric
approximation of functionsin more detail.

2.3.1. Trigonometric approximations. We start with the more general approximation problem,
where we are given a function y and an approximation gs to y satisfying s+1 distinct collocation
conditions y(tm) = 9s(Tm), m=1, ..., s+1, witht* < 1y < t* + h, and where we want to know the
behaviour of the approximation error d4(t) := y(t) - gg(t) in the interval [t*, t* + hj ash - 0. An
explicit expression for dg(t) can be obtained by approximating both y(t) and gs(t) by an (s+1)-point
polynomial interpolation formula using the (distinct) points T,. Although these two interpolation
formulas are different, they share the same interpolating polynomial. Let ps+1(t) denote this common
interpolation polynomial. Then,

y(t) = psra(t) + (S+11). Te+1(8) YE)(81), 95(t) = Psra(t) + (S+11). Te+1(1) 5(5+1)(82),

where Tig+1(t) == (t - T1)(t - 12) ... (t - Ts+1), 1 = 01(t) and 82 = B(t) assume values in [t*, t* + h],
and y and gs are assumed sufficiently differentiable. Subtracting these two formulas yields

1 * *
(28) 8=y -0 = gy T2 (YODED) - GD(EAD)). ' st<t +h
By observing that choosing the points Ty, equal to the zeros of the first-kind Chebyshev polynomial

shifted to the subinterval [t*, t* + h], that is,

2m-1

2(s+1) m), m=1, .., s+l,

(2.9) Tm=t" + %h (1+ cos (

minimizes the maximum of the polynomial Ti+1(t) in theinterval [t*, t* + h], it follows from formula
(2.8) that we may expect that this choice reduces the magnitude of dg(t). It is easily verified that in the



case of the Chebyshev zeros Tis+1(t) = 2-251hs+1T¢,9(2h1(t - t*) - 1). Thus, we have the following
result:

Theorem 2.1. Let T, be given by (2.9) and let gs(t) be a function satisfying the collocation
conditions y(tm) = gs(Tm), m=1, ..., s+1. If y and gs are s+1 times differentiable in [t*, t* + h], then

hs*

1
y(t) = gs(t) + O(t), | Os(t)] Sm | YErD(81) - gstD(B)| , t" <t<t" +h,

(

where 81 and 62 arein [t*, t* + h].¢

By means of this theorem we can obtain insight into the trigonometric approximation (1.2). Let y(t)
denote a component of the ODE solution y(t) and let uswrite (1.2) for this component in the form

(1.2') y() = gs(t), gs(t) := ap + azcos(wat) + azsin(wyt) + ... + As.1C08(Ws-1t) + AsSiN(wdt).

In each subinterval [tp, tn + h] we require that the coefficients a; are such that y(tm) = gg(tm) for the
s+1 points Ty defined by (2.9) with t* = t,. In this way, we obtain a piecewise trigonometric
approximation of the solution component y(t). In each subinterval, the accuracy of this approximation
is determined by Theorem 2.1. This theorem implies that for any given set of frequencies wj for
which the linear system for the coefficients aj is nonsingular, the approximation error d(t) = O(hst1)
in each subinterval. However, large values of g<(5*1)(82) may result in large order constants. From
(1.2) we see that given the frequency interval [w,®], the frequencies wj should be such that the
magnitude of the coefficients o is as small as possible. In order to see whether it is possible to
combine coefficients of modest magnitude with frequenciesin agiven interval, we determined for a
number of given functions, piecewise trigonometric approximations by minimizing the maximal value
of |8«(t)| over the wj with the constraints maxj || ajf| . < @ and w < wj < &. A typical situation is
shown by the piecewise trigonometric approximation of the function y(t) = t cos(t2) on the interval
[0,1]. Thisfunction oscillates with increasing frequency and amplitude. Table 2.2 lists the number of
correct digits A (i.e. the maximal absolute error is written as 10-2), the constraint on o, a suitable
frequency interval, and the observed order of accuracy p. Note that the order of accuracy pisin
agreement with Theorem 2.1.

Table 2.2. Maximal approximation errors for y(t) =t cos(t2) on [0,1].

_ _1 1 _1 -1
5 @ lew h=1 h=; h=, hg hEe P
2 3 [2.0, 3.0] 1.5 2.1 2.9 3.8 4.7 3.0
4 3 [20,33 31 48 6.2 75 90 50
6 5 [2.0, 3.6] 4.5 6.2 8.2 10.3 7.0

This example illustrates that the representation of oscillatory functions by means of formulas of the
form (1.2) with relatively small frequency bands and modest coefficientsis quite accurate.



Next, we consider the minimization of (z) in the interval [ihw,ih@]. In the case of the SC methods
only the last component of ((z) isrelevant, so that only this component needs to be considered. In the
case of the PSC methods, all components ¢j(z) play arole and could be minimized separately on
intervals [ihw,ih®] depending on j. However, for smplicity, we shall only consider the case where all
components are minimized on the same interval [ihw,ih@) .

If the location of the frequencies wj is known in advance and if there are sufficiently many free
parameters available, then we obtain a perfect tuning of the method by choosing S such that the
quantities @j(ihwy), ..., @j(ihws) vanish. This is precisely the approach of Gautschi [2] in his
oscillatory linear multistep methods for first-order ODESs with a priori given frequencies.

In this paper, our starting point is that only the interval [w,@] is known. Then, the most natural option
seems to be the minimization of the L2-norm of @(z) on the interval [ihw,ihG]. However, we will
show that the system of equations defining the matrix S becomes highly ill-conditioned if the length of
theinterva [ihw,ih@] is small. Another option (already applied in [5] in the case of linear multistep
methods for first-order ODEs) chooses as many zeros of ¢(z) as possible in the interval [ihw,ih@] in
such a way that the maximum norm of @j(z) on the interval [ihw,ihc] is minimized. For a given
interval [ihw,ihc] this minimax approach yields a system for S that is much better conditioned than in
the case of the least squares approach. However, again we are faced with ill-conditioning if h(® - w)
Issmall. In such cases, one may decide to use a Taylor expansion of ()(z) at the centre of the interval
[1hw,ih@)] (see Section 2.3.4).

Evidently, for h — 0, the matrix S resulting from the least squares and minimax options converges to
the matrix S defining the Stérmer-Cowell type methods discussed in the preceding section. Likewise,
the error matrix C defined in (2.5a) convergesto O.

The least squares and minimax approach applied to Stormer-Cowell type methods will be discussed in
more detail in the next subsections.

2.3.2. The least squares approach. The least squares approach minimizes the L2-norm of ¢;(z)
on theinterval [ihw,ih@), i.e. it minimizes the components of

h h&
[1@ix)] 2dx = [{(x2s cos(bx) - (x))? + (x2S sin(bx) - 5())?} di,
hw hw

(2.10)
Y(X) := R cos(bx) - cos(ax), O(x) := R sin(bx) - sin(ax).

Minimization of the components of the integral expression (2.10) yieldsfor Sthe condition
211)  sw=V, V=(vg, ...v), W=(wr, ..., w),

h@

vj = [ x2(cos(bx)y(x) + sin(bx)T(x)) dx,
hw



h h
(2.12)  wj:= J' x4(cos(bjx)cos(bx) + sin(bjx)si n(bx)) dx = I x4 cos((bje - b)x)dx.
hw hw

Note that W is symmetric, so that its computation requires the evaluation of only k(k+1)/2 entries.
For the OSC methods we only have to minimize the last component of (2.10), so that we find for s
the equation sTW = exTV. On substituting bj = j-k it follows that the values exTvj can be written as

h
exTvj = _[ x2{ 2cos(bjx) - cos((bj - 1)x) - cos((bj + 1)x)} dx.
hw
For the POSC methods we obtain by substituting bk-1 :% , bk = 0 that wj is again given by (2.12)
and that

h®

vj = _[xz{ (e-r) cos((bj - %)x) + 1 cos(bjx) - cos((bje - a)x)} dx.
hw

In order to evaluate the expressions for vj and w; analytically we use the integration formulae

X
(213)  Ip:= ><'[ xmcos(ex)dx = cM1(Fin(cX) - F(cx)), m=2, 4,

with
Fo(u) = (U2 - 2)sin(u) + 2u cos(u), Fa(u) = (U4 - 12u2 + 24)sin(u) + (4u3 - 24u)cos(u).

If c(X - x) is small, then these formulas may be inaccurate and it is preferable to use the following
expansionsthat arevalid for | € <1

12=%3 (303 - 55 05(CR)2 + 75 07(cN)* - 5 B9(cX)0 + 15 O11(C)B - ...,
(2.13)

14=%5( 505 - 75 07(CK)2 + g 8u(cR)* - 11 011(cX) + 15 B13(c)B - ),

where 8j := 1 - XiX"J.
In order to compare the behaviour of the function ((z) associated with the least squares approach and

the function az) associated with the conventional approach (where the components of az) have all
their zeros at the origin), we have plotted the quotients

(214) Bosc(x) :=| 2N | o) = || A
Pi(ix) Q(ix) ||

as afunction of x, respectively for the OSC and POSC methods. The least squares approach is more
effective than the conventional approach if 6(x) < 1. The Figures 2.1aand 2.1b respectively present



plots for the OSC and POSC methods of order p = 6 on the interval hw < x < h with hw = 0.8 and
ho = 1 (dashed line). This behaviour of B(x) is typical for a whole range of hw and h@ values, and
shows that the least squares approach yields in the interval hw < x < ht a substantially smaller local
error than the conventional approach. Note that the 8(x) values are smaller in the SC case than in the
PSC case. Thisis due to the fact that in the PSC case all components of (p(ix)/?p(ix) are taken into
account. Furthermore, the Figures 2.2a and 2.2b show in the whole interval 0 < x < ht the behaviour
of the functions { |@«(iX)], [@X)[} and {[|Q)||eo, |[@(X)]|eo} , respectively for the OSC and POSC
methods (dashed and dashed-dotted lines). From these figures it follows that an underestimation of
theinterval of dominant frequenciesis aways (albeit dightly) better than the conventional approach,
whereas overestimation may easily be worse than the conventional approach.

A computationally drawback of the least squares approach is the poor condition of the system defining
S because W converges to a singular matrix as hto becomes smaller. In fact, it follows from the
definition of W and (2.13) that W = & (h®)50s(e, ... , €) + O((h@)7).

2.3.3. The minimax approach. The condition of the system defining S can be improved by
requiring that the components| @(ix)| possess zerosintheinterval hw < x < hwlf | ¢(z)] would bea
polynomial of degree 2r in z, then its maximum norm on the interval [ihw,ihc] would be minimized if
we identify the zeros of | @j(z)| with the zeros of the corresponding minimax polynomial on
[1hw,iht]. Such minimax polynomials have r double zeros given by (cf. [5])

2m-1

o m), m=1,..,r.

(2.158)  Zm =iXm, Xm = %h(@+m+(m-@) cos (

Thisleads usto require
(2.15b)  @(ixm) = (R - xm2S) exp(ibxm) - exp(iaxm) =0, m=1, ..., T,
wherer is determined by the number of free parameters available in the function . Thus, we have to
solve the equations
Xm?2S cos(bxm) = R cos(bxm) - cos(axm),

(2.16a) m=1,..,r,
Xm2S sin(bXm) R sin(bxm) - sin(axm),

If kK iseven, we may set r = k/2, so that the matrix Sis completely determined by (2.16a). If k is odd,
we set r = (k-1)/2 and we add the consistency condition co =0, i.e.

(2.16b) 2Se= a2 - Rb2, k odd.
L et usintroduce the k-by-k matrices Vy and W

Vy = ( X172C0S(VX1), ..., = Xy 2C0S(VXy), - X1738iN(VX1), ..., - X;~3si n(vxr)), k even

Vy = (v2, - X172C0S(VX1), ..., = Xy 2COS(VX[), - X173SIN(VX1), ..., - X;3Si n(vxr)), k odd
(2.17a)

W = (cos(bxl), ..., cos(bx;), x171sin(bxy), ..., X, 1si n(bxr)), k even



W := (2e, cos(bxa), .., cos(bxy), xg-sin(bx1), ..., - Isin(bxy)),  k odd.

Then the conditions (2.16) can be expressed as SW =V := V3 - RV, leading to afamily of OSC and
POSC methods by defining

(217b)  S=VW-L, V:=Vy-RV),.

Again, the condition of the matrix W becomes worse if hw and h@ are both small. However, the
condition is much better than in the case of the least squares approach. For example, for k even we
have that W = (e, v, eb, .., b) + O(h2), so that only k/2 colums of W are approximately equal,
whereas in the least squares approach k colums of W are approximately equal .

The solid linesin the Figures 2.1 and 2.2 represent the minimax analogues of the least squares plots.

2.3.4. Small frequency intervals. If the zeros xmy in the minimax approach are close together,
then it seems equally effective to concentrate as many zeros as possible of @ at zg = ixg = ihwg with
wp = (W + @W)/2. Let us expand @(z) around zg (compare (2.4))

02) = Yzo) + (z-20)Q(20) + 5(2-202Q'(20) + ... + 1 (z-20)"GM(2g) + ..,
(2.18)
@i)(2) = S(z2bi + pjzbi-1 + gjbi-2) exp(bz) + Rbi exp(bz) - & exp(az), j =0,

where pj+1 = pj + 2and ¢j+1 = pj + gj with po=qo = 0. If kiseven, then we find

Re@)(zg) = S((qj bi-2 - xg2bl) cos(bxg) - pjxobl-1si n(bxo)) + Rbi cos(bxg) - al cos(ax)
(2.19)

Im@i)(zo) = S(pyxobi-1 cos(bxg) - (xo2ol - gibi-2) sin(bxg)) + Rbi sin(bxo) - al sin(ax)

wherej = 0, 1, ..., (k-2)/2. Setting Re(()(zg) = Im@()(zg) = O yields the required system of
equations for S. If k is odd, then we add the consistency condition cg = 0 given by (2.16b) and
proceeding as in Section 2.3.3 we can again define appropriate matrices V and W such that SW = V.
The resulting matrix W is less 'singular’ than in the minimax approach. In fact, if k is even, then
W = ( e - 3b, gjhi-2, - b, 2e, (p; + qj)bj-l) + O(h2) wherej = 2, 3, ..., (k-2)/2, showing that for
k > 6 it is better conditioned than in the case (2.17a). In our numerical experiments, we define the
matrix Sin thisway as soon as h(® - w) < 0.001.

2.3.5. Oscillatory methods for arbitrary frequency intervals. Evidently, the oscillatory
methods constructed above should be more accurate than the underlying conventional methods
provided that the frequency interval [w,®] is small. This raises the question what happens if this
interval in not small. In other words, How robust are the oscillatory methods in nonmodel situations.
To answer this question, we look at the local error of the oscillatory methods which is determined by
the error matrix C defined in (2.5a). This matrix depends on h and is related to the matrix S by the
equation C(h) = S(h)X - Us + RUp. Werestrict our considerations to the matrix C(h) associated with
the minimax method. It follows from the minimax equations (2.16a) that S(h) can be expanded in
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powers of h2, so that C(h) can also be expanded in powers of h2. Since C(0) = S(0)X - U + RUp
vanishes, we have that C(h) = % h2C"(0) + 21—4 h4C""'(0) + O(h®). Evidently, the derivatives of C(h)
equal those of S(h)X, e.g. C"(0) = S"(0)X. It istempting to compute the derivatives of S(h) from the
formulaSW =V := V4 - RVyp by substituting Taylor expansions of S(h), V(h), and W(h). However,
the resulting systems appear to be singular. For example, S'(0) satisfies the equation W"(0) +
S'(0)W(0) = V"(0) in which W(0) is a singular matrix. The reason is that a number of entries of
S'(0) are zero. Only if we know in advance which entries vanish, we can solve this singular system.

An dternativeisto look at the function || @(ix)|| in theinterval hw < x < ht. From (2.2) it follows

(2-20) " S(I,h)" o S " Gl"oo" (p(l h(’ol)"oo + “ aZ"ooll (p(lth) "oo oot " CXs"oo" (p(lth) "oo
= G(" qxlhwl)"oo + “ (KI th)"oo .ot " (p(ihws)"oo)’

where a isa sort of averaged weighted coefficient. Evidently, o isat most max; | aj|| .., but usually
much smaller. Thus, the size of ||€(t,h)]| ., islargely determined by | @(ix)[| ., hw < X < h@. In the
following, we write ((ix) as @(ix,hw,hw), because both in the least squares and the minimax case,
the function @(ix) is completely defined by hw and h@. It is now of interest to know how
@(iX,hw,h@) depends on hw and hw. We shall confine our considerations to the minimax case.
Furthermore, since for an arbitrary problem the dominant frequencies may be located anywhere, we
shall assume themin an interval [0,&] where @ is a guess for the actual upperbound of the dominant
frequencies. We expect that the quotient Q(x,h®) := [l@(ix,0,h®)||, / [|(ix/h,0,1) ||, behaves like
some power of ht as h tends to zero, independently of x. Therefore, we considered for a number of
ho-values the function logQ(x,hw) / log(h). For ht < 1, we found for each OSC and each POSC
method an amost constant value k + 2. Hence,

221)  Quhgy) = N AXCOe _(iio ey chme
ll0x/h5,0, 1) b

On substitution into (2.20), we obtain

(222) [t < o (he)k2(l@icn@2,0,1) [l + [@iwzst,0,1) o + ... + [[(icws5571,0,1) |er)-

This error estimate shows that irrespective the value of @ the oscillatory methods possess stage order
at least q = k (just as the underlying conventional methods). The high power of @ in (2.22) looks
alarming if @ is large. However, if the expansion (1.2) of the solution contains dominant terms of
high frequency, then we need anyhow small stepsizes to represent the solution, so that it is reasonable
to assume that ht < 1. In fact, the factor @k*2 will also appear in the first nonzero term of the Taylor
expansion of thelocal error (see Section 2.1).

Furthermore, the error estimate (2.22) shows that the function || @(ix,0,1)[|., 0 < x < 1, plays a
central role. Thisfunction assumes a maximum at X = 1, so that
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(2.233)  [leth)]lo < a s (K2 Pmax,  Pmax := [[9(i,0,2) [loo-

However, this estimate is too pessimistic, because it assumes that all dominant frequencies are located
near @. A more realistic estimate is obtained by replacing the sum in (2.22) by s times the averaged

vaue of |@(ix,0,1)], intheinterval 0<x<1,i.e.
1

(2230) et < o S (M) 2Qaver,  Qaver:= [ [19(,0,1)]Jeo cx.
0

Table 2.3 lists the values of @max and @ayer for the OSC and POSC methods. The values of @qer are
smaller than @max by afactor of about 10.

Table 2.3. Values of @max and @ayer-

2.4. Stability

One may wonder how the oscillatory modes affect the stability of the method. We restrict our
considerations to the linear stability of (2.1). The linear stability is determined by the matrix
M(2) := R + zS with z = h2A, A running through the eigenvalues of the Jacobian matrix of the
righthand side function f of the ODE (1.1). Assuming that (1.1) is linearly stable itself, we only
consider negative values of z. Here, the stability interval is defined by the interval -B2 < z < 0, where
M(z) has its eigenvalues on the unit disk. The value of 3 is called the stability boundary. As an
illustration, we have computed the stability boundaries of the POSC methods with w =@ and with w
= 0. Table 2.4 presents values of (3 for the 6th-order (k = 5) and the 10th-order (k = 8) POSC
methods (these methods are also used in the numerical experiments in Section 3). In all cases, the
oscillatory approach dightly stabilizes the PSC method until some maximal value of ht is reached.

Table 2.4a. Stability boundaries for the case w = @.

POSC (6) 0.85 0.87 0.89 097 1.18 129 0
POSC(10) 078 0.78 078 0.81 0.87 0.89 090 1.11 145 1.40
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Table 2.4b. Stability boundaries for the case w = 0.

h 0O 05 10 20 40 60 80 100 110 120
POSC (6) 085 0.86 0.87 090 098 105 1.03 1.10 1.12 0
POSC(10) 078 078 0.78 081 085 091 093 055

3. Numerical experiments
In this section we compare the performance of the OSC and POSC methods in least squares and

minimax mode with the nonoscillatory Stormer-Cowell methods. In the tables of results, we use the
following abbreviations:

SC(p) Classical Stormer-Cowell method (2.6) of order p =k
OSC(p) Oscillatory version of the SC(p) method

PSC(p)  Pardle Stormer-Cowell method {(2.7), Table 2.1} of order p
POSC(p) Oscillatory version of the PSC(p) method.

If in the examples the exact solutions are known, the starting vector Y was taken from the solution
values (y(to + bj h)), otherwise it was computed numerically by a one-step method. We used a few
well known test problems from the literature. The accuracy is defined by the number of correct digits
A at the end point (the maximal absolute end point error iswritten as 102). The number of steps taken
in theintegration interval is denoted by N which is a the same time for all methods the total number of
sequential righthand sides needed to perform the integration.

3.1. Problems with one dominant frequency

We start with Bessel's equation [5]
2
@1 SY=-(100+ )y, y(1) = b(10), y(1) = $36(10) - 103(10)

on theinterval [1,10] with exact solution y(t) =Vt Jp(10t). This equation shows that there is just one
frequency w= /100 + (4t2)-1 = 10. The oscillatory methods were applied with [w,&] = [9.9,10.1].

Table 3.1a. (N, A) - valuesfor the Bessel problem on [1,10]
6th-order methods with [w,@] = [9.9,10.1].

Method Verson 100 200 400 800
SC(6) Conventional * 2.3 4.0 5.8
0SC(6) Least squares 4.7 6.6 8.7 10.6
Minimax 4.7 6.6 8.7 10.6

PSC(6) Conventional 1.4 5.9 8.6 9.5
POSC(6) Least squares 6.4 8.8 10.9 13.2

Minimax 6.0 8.9 11.0 13.7
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Table 3.1b. (N, A) - valuesfor the Bessel problem on [1,10]
10th-order methods with [w,o] = [9.9,10.1].

Method Verson 100 200 400 800
SC(10) Conventional * * 6.7 9.7
0OSC(10) Least squares * * 8.8 11.1
Minimax * * 12.0 14.7

PSC(10) Conventional * 8.3 11.6 15.0
POSC(10) Least squares * 10.9 11.2 12.1
Minimax * 13.3 16.5 19.8

The second test problem is the Orbit problem from the Toronto test set [6] on the interval [0,20] with
eccentricity € = 0.01. The solution is known to have one dominant frequency w = 1. The oscillatory
methods were applied with [w,@] =[0.9,1.1]. Theresultsin the Tables 3.1 and 3.2 indicate that

(i) Theleast squares approach is unreliable, even for relatively large stepsizes, which is
due to the bad condition of the W matrix.

(i)  The minimax approach can be used until the 20 decimals accuracy range.

(iif)  The minimax approach produces higher accuracies than the conventional approach.

The fact that the minimax method is less effective in the case of the Orbit problem, particularly in the
high accuracy range, can be explained by the fact that for high accuracies, frequencies other than
w = 1 start to come into play.

From now on, we do not apply the least squares strategy because of its erratic performance.

Table 3.2a. (N, A) - valuesfor the Orbit problem on [0,20]
6th-order methods with [w,®] = [0.9,1.1].

Method Verson 40 80 160 320 640
SC(6) Conventional 0.4 2.4 5.0 6.8 8.3
OSC(6) Least squares 1.8 3.6 5.1 6.8 8.6
Minimax 1.8 3.6 5.1 6.8 8.6

PSC(6) Conventional 2.5 4.7 6.7 8.8 10.9
POSC(6) Least squares 3.4 6.1 8.2 10.2 11.5
Minimax 34 6.2 8.1 10.1 12.2

Table 3.2b. (N, A) - valuesfor the Orbit problem on [0,20]
10th-order methods with [w,®] = [0.9,1.1].

Method Verson 40 80 160 320 640
SC(10) Conventiona * 4.1 7.6 10.1 13.0
0SC(10) Least squares * 4.7 3.0 * *
Minimax * 4.7 8.2 10.6 13.5

PSC(10) Conventional 4.5 9.8 13.0 15.9 18.4
POSC(10) Least squares 5.4 10.3 * * *

Minimax 54 10.8 13.6 16.4 18.8
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3.2. Effect of perturbing a periodic problem

In order to see how the performance of the minimax method changes if an ODE with afully periodic
solution is perturbed, we integrated the IVP

d?y . _dy(0) _
="y r3zresniy-2, y0)="4" =0,

(3.2 0<t<10.
d?z

1,

q2-y-6zte cos3(y - 2), z(0) = dzétO)
If € = 0O, then the problem is fully periodic with frequencies w1 = 2 and wy = 3. However, if € Z 0,
then additional frequencies are introduced. We now want to know whether the solution is still
approximated piecewise by formulas of the form (1.2) with arelatively small frequency band, say
[w,®] =[1.5, 3.5]. Table 3.3 presents results for afew values of €. These figures show that the two
OSC methods and the POSC(10) method ‘feel' the introduction of additional frequencies as €
increases (the POSC(6) method seems to be insensitive). Apparently, frequencies outside the interval

[1.5, 3.5] play arole. Furthermore, like the Orbit problem, these ‘outside’ frequencies play a more
dominant role in the high accuracy range.

(iv) Theminimax approach is more effective in the lower accuracy range.

Table 3.3a. Problem (3.2): (N, A) - values for 6th methods, [w,®] = [1.5, 3.5].

_ -1 -1 -1

| €=0 €= 10 €= 5 €= 3
Method Verson 100 200 100 200 100 200 100 200
SC(6)  Conventional 34 51 34 52 34 53 34 55
OSC (6) Minimax 48 6.5 43 6.0 40 58 38 57
PSC (6) Conventional 6.2 83 6.1 82 6.0 8.1 6.0 8.0
POSC (6)  Minimax 71 9.3 71 9.2 70 9.2 72 94

_ -1 _1 -1

e=0 €= 10 €= 5 €= 3
Method  Version 100 200 100 200 100 200 100 200
SC (10)  Conventional 53 86 0.7 6.6 05 6.3 04 6.1
OSC (10)  Minimax 9.8 11.3 16 6.7 14 6.4 14 6.1
PSC (10) Conventional 104 138 10.3 13.6 10.6 135 8.6 1338
POSC (10)  Minimax 125 158 10.7 13.9 10.4 13.7 8.6 14.0

3.3. Influence of wrong frequency estimates
Suppose that we apply the oscillatory methods with awrong estimate of the frequency interval for the
dominating frequencies. For example, let us compare the results for the orbit problem when integrated
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with the correct, an underestimated and an overestimated frequency interval. Table 3.4 confirms our
earlier conclusion (see Section 2.3.2):

(v)  Underestimation of theinterval of dominant frequenciesis always better than the
conventional approach, whereas over estimation may be wor se.

Table 3.4. Orbit problem on [0,20]: (N, A) - values for various frequency intervals.

Method Verson 40 80 160 320 640
PSC(6) Conventional 25 4.7 6.7 8.8 10.9
POSC(6) Minimax [0.7,09] 3.8 5.7 7.7 9.8 11.9
Minimax [0.9,1.1] 3.4 6.2 8.1 10.1 12.2
Minimax [1.51.7] 2.1 4.3 6.3 8.4 10.5

3.4. Problems with changing frequency

Next, we consider problems with a changing dominant frequency. One option is to estimate the
dominant frequency in each step and to recompute the matrix S. However, thisis only justified if the
righthand side function is relatively expensive. If we want to integrate with afixed S, then we should
choose a sufficiently large frequency interval. We illustrate this by means of the nonlinear orbit
equation of Fehlberg (cf. [1]):

62y _ Oee -0
(3.3) 42 - Jy, =[] 2 ] r®:=y®|, vw2<t<Io,

with exact solution y(t) = (cos(t2), sin(t?))T. This problem has a constant period with respect to the
variable t2, but with respect to t the period is decreasing with t. The decreasing behaviour of the
period is also clear from the equation itself. Sincer(t) = 1, it follows from (3.3) that for large values
of t the matrix J behaves as a diagonal matrix with diagonal entries -4t2. This indicates that for larget,
the frequency behaves as 2t. Therefore, we applied the oscillatory methods with [w,@] = [2V 2 , 20].
The results are presented in the Tables 3.5a and 3.5b from which we conclude:

(vi) Evenfor larger frequency bandsthe minimax approach outperforms the conventional
approach.

Table 3.5a. (N, A) - valuesfor the Fehlberg problem on [V2 ,10]
6th-order methods with [w,&] = [2VT2 , 20].

Method Version 160 320 640 1280 2560 5120

SC(6) Conventional * 1.7 3.5 5.3 7.2 9.0
0OSC(6) Minimax 11 3.0 4.7 6.5 8.3 10.1
PSC(6) Conventional 2.3 4.2 6.1 8.2 10.3 124

POSC(6) Minimax 3.6 55 7.2 9.2 11.3 134
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Table 3.5b. (N, A) - valuesfor the Fehlberg problem on [Vv2 ,10]
10th-order methods with [w,&] = [2V 2, 20].

Method Verson 160 320 640 1280

SC(10) Conventional * 3.0 6.0 9.0
0OSC(10) Minimax * 4.8 7.9 10.7
PSC(10) Conventional 45 7.6 10.9 14.3
POSC(10) Minimax 5.9 9.0 12.3 15.7

3.5. Problems with widely spread dominant frequencies

Finally, we consider the Stormer problem in polar coordinates on the interval [0, 0.5] withu = 1tas
givenin[3, p. 420 (10.11a)]. Piecewise approximation of the solution by formulas of the form (1.2)
leads to quite different intervals of dominant frequencies. Hence, the overall frequency band [w,®]
will be quite large, so that we should not expect a better performance of the oscillatory methods.
Surprisingly, the resultsin Table 3.6 show that for quite arbitrary intervals [w,®] the POSC methods
are at least competitive with the PSC methods. Thus,

(vii) Even for problems whose solutions possess widely spread frequencies, the oscillatory
methods do not perform wor se than the conventional methods.

Table 3.6a. (N, A) - valuesfor the Stérmer problem on [0, 0.5]
6th-order methods with variousintervals [w,@)] .

Method Version 40 80 160 320 640
PSC(6) Conventional 0.9 4.6 6.5 85 105

POSC(6)  Minimax [0,50] 0.9 4.7 6.6 85 106
Minimax [0, 100] 1.0 5.2 7.1 90 11.0

Minimax [0, 200] 1.6 4.4 6.3 83 103

Table 3.6b. (N, A) - valuesfor the Stérmer problem on [0, 0.5]
10th-order methods with various intervals [w, @] .

Method Verson 40 80 160
PSC(10) Conventional 0.9 7.0 10.3
POSC(10) Minimax [0, 50] 1.0 7.1 10.4

Minimax [0, 100] 1.0 7.2 10.6

Minimax [0, 200] 0.8 75 10.8



18
Refer ences

[1] Fehlberg, E. [1972]: Classical Runge-Kutta-Nystrom formulas with stepsize control for
differential equations of the form x" = f(t,x) (German), Computing 10, 305-315.

[2] Gautschi, W. [1961]: Numerical integration of ordinary differential equations based on
trigonometric polynomials, Numer. Math. 3, 381-397.

[3] Hairer, E., Narsett, S.P. & Wanner, G. [1987]: Solving ordinary differential equations, Vol. I.
Nonstiff problems, Springer-Verlag, Berlin.

[4] Houwen, PJ. van der, Messina, E. & Swart, JJ.B. de [1998]: Parallel Stérmer-Cowell
methods for high-precision orbit computations, submitted for publication.

[5] Houwen, P.J. van der & Sommeijer, B.P. [1984]: Linear multistep methods with reduced
truncation error for periodic initial value problems, IMA J. Numer. Anal. 4, 479-4809.

[6] Hull, T.E., Enright, W.H., Fellen, B.M. & Sedgwick, A.E. [1972]: Comparing numerical
methods for ordinary differential equations, SIAM J. Numer. Anal. 9, 603-637.



Figure 2.1a. Plots of the quotients (2.14) in [0.8,1] for OSC methods
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Figure 2.1b . Plots of the quotients (2.14) in [0.8,1] for POSC methods
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