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ABSTRACT

We consider explicit methods for initial-value problems for special second-order ordinary differential

equations where the righthand side does not contain the derivative of y and where the solution components

are known to be periodic with frequencies ωj lying in a given nonnegative interval [ω,ω
_

]. The aim of the

paper is to exploit this extra information and to modify a given integration method in such a way that the

method parameters are "tuned" to the interval [ω,ω
_

]. Such an approach has already been proposed by

Gautschi in 1961 for linear multistep methods for first-order differential equations in which the dominant

frequencies ωj are a priori known. In this paper, we only assume that the interval [ω,ω
_

] is known. Two

"tuning" techniques, respectively based on a least squares and a minimax approximation, are considered

and applied to the classical explicit Störmer-Cowell methods and the recently developed parallel explicit

Störmer-Cowell methods.

1991 Mathematics Subject Classification:  65L06
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1. Introduction

We consider explicit methods for nonstiff initial-value problems (IVPs) for the special second-order

ordinary differential equation (ODE)

(1.1)
d2y
dt2

 = f(y),  y, f ∈  Rd,  t0 ≤ t ≤ tend,

where the righthand side does not contain the derivative of y. On a set of subintervals, the solution of

this IVP can be piecewise approximated by a sum of complex exponential functions like

(1.2) y(t) ≈ α0 + α1eiω1t + α2eiω2t + ...  + αse
iωst,

where the vectors α j and the frequencies ωj are such that the approximation error is small in some

sense. These frequencies ωj will be referred to as dominant frequencies. For a given subinterval and

tolerance, many trigonometric approximations like (1.2) are possible, and for a given s the

approximation error can be made smaller as the length of the subinterval decreases. We are

particularly interested in the case where the solution of (1.1) can be approximated such that in all

subintervals (i) the values of || α j|| ∞ are of modest magnitude and (ii) the frequencies ωj are located in

a given, relatively small, nonnegative interval [ω,ω
_

] (in Section 2.3.1, we shall show that this is not

an exceptional situation). The aim of the paper is to exploit this extra information on the solution by



2

modifying a given integration method for (1.1) in such a way that the method parameters are "tuned"

to the interval [ω,ω
_

]. A related approach has already been proposed by Gautschi in 1961 [2]. He

considered linear multistep methods for first-order ODEs whose solutions are known to have a priori

given, dominant frequencies ωj, and he "tuned" the linear multistep coefficients to these dominant

frequencies. However, instead of assuming that the location of the dominant frequencies is given, we

only assume that the interval [ω,ω
_

] is available. By using a minimax technique, we will "tune" the

coefficients of the integration method to this interval. The tuning will of course be more effective as

ω
_

 - ω is smaller.

In [5] we applied the minimax approach to linear multistep methods for first-order ODEs. In this

paper, we analyse this approach for two families of second-order ODE methods, viz. the classical

explicit Störmer-Cowell methods (see e.g. [3, p.422]) and the parallel explicit Störmer-Cowell

methods developed in [4]. In addition, we show that in general the minimax approach is superior to a

tuning technique based on least squares minimization. The minimax and least squares versions of the

Störmer-Cowell methods will be called oscillatory Störmer-Cowell methods.

2. The numerical schemes

The methods studied in this paper are of the explicit general linear method (GLM) form

(2.1) Yn+1 = (R⊗ I)Yn + h2(S⊗ I)F(Yn), n = 0, 1, ... .

Here R and S are k-by-k matrices with k ≥ 2, ⊗  the Kronecker product, h denotes the stepsize

tn+1 - tn, and each of the k components yn+1,j of the kd-dimensional solution vector Yn+1 represents a

numerical approximation to y(tn + ajh). The vector a := (aj) is called the abscissa vector, the

quantities Yn the stage vectors and their components ynj the stage values. Furthermore, for any vector

Yn = (ynj), F(Yn) contains the righthand side values (f(ynj)). The abscissae aj are assumed to be

distinct with ak = 1.

The GLM (2.1) is completely determined by the matrices {R, S} and the starting vector

Y0 ≈ (y(t0 + (aj-1)h)). Thus, given {Y0, R, S}, (2.1) defines the sequence of vectors Y1, Y2 , ... .

Evidently, each step requires the evaluation of the k righthand side functions f(ynj), but they can be

evaluated in parallel, so that effectively the GLM requires only one righthand side function per step.

2.1. The local error

The local error is defined by the residue upon substitution of the exact solution into the GLM. The rate

by which the residue tends to zero as h → 0 determines the order of consistency. We shall call the

GLM (and the stage vector Yn+1) consistent of order q if the residue upon substitution of the exact

solution values y(tn + ajh) into (2.1) is of order hq+2. The value of q is often called the stage order.

Given the vector a, the consistency condition leads to a set of order conditions to be satisfied by the

matrices R and S. In addition, in order to have convergence, the GLM has to satisfy the necessary
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condition of zero-stability, that is, the matrix R should have its eigenvalues on the unit disk and the

eigenvalues of modulus one should have multiplicity not greater than two.

From the consistency definition given above, the order conditions follow immediately. For simplicity

of notation, we assume that the ODE is a scalar equation. Here, and in the sequel of this paper, we

will use the componentwise definition of functions of vectors, that is, for any function g and vector v,

we define g(v) := (g(vj)). Then, substituting the exact solution into (2.1), we define the local error

(2.2) ε(t,h) := RY(t) + h2SF(Y(t)) - Y(t + h)

    = ((R + h2 
d2

dt2
 S) exp(bh 

d
dt ) - exp(ah 

d
dt ))y(t) = φ(h 

d
dt )y(t),

where b := a - e, e being the vector with unit entries, Y(t) denotes the vector containing the exact

stage values, and

(2.3) φ(z) := (R + z2S) exp(bz) - exp(az).

Let us expand φ in the Taylor series

φ(z) = c-2 + c-1z + ... + zq+2cq + ...,
(2.4)

c-2 :=Re - e,  c-1 := Rb - a,  cj :=  
1

(j+2)! (Rbj+2 - aj+2) +  
1
j!  Sbj,  j ≥ 0.

Furthermore, let us choose the matrix R such that c-2 = c-1 = 0. By defining the matrices

C := (c0, ..., ck-1),   Uv := ( 1
2!

 v2, ...,  
1

(k+1)! v
k+1),

(2.5a)

X := (e, b, 1
2!

 b2, ... , 
1

(k-1)! b
k-1),

we find that the matrix S and the error matrix C are related by the formula

(2.5b) SX - C = Ua - RUb.

The conventional way of constructing IVP solvers chooses distinct abscissae aj (so that X is

nonsingular) and defines S by (2.5b) with C = O yielding methods with stage order q = k. By a

judicious choice of a one may increase the order of accuracy at the step points tn to obtain step point

order p > q (superconvergence at the step points).

2.2. Störmer-Cowell methods

The definition of the classical explicit k-step Störmer-Cowell (SC) methods with (step point) order

p = k can be found in e.g. [3, p. 422]. These methods fit into the GLM format (2.1) with

(2.6a) a = (2-k, 3-k, ... , -1, 0, 1)T ,   R = 
 


 
0 I

0 rT
 ,   S = 

 


 
O

sT  ,  r = (0, ... , 0, -1, 2)T,
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where the vector s is determined by substituting (2.6a) into (2.5b) and setting C = O. Because the

(shifted) abscissae bj are distinct, X is invertible, and since sT = ekTS, it follows from (2.5b) that

(2.6b) sT = ekT(Ua - RUb)X-1.

Note that ynj = yn-1,j+1 for j = 1, ... , k-1, so that the first k-1 components f(ynj) of F(Yn) are

available from the preceding step. Hence, (2.6) defines a classical linear multistep type method with

only one new righthand side evaluation per step.

In [4] we derived parallel Störmer-Cowell (PSC) methods by allowing S to be a full matrix satisfying

(2.5b) with C = O, and by defining R according to the (zero-stable) matrix

(2.7a) R = (0, ..., 0, e - r, r),  r =  e  -   
a

ak-1 - 1

(note that the consistency conditions c-2 = c-1 = 0 are now automatically satisfied). Since the (shifted)

abscissae bj are distinct, S can be defined by

(2.7b) S = (Ua - RUb)X-1,

to obtain PSC methods with stage order q = k. However, in [4] it was shown that the abscissa vector

a can be chosen such that the step point order p > k. In addition, in a few cases it is possible to

choose a such that instead of k computational stages only k-1 computational stages are involved, that

is, only k-1 distinct righthand side functions, and hence only k-1 processors, are needed per step. For

future reference, Table 2.1 lists the abscissa vector a, the number of computational stages k* and the

order p.

Table 2.1. Abscissa vector a,  computational stages k*, and step point order p for PSC methods.
------------------------------------------------------------------------------------------------------------------------

k k* p a
------------------------------------------------------------------------------------------------------------------------

4 4 5  
57 + √229

20   
57 - √229

20    
3
2
 1

5 4 6  146 - √163
66

  146 + √163
66

  1
2
 

3
2
    1

6 6 8 1.220473884991749550773176295 1.785748179438222426650898115

2.082801901339905567884428919 2.357404605658693883262925242  
3
2
 1

7 6 9 1.223660672730360134033723070 1.783141526651761362293102021

2.085502432861554845592192032 2.359849808362845524482247436  1
2

 
3
2
 1

8 7 10 1.225168248342102287044467884 1.786086152017853260021754689  

2.072080312447516818672381998 2.347691904907298754183065141  59
20

  1
2

3
2
    1

------------------------------------------------------------------------------------------------------------------------
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2.3. Oscillatory Störmer-Cowell methods

Suppose that the components of the exact solution y(t) are expanded piecewise on subintervals with

respect to the eigenfunctions {exp(λt): λ ∈  C} of the operator d/dt. Then, it follows from (2.2) that

the local error ε(t,h) can be expanded in the functions {φ(hλ)exp(λt): λ ∈  C}, i.e.

(2.2') ε(t,h) ≈ α1φ(hλ1)eλ1t + α2φ(hλ2)eλ2t + ...  + αsφ(hλ)eλst,   λ j ∈  C0,

where the αj are the coefficient vectors and C0 denotes the set in the complex plane containing the s

parameters λj needed in the expansion of the components of y(t). The expansion (2.2') shows that the

magnitude of the local error can be minimized by minimizing the function φ(z) in the domain hC0. In

this paper, we consider the case where C0 = [iω,iω
_

], that is y(t) can be approximated piecewise by

trigonometric formulas of the form (1.2). The oscillatory Störmer-Cowell methods (briefly OSC

methods) and the parallel OSC methods (POSC methods) constructed in this section use the same

matrix R and the same abscissa vector a as defined in (2.6a) and in {(2.7a), Table 2.1}, respectively.

However, the matrix S will be chosen such that in some sense the function φ(z) is minimized on

[ihω,ihω
_

]. Before discussing this minimization, we consider the piecewise trigonometric

approximation of functions in more detail.

2.3.1. Trigonometric approximations. We start with the more general approximation problem,

where we are given a function y and an approximation gs to y satisfying s+1 distinct collocation

conditions y(τm) = gs(τm), m = 1, ... , s+1, with t* ≤ τm ≤ t* + h, and where we want to know the

behaviour of the approximation error δs(t) := y(t) - gs(t) in the interval [t*, t* + h] as h → 0. An

explicit expression for δs(t) can be obtained by approximating both y(t) and gs(t) by an (s+1)-point

polynomial interpolation formula using the (distinct) points τm. Although these two interpolation

formulas are different, they share the same interpolating polynomial. Let ps+1(t) denote this common

interpolation polynomial. Then,

y(t) = ps+1(t) + 
1

(s+1)! πs+1(t) y(s+1)(θ1), gs(t) = ps+1(t) + 
1

(s+1)! πs+1(t) gs(s+1)(θ2),

where πs+1(t) := (t - τ1)(t - τ2) ... (t - τs+1), θ1 = θ1(t) and θ2 = θ2(t) assume values in [t*, t* + h],

and y and gs are assumed sufficiently differentiable. Subtracting these two formulas yields

(2.8) δs(t) := y(t) - gs(t) =  
1

(s+1)!  πs+1(t) (y(s+1)(θ1(t)) - gs(s+1)(θ2(t))),   t* ≤ t ≤ t* + h.

By observing that choosing the points τm equal to the zeros of the first-kind Chebyshev polynomial

shifted to the subinterval [t*, t* + h], that is,

(2.9) τm :=  t*  +  1
2
 h (1 +  cos ( 

2m-1
2(s+1)

 π)),  m = 1, ..., s+1,

minimizes the maximum of the polynomial πs+1(t) in the interval [t*, t* + h], it follows from formula

(2.8) that we may expect that this choice reduces the magnitude of δs(t). It is easily verified that in the
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case of the Chebyshev zeros πs+1(t) = 2-2s-1hs+1Ts+1(2h-1(t - t*) - 1). Thus, we have the following

result:

Theorem 2.1. Let τm be given by (2.9) and let gs(t) be a function satisfying the collocation

conditions y(τm) = gs(τm), m = 1, ..., s+1. If y and gs are s+1 times differentiable in [t*, t* + h], then

y(t) = gs(t) + δs(t),  |δs(t)| ≤  
hs+1

22s+1 (s+1)!
  |y(s+1)(θ1) - gs(s+1)(θ2)|,  t* ≤ t ≤ t* + h,

where θ1 and θ2 are in [t*, t* + h].♦

By means of this theorem we can obtain insight into the trigonometric approximation (1.2). Let y(t)

denote a component of the ODE solution y(t) and let us write (1.2) for this component in the form

(1.2') y(t) ≈ gs(t),   gs(t) := α0 + α1cos(ω1t) + α2sin(ω2t) + ... + αs-1cos(ωs-1t) + αssin(ωst).

In each subinterval [tn, tn + h] we require that the coefficients αj are such that y(τm) = gs(τm) for the

s+1 points τm defined by (2.9) with t* = tn. In this way, we obtain a piecewise trigonometric

approximation of the solution component y(t). In each subinterval, the accuracy of this approximation

is determined by Theorem 2.1. This theorem implies that for any given set of frequencies ωj for

which the linear system for the coefficients αj is nonsingular, the approximation error δ(t) = O(hs+1)
in each subinterval. However, large values of gs(s+1)(θ2) may result in large order constants. From

(1.2') we see that given the frequency interval [ω,ω
_

], the frequencies ωj should be such that the

magnitude of the coefficients α j is as small as possible. In order to see whether it is possible to

combine coefficients of modest magnitude with frequencies in a given interval, we determined for a

number of given functions, piecewise trigonometric approximations by minimizing the maximal value

of | δs(t)|  over the ωj with the constraints maxj || α j|| ∞ ≤ α
_

 and ω ≤ ωj ≤ ω
_

. A typical situation is

shown by the piecewise trigonometric approximation of the function y(t) = t cos(t2) on the interval

[0,1]. This function oscillates with increasing frequency and amplitude. Table 2.2 lists the number of

correct digits ∆ (i.e. the maximal absolute error is written as 10-∆), the constraint on α , a suitable

frequency interval, and the observed order of accuracy p. Note that the order of accuracy p is in

agreement with Theorem 2.1.

Table 2.2. Maximal approximation errors for  y(t) = t cos(t2) on [0,1].
-------------------------------------------------------------------------------------

s α
_

  [ω,ω
_

] h = 1  h = 1
2

 h = 1
4

h = 1
8

h = 1
16

p
-------------------------------------------------------------------------------------

2 3 [2.0, 3.0] 1.5 2.1 2.9   3.8 4.7 3.0

4 3 [2.0, 3.3] 3.1 4.8 6.2   7.5 9.0 5.0

6 5 [2.0, 3.6] 4.5 6.2 8.2 10.3 7.0
-------------------------------------------------------------------------------------

This example illustrates that the representation of oscillatory functions by means of formulas of the

form (1.2) with relatively small frequency bands and modest coefficients is quite accurate.
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Next, we consider the minimization of φ(z) in the interval [ihω,ihω
_

]. In the case of the SC methods

only the last component of φ(z) is relevant, so that only this component needs to be considered. In the

case of the PSC methods, all components φj(z) play a role and could be minimized separately on

intervals [ihω,ihω
_

] depending on j. However, for simplicity, we shall only consider the case where all

components are minimized on the same interval [ihω,ihω
_

].

If the location of the frequencies ωj is known in advance and if there are sufficiently many free

parameters available, then we obtain a perfect tuning of the method by choosing S such that the

quantities φj(ihω1), ..., φj(ihωs) vanish. This is precisely the approach of Gautschi [2] in his

oscillatory linear multistep methods for first-order ODEs with a priori given frequencies.

In this paper, our starting point is that only the interval [ω,ω
_

] is known. Then, the most natural option

seems to be the minimization of the L2-norm of φj(z) on the interval [ihω,ihω
_

]. However, we will

show that the system of equations defining the matrix S becomes highly ill-conditioned if the length of

the interval [ihω,ihω
_

] is small. Another option (already applied in [5] in the case of linear multistep

methods for first-order ODEs) chooses as many zeros of φj(z) as possible in the interval [ihω,ihω
_

] in

such a way that the maximum norm of φj(z) on the interval [ihω,ihω
_

] is minimized. For a given

interval [ihω,ihω
_

] this minimax approach yields a system for S that is much better conditioned than in

the case of the least squares approach. However, again we are faced with ill-conditioning if h(ω
_

 - ω)

is small. In such cases, one may decide to use a Taylor expansion of φ(z) at the centre of the interval

[ihω,ihω
_

] (see Section 2.3.4).

Evidently, for h → 0, the matrix S resulting from the least squares and minimax options converges to

the matrix S defining the Störmer-Cowell type methods discussed in the preceding section. Likewise,

the error matrix C defined in (2.5a) converges to O.

The least squares and minimax approach applied to Störmer-Cowell type methods will be discussed in

more detail in the next subsections.

2.3.2. The least squares approach. The least squares approach minimizes the L2-norm of φj(z)

on the interval [ihω,ihω
_

], i.e. it minimizes the components of

  ∫
hω 

 hω
_

 |φ(ix)|2 dx =  ∫
hω 

 hω
_

 {(x2S cos(bx) - γ(x))2 + (x2S sin(bx) - σ(x))2}dx,

(2.10)
γ(x) := R cos(bx) - cos(ax),   σ(x) := R sin(bx) - sin(ax).

Minimization of the components of the integral expression (2.10) yields for S the condition

(2.11) SW = V, V = (v1, .... , vk),   W = (w1, .... , wk),

vj  := ∫
hω 

 hω
_

 x2(cos(bjx)γ(x) + sin(bjx)σ(x)) dx,
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(2.12) wj := ∫
hω 

 hω
_

 x4(cos(bjx)cos(bx) + sin(bjx)sin(bx)) dx = ∫
hω 

 hω
_

 x4 cos((bje - b)x)dx.

Note that W is symmetric, so that its computation requires the evaluation of only k(k+1)/2 entries.

For the OSC methods we only have to minimize the last component of (2.10), so that we find for s

the equation sTW = ekTV. On substituting bj = j-k it follows that the values ekTvj can be written as

ekTvj = ∫
hω 

 hω
_

 x2{2cos(bjx) - cos((bj - 1)x) - cos((bj + 1)x)}dx.

For the POSC methods we obtain by substituting bk-1 = 1
2
 , bk = 0 that wj is again given by (2.12)

and that

vj =   ∫
hω 

 hω
_

 x2{(e - r) cos((bj - 
1
2
 )x) + r cos(bjx) - cos((bje - a)x)} dx.

In order to evaluate the expressions for vj and wj analytically we use the integration formulae

(2.13) Im := ∫
x  

  x
_

 xmcos(cx)dx = c-m-1(Fm(cx
_

) - Fm(cx)),    m = 2, 4,

with
F2(u) = (u2 - 2)sin(u) + 2u cos(u),   F4(u) = (u4 - 12u2 + 24)sin(u) + (4u3 - 24u)cos(u).

If c(x
_

 - x) is small, then these formulas may be inaccurate and it is preferable to use the following

expansions that are valid for |cx
_
| < 1:

   I2 = x
_

3 ( 1
3

 θ3  -  1
5.2!

 θ5(cx
_

)2  +  1
7.4!

 θ7(cx
_

)4 -  1
9.6!

 θ9(cx
_

)6  +  1
11.8!

 θ11(cx
_

)8 -  ...),

(2.13')

   I4 = x
_

5 ( 1
5

 θ5  -  1
7.2!

 θ7(cx
_

)2  +  1
9.4!

 θ9(cx
_

)4 -  1
11.6!

 θ11(cx
_

)6  +  1
13.8!

 θ13(cx
_

)8 -  ...),

where θj := 1 - xjx
_

-j.

In order to compare the behaviour of the function φ(z) associated with the least squares approach and

the function φ~(z) associated with the conventional approach (where the components of φ~(z) have all

their zeros at the origin), we have plotted the quotients

(2.14) θOSC(x) :=   
φk(ix)

φ~k(ix)
   ,     θPOSC(x) :=     

φ(ix)

φ~(ix)
    

∞
,

as a function of x, respectively for the OSC and POSC methods. The least squares approach is more

effective than the conventional approach if  θ(x) < 1. The Figures 2.1a and 2.1b respectively present
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plots for the OSC and POSC methods of order p = 6 on the interval hω ≤ x ≤ hω
_

 with hω = 0.8 and

hω
_

 = 1 (dashed line). This behaviour of θ(x) is typical for a whole range of hω and hω
_

 values, and

shows that the least squares approach yields in the interval hω ≤ x ≤ hω
_

 a substantially smaller local

error than the conventional approach. Note that the θ(x) values are smaller in the SC case than in the

PSC case. This is due to the fact that in the PSC case all components of φ(ix)/φ~(ix) are taken into

account. Furthermore, the Figures 2.2a and 2.2b show in the whole interval 0 ≤ x ≤ hω
_

 the behaviour

of the functions {|φk(ix)|, |φ~k(ix)|} and {||φ(ix)||∞, ||φ~(ix)||∞}, respectively for the OSC and POSC

methods (dashed and dashed-dotted lines). From these figures it follows that an underestimation of

the interval of dominant frequencies is always (albeit slightly) better than the conventional approach,

whereas overestimation may easily be worse than the conventional approach.

A computationally drawback of the least squares approach is the poor condition of the system defining

S because W converges to a singular matrix as hω
_

 becomes smaller. In fact, it follows from the

definition of W and (2.13') that W =  1
5

  (hω
_

)5θ5(e, ... , e) + O((hω
_

)7).

2.3.3. The minimax approach. The condition of the system defining S can be improved by

requiring that the components|φj(ix)|possess zeros in the interval hω ≤ x ≤ hω
_

. If |φj(z)| would be a

polynomial of degree 2r in z, then its maximum norm on the interval [ihω,ihω
_

] would be minimized if

we identify the zeros of |φj(z)|with the zeros of the corresponding minimax polynomial on

[ihω,ihω
_

]. Such minimax polynomials have r double zeros given by (cf. [5])

(2.15a) zm = ixm,  xm :=  1
2
 h ( ω + ω

_
 + (ω

_
 - ω) cos ( 

2m-1
2r

 π)),  m = 1, ... , r.

This leads us to require

(2.15b) φ(ixm) = (R - xm2S) exp(ibxm) - exp(iaxm) = 0,  m = 1, ... , r,

where r is determined by the number of free parameters available in the function φ. Thus, we have to

solve the equations

xm2S cos(bxm) =  R cos(bxm) - cos(axm),
(2.16a) m = 1, ... , r,

xm2S sin(bxm) =  R sin(bxm) - sin(axm),

If k is even, we may set r = k/2, so that the matrix S is completely determined by (2.16a). If k is odd,

we set r = (k-1)/2 and we add the consistency condition c0 = 0, i.e.

(2.16b) 2Se =  a2 - Rb2,  k odd.

Let us introduce the k-by-k matrices Vv and W:

Vv := (- x1-2cos(vx1), ..., - xr-2cos(vxr), - x1-3sin(vx1), ..., - xr-3sin(vxr)),  k even

Vv := (v2, - x1-2cos(vx1), ..., - xr-2cos(vxr), - x1-3sin(vx1), ..., - xr-3sin(vxr)), k odd
(2.17a)

W := (cos(bx1), ..., cos(bxr),  x1-1sin(bx1), ..., xr-1sin(bxr)),  k even
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W := (2e, cos(bx1), ..., cos(bxr), x1-1sin(bx1), ..., xr-1sin(bxr)), k odd.

Then the conditions (2.16) can be expressed as SW = V := Va - RVb, leading to a family of OSC and

POSC methods by defining

(2.17b) S = VW-1,  V := Va - RVb.

Again, the condition of the matrix W becomes worse if hω and hω
_

 are both small. However, the

condition is much better than in the case of the least squares approach. For example, for k even we

have that W = (e, ... , e, b, ... , b) + O(h2), so that only k/2 colums of W are approximately equal,

whereas in the least squares approach k colums of W are approximately equal.

The solid lines in the Figures 2.1 and 2.2 represent the minimax analogues of the least squares plots.

2.3.4. Small frequency intervals. If the zeros xm in the minimax approach are close together,

then it seems equally effective to concentrate as many zeros as possible of φ at z0 = ix0 = ihω0 with

ω0 = (ω + ω
_

)/2. Let us expand φ(z) around z0 (compare (2.4))

φ(z) = φ(z0) + (z-z0)φ'(z0) +  1
2

 (z-z0)2φ"(z0) + ...  +  1
m!

 (z-z0)mφ(m)(z0) + ...,

(2.18)
φ(j)(z) = S(z2bj + pjzbj-1 + qjbj-2) exp(bz) + Rbj exp(bz) - aj exp(az),  j ≥ 0,

where pj+1 = pj + 2 and qj+1 = pj + qj  with p0 = q0 = 0. If k is even, then we find

Reφ(j)(z0) = S((qjbj-2 - x02bj) cos(bx0) - pjx0bj-1sin(bx0)) + Rbj cos(bx0) - aj cos(ax0)
(2.19)

Imφ(j)(z0) = S(pjx0bj-1 cos(bx0) - (x02bj - qjbj-2) sin(bx0)) + Rbj sin(bx0) - aj sin(ax0)

where j = 0, 1, ... , (k-2)/2. Setting Reφ(j)(z0) = Imφ(j)(z0) = 0 yields the required system of

equations for S. If k is odd, then we add the consistency condition c0 = 0 given by (2.16b) and

proceeding as in Section 2.3.3 we can again define appropriate matrices V and W such that SW = V.

The resulting matrix W is less 'singular' than in the minimax approach. In fact, if k is even, then

W = (- e, - 3b, qjbj-2, - b, 2e, (pj + qj)bj-1) + O(h2) where j = 2, 3, ... , (k-2)/2, showing that for

k > 6 it is better conditioned than in the case (2.17a). In our numerical experiments, we define the

matrix S in this way as soon as h(ω
_

 - ω) < 0.001.

2.3.5. Oscillatory methods for arbitrary frequency intervals. Evidently, the oscillatory

methods constructed above should be more accurate than the underlying conventional methods

provided that the frequency interval [ω,ω
_

] is small. This raises the question what happens if this

interval in not small. In other words, How robust are the oscillatory methods in nonmodel situations.

To answer this question, we look at the local error of the oscillatory methods which  is determined by

the error matrix C defined in (2.5a). This matrix depends on h and is related to the matrix S by the

equation C(h) = S(h)X - Ua + RUb. We restrict our considerations to the matrix C(h) associated with

the minimax method. It follows from the minimax equations (2.16a) that S(h) can be expanded in
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powers of h2, so that C(h) can also be expanded in powers of h2. Since C(0) = S(0)X - Ua + RUb

vanishes, we have that C(h) = 1
2

 h2C"(0) + 1
24

 h4C '' ' '(0) + O(h6). Evidently, the derivatives of C(h)

equal those of S(h)X, e.g. C"(0) = S"(0)X. It is tempting to compute the derivatives of S(h) from the

formula SW = V := Va - RVb by substituting Taylor expansions of S(h), V(h), and W(h). However,

the resulting systems appear to be singular. For example, S"(0) satisfies the equation W"(0) +

S"(0)W(0) = V"(0) in which W(0) is a singular matrix. The reason is that a number of entries of

S"(0) are zero. Only if we know in advance which entries vanish, we can solve this singular system.

An alternative is to look at the function || φ(ix)|| ∞ in the interval hω ≤ x ≤ hω
_

. From (2.2') it follows

(2.20) || ε(t,h)|| ∞ ≤ || α1|| ∞|| φ(ihω1)|| ∞ + || α2|| ∞|| φ(ihω2)|| ∞ + ...  + || αs|| ∞|| φ(ihωs)|| ∞

=  α(|| φ(ihω1)|| ∞ + || φ(ihω2)|| ∞ + ...  + || φ(ihωs)|| ∞),

where α is a sort of averaged weighted coefficient. Evidently, α is at most maxj || α j|| ∞, but usually

much smaller. Thus, the size of || ε(t,h)|| ∞ is largely determined by || φ(ix)|| ∞, hω ≤ x ≤ hω
_

. In the

following, we write φ(ix) as φ(ix,hω,hω
_

), because both in the least squares and the minimax case,

the function φ(ix) is completely defined by hω and hω
_

. It is now of interest to know how

φ(ix,hω,hω
_

) depends on hω and hω
_

. We shall confine our considerations to the minimax case.

Furthermore, since for an arbitrary problem the dominant frequencies may be located anywhere, we

shall assume them in an interval [0,ω
_

] where ω
_

 is a guess for the actual upperbound of the dominant

frequencies. We expect that the quotient Q(x,hω
_

) := ||φ(ix,0,hω
_

)|| ∞ / || φ(ix/hω
_

,0,1)|| ∞ behaves like

some power of hω
_

 as hω
_

 tends to zero, independently of x. Therefore, we considered for a number of

hω
_

-values the function logQ(x,hω
_

) / log(hω
_

). For hω
_

 ≤ 1, we found for each OSC and each POSC

method an almost constant value k + 2. Hence,

(2.21) Q(x,hω
_

) := 
|| φ(ix,0,hω

_
)|| ∞

  || φ(ix/hω
_

,0,1)||∞

  ≈ (hω
_

)k+2,    0 ≤ x ≤ hω
_

 ≤ 1.

On substitution into (2.20), we obtain

(2.22) || ε(t,h)|| ∞ ≤ α (hω
_

)k+2(|| φ(iω1ω
_

-1,0,1)|| ∞ + || φ(iω2ω
_

-1,0,1)|| ∞ + ... + || φ(iωsω
_

-1,0,1)|| ∞).

This error estimate shows that irrespective the value of ω
_

 the oscillatory methods possess stage order

at least q = k (just as the underlying conventional methods). The high power of ω
_

 in (2.22) looks

alarming if ω
_

 is large. However, if the expansion (1.2) of the solution contains dominant terms of

high frequency, then we need anyhow small stepsizes to represent the solution, so that it is reasonable

to assume that hω
_

 ≤ 1. In fact, the factor ω
_

k+2 will also appear in the first nonzero term of the Taylor

expansion of the local error (see Section 2.1).

Furthermore, the error estimate (2.22) shows that the function || φ(ix,0,1)|| ∞ , 0 ≤ x ≤ 1, plays a

central role. This function assumes a maximum at x = 1, so that



12

(2.23a) || ε(t,h)|| ∞ ≤ α s (hω
_

)k+2 φmax, φmax := ||  φ(i,0,1)|| ∞.

However, this estimate is too pessimistic, because it assumes that all dominant frequencies are located

near ω
_

. A more realistic estimate is obtained by replacing the sum in (2.22) by s times the averaged

value of || φ(ix,0,1)|| ∞ in the interval 0 ≤ x ≤ 1, i.e.

(2.23b) || ε(t,h)|| ∞ ≤ α s (hω
_

)k+2φaver, φaver := ∫
0  

 1

   ||  φ(i,0,1)|| ∞ dx.

Table 2.3 lists the values of φmax and φaver for the OSC and POSC methods. The values of φaver are

smaller than φmax by a factor of about 10.

Table 2.3. Values of φmax and φaver.
------------------------------------------------------------------------------------------------------------------------

k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10
------------------------------------------------------------------------------------------------------------------------
 OSC φmax 1.8 10-2 1.6 10-2 5.2 10-3 4.7 10-3 1.5 10-3 1.4 10-3 4.710-4

φaver 2.3 10-3 1.710-3 6.7 10-4 5.0 10-4 1.8 10-4 1.4 10-4 5.110-5

 POSC φmax 6.3 10-3 2.2 10-3 9.7 10-5 3.5 10-5 1.4 10-5

φaver 6.6 10-4 2.2 10-4 1.2 10-5 3.5 10-6 1.5 10-6

------------------------------------------------------------------------------------------------------------------------

2.4. Stability

One may wonder how the oscillatory modes affect the stability of the method. We restrict our

considerations to the linear stability of (2.1). The linear stability is determined by the matrix

M(z) := R + zS with z = h2λ , λ running through the eigenvalues of the Jacobian matrix of the

righthand side function f of the ODE (1.1). Assuming that (1.1) is linearly stable itself, we only

consider negative values of z. Here, the stability interval is defined by the interval -β2 ≤ z ≤ 0, where

M(z) has its eigenvalues on the unit disk. The value of β is called the stability boundary. As an

illustration, we have computed the stability boundaries of the POSC methods with ω = ω
_

 and with ω
= 0. Table 2.4 presents values of β for the 6th-order (k = 5) and the 10th-order (k = 8) POSC

methods (these methods are also used in the numerical experiments in Section 3). In all cases, the

oscillatory approach slightly stabilizes the PSC method until some maximal value of hω
_

 is reached.

Table 2.4a. Stability boundaries for the case ω = ω
_

.
-----------------------------------------------------------------------------------------------
hω = hω

_
 0 0.5 1.0 1.5 2.0 2.2 2.3 3.0 3.9 4.0

-----------------------------------------------------------------------------------------------
POSC (6) 0.85 0.87 0.89 0.97 1.18 1.29 0

POSC(10) 0.78 0.78 0.78 0.81 0.87 0.89 0.90 1.11 1.45 1.40
-----------------------------------------------------------------------------------------------
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Table 2.4b. Stability boundaries for the case ω = 0.
-----------------------------------------------------------------------------------------------
hω
_

 0 0.5 1.0 2.0 4.0 6.0 8.0 10.0 11.0 12.0
-----------------------------------------------------------------------------------------------
POSC (6) 0.85 0.86 0.87 0.90 0.98 1.05 1.03 1.10 1.12 0

POSC(10) 0.78 0.78 0.78 0.81 0.85 0.91 0.93 0.55
-----------------------------------------------------------------------------------------------

3. Numerical experiments

In this section we compare the performance of the OSC and POSC methods in least squares and

minimax mode with the nonoscillatory Störmer-Cowell methods. In the tables of results, we use the

following abbreviations:

SC(p) Classical Störmer-Cowell method (2.6) of order p = k

OSC(p) Oscillatory version of the SC(p) method

PSC(p) Parallel Störmer-Cowell method {(2.7), Table 2.1} of order p

POSC(p) Oscillatory version of the PSC(p) method.

If in the examples the exact solutions are known, the starting vector Y0 was taken from the solution

values (y(t0 + bjh)), otherwise it was computed numerically by a one-step method. We used a few

well known test problems from the literature. The accuracy is defined by the number of correct digits

∆ at the end point (the maximal absolute end point error is written as 10-∆). The number of steps taken

in the integration interval is denoted by N which is at the same time for all methods the total number of

sequential righthand sides needed to perform the integration.

3.1. Problems with one dominant frequency

We start with Bessel's equation [5]

(3.1)
d2y
dt2

 = - (100 +  
1

4t2
 )y,  y(1) = J0(10),   y'(1) = 1

2
 J0(10) - 10J1(10)

on the interval [1,10] with exact solution y(t) = √ t  J0(10t). This equation shows that there is just one

frequency ω = √100 + (4t2)-1  ≈ 10. The oscillatory methods were applied with [ω,ω
_

] = [9.9,10.1].

Table 3.1a. (N, ∆) - values for the Bessel problem on [1,10]

6th-order methods with [ω,ω
_

] = [9.9,10.1].
----------------------------------------------------------------------------------

Method Version 100 200 400 800
----------------------------------------------------------------------------------

SC(6) Conventional   * 2.3 4.0 5.8
OSC(6) Least squares   4.7 6.6 8.7 10.6

Minimax  4.7 6.6 8.7 10.6

PSC(6) Conventional   1.4 5.9 8.6 9.5
POSC(6) Least squares 6.4 8.8 10.9 13.2

Minimax 6.0 8.9 11.0 13.7
----------------------------------------------------------------------------------
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Table 3.1b. (N, ∆) - values for the Bessel problem on [1,10]

10th-order methods with [ω,ω
_

] = [9.9,10.1].
----------------------------------------------------------------------------------

Method Version 100 200 400 800
----------------------------------------------------------------------------------

SC(10) Conventional   * * 6.7 9.7
OSC(10) Least squares   * * 8.8 11.1

Minimax * * 12.0 14.7

PSC(10) Conventional   * 8.3 11.6 15.0
POSC(10) Least squares * 10.9 11.2 12.1

Minimax * 13.3 16.5 19.8
----------------------------------------------------------------------------------

The second test problem is the Orbit problem from the Toronto test set [6] on the interval [0,20] with

eccentricity ε = 0.01. The solution is known to have one dominant  frequency ω ≈ 1. The oscillatory

methods were applied with [ω,ω
_

] = [0.9,1.1]. The results in the Tables 3.1 and 3.2 indicate that

(i) The least squares approach is unreliable, even for relatively large stepsizes, which is 

due to the bad condition of the W matrix.

(ii) The minimax approach can be used until the 20 decimals accuracy range.

(iii) The minimax approach produces higher accuracies than the conventional approach.

The fact that the minimax method is less effective in the case of the Orbit problem, particularly in the

high accuracy range, can be explained by the fact that for high accuracies, frequencies other than

ω ≈ 1 start to come into play.

From now on, we do not apply the least squares strategy because of its erratic performance.

Table 3.2a. (N, ∆) - values for the Orbit problem on [0,20]

6th-order methods with [ω,ω
_

] = [0.9,1.1].
------------------------------------------------------------------------------------

Method Version 40 80 160 320 640
------------------------------------------------------------------------------------

SC(6) Conventional 0.4 2.4 5.0 6.8 8.3
OSC(6) Least squares 1.8 3.6 5.1 6.8 8.6

Minimax 1.8 3.6 5.1 6.8 8.6

PSC(6) Conventional 2.5 4.7 6.7 8.8 10.9
POSC(6) Least squares 3.4 6.1 8.2 10.2 11.5

Minimax 3.4 6.2 8.1 10.1 12.2
------------------------------------------------------------------------------------

Table 3.2b. (N, ∆) - values for the Orbit problem on [0,20]

10th-order methods with [ω,ω
_

] = [0.9,1.1].
------------------------------------------------------------------------------------

Method Version 40 80 160 320 640
------------------------------------------------------------------------------------

SC(10) Conventional   * 4.1 7.6 10.1 13.0
OSC(10) Least squares   * 4.7 3.0 * *

Minimax * 4.7 8.2 10.6 13.5

PSC(10) Conventional   4.5 9.8 13.0 15.9 18.4
POSC(10) Least squares 5.4 10.3 * * *

Minimax 5.4 10.8 13.6 16.4 18.8
------------------------------------------------------------------------------------
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3.2. Effect of perturbing a periodic problem

In order to see how the performance of the minimax method changes if an ODE with a fully periodic

solution is perturbed, we integrated the IVP

d2y
dt2

 = - 7y + 3z + ε sin3(y - z), y(0) = 
dy(0)

dt  = 0,

(3.2) 0 ≤ t ≤ 10.
d2z
dt2

 = 2y - 6z + ε cos3(y - z), z(0) = 
dz(0)

dt  = 1,

If ε = 0, then the problem is fully periodic with frequencies ω1 = 2 and ω2 = 3. However, if ε ≠ 0,

then additional frequencies are introduced. We now want to know whether the solution is still

approximated piecewise by formulas of the form (1.2) with a relatively small frequency band, say

[ω,ω
_

] = [1.5, 3.5]. Table 3.3 presents results for a few values of ε. These figures show that the two

OSC methods and the POSC(10) method 'feel' the introduction of additional frequencies as ε
increases (the POSC(6) method seems to be insensitive). Apparently, frequencies outside the interval

[1.5, 3.5] play a role. Furthermore, like the Orbit problem, these 'outside' frequencies play a more

dominant role in the high accuracy range.

(iv) The minimax approach is more effective in the lower accuracy range.

Table 3.3a. Problem (3.2): (N, ∆) - values for 6th methods, [ω,ω
_

] = [1.5, 3.5].
------------------------------------------------------------------------------------------------------

    ε = 0 ε = 1
10

ε = 1
5

ε = 1
3

Method Version 100 200 100 200 100 200 100 200
------------------------------------------------------------------------------------------------------

SC (6) Conventional 3.4 5.1 3.4 5.2 3.4 5.3 3.4 5.5
OSC (6) Minimax 4.8 6.5 4.3 6.0 4.0 5.8 3.8 5.7

PSC (6) Conventional 6.2 8.3 6.1 8.2 6.0 8.1 6.0 8.0
POSC (6) Minimax 7.1 9.3 7.1 9.2 7.0 9.2 7.2 9.4

------------------------------------------------------------------------------------------------------

Table 3.3b. Problem (3.2): (N, ∆) - values for 10th-order methods, [ω,ω
_

] = [1.5, 3.5].
------------------------------------------------------------------------------------------------------

    ε = 0 ε = 1
10

ε = 1
5

ε = 1
3

Method Version 100 200 100 200 100 200 100 200
------------------------------------------------------------------------------------------------------

SC (10) Conventional 5.3 8.6 0.7 6.6 0.5 6.3 0.4 6.1
OSC (10) Minimax 9.8 11.3 1.6 6.7 1.4 6.4 1.4 6.1

PSC (10) Conventional 10.4 13.8 10.3 13.6 10.6 13.5 8.6 13.8
POSC (10) Minimax 12.5 15.8 10.7 13.9 10.4 13.7 8.6 14.0

------------------------------------------------------------------------------------------------------

3.3. Influence of wrong frequency estimates

Suppose that we apply the oscillatory methods with a wrong estimate of the frequency interval for the

dominating frequencies. For example, let us compare the results for the orbit problem when integrated
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with the correct, an underestimated and an overestimated frequency interval. Table 3.4 confirms our

earlier conclusion (see Section 2.3.2):

(v) Underestimation of the interval of dominant frequencies is always better than the 

conventional approach, whereas overestimation may be worse.

Table 3.4. Orbit problem on [0,20]: (N, ∆) - values for various frequency intervals.
-----------------------------------------------------------------------------------------
Method Version 40 80 160 320 640

-----------------------------------------------------------------------------------------
PSC(6) Conventional 2.5 4.7 6.7 8.8 10.9

POSC(6) Minimax [0.7,0.9] 3.8 5.7 7.7 9.8 11.9

 Minimax [0.9,1.1] 3.4 6.2 8.1 10.1 12.2

Minimax [1.5,1.7] 2.1 4.3 6.3 8.4 10.5
-----------------------------------------------------------------------------------------

3.4. Problems with changing frequency

Next, we consider problems with a changing dominant frequency. One option is to estimate the

dominant frequency in each step and to recompute the matrix S. However, this is only justified if the

righthand side function is relatively expensive. If we want to integrate with a fixed S, then we should

choose a sufficiently large frequency interval. We illustrate this by means of the nonlinear orbit

equation of Fehlberg (cf. [1]):

(3.3)
d2y
dt2

 = J y,     J :=  

 



 

-4t2 -  

2
r(t)

2
r(t) -4t2

 ,     r(t) := ||y(t)||2,      √π/2 ≤ t ≤ 10,

with exact solution y(t) = (cos(t2), sin(t2))T. This problem has a constant period with respect to the

variable t2, but with respect to t the period is decreasing with t. The decreasing behaviour of the

period is also clear from the equation itself. Since r(t) ≈ 1, it follows from (3.3) that for large values

of t the matrix J behaves as a diagonal matrix with diagonal entries -4t2. This indicates that for large t,

the frequency behaves as 2t. Therefore, we applied the oscillatory methods with [ω,ω
_

] = [2√π/2 , 20].

The results are presented in the Tables 3.5a and 3.5b from which we conclude:

(vi) Even for larger frequency bands the minimax  approach outperforms the conventional 

approach.

Table 3.5a. (N, ∆) - values for the Fehlberg problem on [√π/2 ,10]

6th-order methods with [ω,ω
_

] = [2√π/2 , 20].
---------------------------------------------------------------------------------------------------

Method Version 160 320 640 1280 2560 5120
---------------------------------------------------------------------------------------------------

SC(6) Conventional   * 1.7 3.5 5.3 7.2 9.0
OSC(6) Minimax  1.1 3.0 4.7 6.5 8.3 10.1

PSC(6) Conventional   2.3 4.2 6.1 8.2 10.3 12.4
POSC(6) Minimax 3.6 5.5 7.2 9.2 11.3 13.4

---------------------------------------------------------------------------------------------------
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Table 3.5b. (N, ∆) - values for the Fehlberg problem on [√π/2 ,10]

10th-order methods with [ω,ω
_

] = [2√π/2 , 20].
----------------------------------------------------------------------------------

Method Version 160 320 640 1280
----------------------------------------------------------------------------------

SC(10) Conventional   * 3.0 6.0 9.0
OSC(10) Minimax * 4.8 7.9 10.7

PSC(10) Conventional   4.5 7.6 10.9 14.3
POSC(10) Minimax 5.9 9.0 12.3 15.7

----------------------------------------------------------------------------------

3.5. Problems with widely spread dominant frequencies

Finally, we consider the Störmer problem in polar coordinates on the interval [0, 0.5] with u = π as

given in [3, p. 420 (10.11a)]. Piecewise approximation of the solution by formulas of the form (1.2)

leads to quite different intervals of dominant frequencies. Hence, the overall frequency band [ω,ω
_

]

will be quite large, so that we should not expect a better performance of the oscillatory methods.

Surprisingly, the results in Table 3.6 show that for quite arbitrary intervals [ω,ω
_

] the POSC methods

are at least competitive with the PSC methods. Thus,

(vii) Even for problems whose solutions possess widely spread frequencies, the oscillatory

methods do not perform worse than the conventional methods.

Table 3.6a. (N, ∆) - values for the Störmer problem on [0, 0.5]

6th-order methods with various intervals [ω,ω
_

].
-----------------------------------------------------------------------------------------
Method Version 40 80 160 320 640

-----------------------------------------------------------------------------------------
PSC(6) Conventional   0.9 4.6 6.5 8.5 10.5

POSC(6) Minimax [0, 50] 0.9 4.7 6.6 8.5 10.6
Minimax [0, 100] 1.0 5.2 7.1 9.0 11.0
Minimax [0, 200] 1.6 4.4 6.3 8.3 10.3

-----------------------------------------------------------------------------------------

Table 3.6b. (N, ∆) - values for the Störmer problem on [0, 0.5]

10th-order methods with various intervals [ω,ω
_

].
---------------------------------------------------------------------------

Method Version 40 80 160
---------------------------------------------------------------------------

PSC(10) Conventional   0.9 7.0 10.3

POSC(10) Minimax [0, 50] 1.0 7.1 10.4
Minimax [0, 100] 1.0 7.2 10.6
Minimax [0, 200] 0.8 7.5 10.8

---------------------------------------------------------------------------
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 Figure 2.1a . Plots of the quotients (2.14) in [0.8,1] for OSC methods
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 Figure 2.1b . Plots of the quotients (2.14) in [0.8,1] for POSC methods


