@ Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Manual of splds, a software package for parameter identification
in dynamic systems

C.T.H. Everaars, P.W. Hemker and W. Stortelder
Department of Numerical Mathematics

NM-R9521 1995

Report NM-R9521
ISSN 0169-0388

CWwiI

P.O. Box 94079

1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.

SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Manual of splds,
a Software Package for Parameter
Identification in Dynamic Systems

C.T.H. Everaars, P.W. Hemker and W. Stortelder

CWI
P.0O. Boz 94079, 1090 GB Amsterdam,
The Netherlands
(e-mail: walterst@cwi.nl)

Abstract

This report contains the manual of splds, version 1.0, a software package for
parameter identification in dynamic systems. Splds is an acronym of simulation
and parameter identification in dynamic systems. It can be applied on wide va-
riety of dynamic systems which can be described by a set of ordinary differential
equations or differential algebraic equations.

The manual describes briefly the general principles of the underlying mathe-
matics and the structure of the software package. The preparations for the
input are described in detail.

The documentation of the Graphical User Interface is also quite explicit.

AMS Subject Classification (1991): 65C20, 93B30, 65L05.

Keywords € Phrases: parameter estimation, dynamic systems, nonlinear sys-
tem identification, visualisation, computational steering, interaction and direct
manipulation.

Note: This report describes part of the work made for the STW project
CWI22.2695. This research is partially supported by the Dutch Technology
Foundation (STW).

Contents

Preface L e e e e e

1 Introduction

1.1 Problem description
1.1.1 Example 1. e
1.1.2 Example 2. e

1.2 Themodelfile. e e
1.2.1 A model file template o Lo
1.2.2 Model file for example 1 L oo
1.2.3 Modelfile for example 2 o Lo
1.2.4 Example of a more extended modelfile

1.3 Thedatafile
1.3.1 Datafileof Example1
1.3.2 Data file for Example 2,
1.3.3 Example of a more extended data file

2 Starting splds
2.1 Starting the program oL L
2.2 The structure of spIdso o o
3 The graphical user interface (GUI) of splds

3.1 The widgets used in the GUI

3.2 Main window of the GUI
3.2.1 “change model” menuo L.
3.2.2 “change data” menu oo oo
3.2.3 “change control” menu. Lo
3.2.4 “solution space” menu e
3.2.5 “parameter space” menu.o e e
3.2.6 “global editors” menu oo oo,
3.2.7 “history” menuo e
3.2.8 “report” menu e
3.2.9 “miscellaneous” menuol L oo oo
3.2.10 “comp” choice
3.2.11 “info” button e
3.2.12 “help” button e e
3.2.13 Other main window options

3.3 “Edit current data” windowo oLl

ii

19
19
19

21
21
24
25
25
26
27
27
27
27
27
27
28
28
28
29
29

3.4 “Edit current control” window 30
3.5 “Create solution window” window 31
3.6 “Solution ---” window e 32
3.7 “Edit solution window ---” window 33
3.8 “Create parameter window” window 34
3.9 “Parameter ---” window e e 34
3.10 “Edit parameter window ---” window 36
3.11 “Global edit solution windows” window 36
3.12 “Global edit parameter windows” window 37
3.13 “MCsim” window e e e e e e 39
3.14 “Parameter & sum info” window 39
3.15 “Integrator” window Lo e 41
3.16 “Analyse minimum” window 41
3.17 “Show minimum by number” window 42
3.18 “Show SVD” window 43
3.19 “Info” window L. e e e e 44
3.20 “Help” window 45
List of Abbreviations 46
B The structure of splds 49
Survey of all options in the GUI 50
Bibliography 54
Index 55

iii

List of Tables

1.1 Summary of the symbols in the model
1.2 Summary of reserved names and default values in the model file.

1.3 The template of a model file

A.1 Summary of used abbreviations,

iv

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21

B.1

The colour-map widgeto L oL L
The file selector widget L o o o
The main window of the GUI
The “Edit current data” window
The “Edit current control” window
The “Create solution ---” window
A “Solution ---” window e e e e e e
An “Edit solution window - - -”
The “Create parameter window” window
A “Parameter ---” window e
An “Edit parameter window - - -
The “Global edit solution windows” window
The “Global edit parameter windows” window
The “MCsim” window ittt e
The “Parameter & sum info” window
The “Integrator” window oo,
The “Analyse minimum” window
The “Show minimum by number” window
The “Show SVD” window
The “Info” window e
The “Help” window i i e e e et e e e e e e

window L.

The structure of the splds application

Preface

The software package “splds” is a user-friendly system to simulate time-dependent dynamical
systems and to estimate unknown parameters in such systems when additional (experimental)
data about the system are known. Much of its strength lies in the identification of possible
multiple solutions and in the careful statistical analysis of the data and the results.

The software package runs under UNIX and consists of a number of independent processes.
These parts communicate with each other by means of a database manager. The different
parts of spIds (with the name of the corresponding UNIX process between brackets) are the
following:

The database manager (dmserver)
This part of splds takes care for the communication between the different parts of the
software package. It is developed by R. v. Liere [5].

The numerical engine (nengine)
This part is responsible for all the numerical work and is developed by W. Stortelder.

The filter (filter)
This part takes care of the communication between the file system and the data man-
ager. It interprets the data file and sends it to the database etc.. It is developed by
P.W. Hemker.

The algebraic engine (aengine)
This part interprets the model file and generates the model-dependent parts of the
numerical engine. It makes use of the computer algebra system Maple!. It is developed
by P.W. Hemker.

The Graphical User Interface (GUI)
This Graphical User Interface (or GUI) opens up the possibility to steer the whole splds
application and to visualise the numerical results. It is developed by C.T.H. Everaars.

'"Maple V Release 3. Copyright (c) 1981-1994 by Waterloo Maple Software and the University of Waterloo.
All rights reserved. Maple and Maple V are registered trademarks of Waterloo Maple Software.

vi

Chapter 1

Introduction

The first chapter of this manual gives a short summary of what kind of problems can be solved
by means of splds, how data are prepared and how a model of a process is formulated in such a
way that the package can simulate the process and can solve a parameter estimation problem.
In Chapter 2 it is explained how the package is started, and in Chapter 3 we describe how
the program splds is used in practice to steer the simulation and the parameter estimation
process. The manual describes all (standard) user options of the continuous modelling and
parameter estimation program.

In this manual, if the typewriter font is used for special words, these words describe
notions for which in normal mathematical notation usually a single symbol is used. These
words are also used as identifiers in the program, with the same meaning.

1.1 Problem description

The main purpose of the program is to solve a parameter estimation problem. l.e., it can
be used to validate mathematical models of physical (chemical, biological, biochemical etc.)
processes and compute the values of unknown parameters that are used in the description of
these processes [1]. Of course, in order to determine such parameters, a model of the process
should be available. Also experimental data are needed, and we assume that such data are
available. Further we assume that the process can be modelled by a system of ordinary
differential equations (ODEs) or a system of differential algebraic equations (DAEs). In fact,
we assume that the process is described by an initial value problem (IVP) for a system of
differential equations:

d
d—?; f(ty;p), (1.1)

y(to;p) = yo(p),

or, including the algebraic equations, by the system

W= Juvi),
0 = g(t,u,v;p), (12)
u(to;p) = uo(p).

u(t; p)
v(t;p)
the state of the system for ¢ > 3. In the case of the differential algebraic equations the vector
y(t; p) combines two vector parts, u(¢;p) and v(¢;p). For each state variable in the first part,
u(t; p), a differential equation is available. For each remaining variable an algebraic equation
is given. Of course, all state variables in y(t; p) are a function of time, ¢t > ¢y, and they depend
on the (unknown) parameters p. The function y(¢; p) is called the state vector, as it describes
the state of the physical process at time ¢.

The dimension (i.e. the length) of the vector y is the number of variables in the model,
and it is denoted by noq. The first part of the vector, u(¢; p), corresponding with the variables
for which differential equations exist, contains nodq elements. The second part, with noaq
elements, corresponds with the number of algebraic equations. Of course nodq + noaq = noq.
The system of ODEs, (1.1), can be seen as a special case of the system of DAEs, with noaq = 0.

All unknown parameters are components of the parameter vector p. The dimension of the

Here the vector y(t;p) = (represents the variables in the model, which describe

vector p, i.e. the number of unknown parameters, is denoted by nop.

To determine a unique solution for the differential equations, an initial vector u(to;p)
should be known. The program requires to provide a complete initial state y(to; p). If alge-
braic equations are present (noaq > 0), this initial state should (approximately) satisfy the
conditions determined by these algebraic conditions. The initial state, y(¢p;p), i.e. the state
vector at ¢t = ty, may be dependent on the parameter vector p. The number of noq initial
values (independent initial relations) determines a unique solution of the system of DAEs
(ODEs).

Table 1.1: Summary of the symbols in the model

symbol | meaning dimension

t time, the independent variable 1

Yy the state vector, y = (u,v)” noq

U the vector of state variables for which a dif- | nodq
ferential equation is given (a part of y)

v the vector of state variables for which no dif- | noaq
ferential equation is given (a part of y)

P the vector of unknown parameters nop

c a vector of known constants noc

f a vector function of ¢, y and p, that describes | nodq
the rate of change of u with respect to t.
g a vector function of ¢, y and p, that describes | noaq
the algebraic relations between the compo-
nents of y.

Y0 the initial condition of the DAEs (possibly de- | noq
pending on p)
T the (possibly nonlinear) constraints on p nosid

The initial-value problem (1.1) or (1.2) is supposed to give a relevant mathematical de-
scription of the process under consideration. The set of equations (1.2), together with possible
constraints for the parameters, we call the model. Generally, we assume that lower and upper

bounds for the unknown parameters are known, i.e. the parameter vector satisfies:

Pmin <P < Pmaz -

Often there are additional constraints for the unknown parameters. We denote such (possible
non-linear) constraints by a vector inequality

7(p) < 0. (1.3)

By this vector-inequality we denote the element-wise inequality: for a vector a < 0 means
that all elements of a are non-positive. The dimension of the vector r(p) is nosid.

For completeness, besides a vector of unknown parameters we introduce a vector of known
constants. This vector is denoted by ¢ and has dimensionnoc. The reason for the introduction
of these extra constants will be explained in Section 1.2.

As mentioned before, besides the model we should have a set of experimental data or mea-
surements. Every new set of data for a model yields another parameter estimation problem.
We assume that some (or all) components of the state vector have been measured at certain
points in time. We denote the results of these measurements, briefly the measurements or
observations, by:

i = §e;(ti), i=1,...,nobs. (1.4)

Here nobs denotes the number of observations; the subscript ¢ indicates the i-th obser-
vation; t; denotes the time of the i-th measurement!; ¢; denotes which y-component has
been measured at time ¢;. In the i-th observation the c¢;-th component of y was measured,
1 < ¢; < nogq.

Of course, it is necessary that the number of measurements is not smaller than the number
of unknown parameters (nobs > nop). Usually, the number of measurements is much larger.
The aim of parameter estimation is to find a parameter vector which gives an optimal fit
between the solution of the DAEs and the measurements. We look for an optimal fit in a
weighted least squares sense. In mathematical notation: we want to determine p for which

nobs

S(p) = Z wz'2 (yci(ti;p) - gci(ti))2 (1.5)
=1

is minimal. The weights w; can be chosen by the user, based on his knowledge about the
experiments. Often, there is a simple recipe to determine w;. If the error in all observations
is assumed to be roughly comparable, w; = 1 is sufficient. How this w; can be chosen will be
explained elsewhere.

The user gets control over the parameter estimation program by means of the graphical
user interface (GUI). This means that, by starting-up the program, the user gets some kind
of a dashboard on the computer screen, and by moving the mouse and clicking the buttons
he can steer the actions of the program. The GUI will show the results and it will take care
of proper file management, call the necessary numerical routines and show the solution by
visualisation on the screen.

Before a numerical experiment can be performed with the program, the user has to supply
the model and the measurements. This information should be provided on two files: the model

LOf course, more measurements are possible at the same time: then t; = t; for i # j, but the sequence ;
should be non-decreasing, i.e. t; <t; if ¢ < j.

file and the data file. The model file contains the ODEs or the DAEs, the data file contains
the measurements. After we have shown two examples of mathematical models, we shall show
in Section 1.2 and 1.3 how the model file and the data file are constructed.

Before we continue we’ll give two simple examples of the mathematical formulation of a
parameter estimation problem. These examples are only for illustration. By skipping the
examples the reader doesn’t skip essential information.

1.1.1 Example 1

In this first example we describe one of the simplest possible physical phenomena: a falling
object. The corresponding model is described by most elementary dynamics.

Suppose we have an iron ball, with an unknown horizontal velocity, V', which is falling
due to gravity. We assume that we can measure the horizontal as well as the vertical position
of the ball at several distinct times. From this information we want to retrieve the unknown
horizontal velocity as well as the gravity constant, G. We denote the vertical and horizontal
position at time ¢ by S,(¢) and Sy (¢) respectively. A possible model to describe the position
of the ball is the following system of DAEs:

dS, (#)

7 = G xt, (1.6)
Sp(t) = Vxt, (1.7)
Sy(0) = 0, (1.8)
Sp(0) = 0. (1.9)

We want to cast this into the general formulation of a parameter estimation problem:

e The state vector, y = (u,v), renders the vertical and the horizontal position, (S, S),
of the ball. In this example both vectors u and v have dimension 1.

e The parameter vector is given by: p = (G, V).

e The differential algebraic equations for this example are written as:

du = * T
dt = DN)
0 = pg*t—v.

e the corresponding initial condition, y(to) in this case, is given at o = 0 by:

e noq=2, nodg=1, noaq=1 and nop=2.

In Section 1.2.2 we describe how this information is written on a model file in order to analyse
the problem with splds.

Suppose we have measured both the vertical and the horizontal position of the ball at
t =1 and ¢t = 2 (thus nobs=4), a possibly set of measured values is given below. We denote

these values by (see also equation (1.4)):

gy =n1) = S,01)=-471,
U =92(1) = Su(1) = 3.02,
U3 =11(2) = Su(2)=-196,
Y =92(2) = Su(2)= 6.48

In section 1.3.1 we show how these data can be converted into program input. The goal is
now to determine the parameters G and V in such a way that the sum of squared distances
between the measured and the computed positions is minimal.

1.1.2 Example 2

The second example describes a simple process from population dynamics. It describes the
population density in a two-species population with a predator-prey relation (‘foxes’ and
‘rabbits’). The model is known as the Lotka-Volterra equations.

We consider an area where the population densities of the foxes and the rabbits are the
state variables of interest. The development of the densities depends on the initial state as
well as on the birthrate of the rabbits and the appetite and death rate of the foxes.

We denote the state vector of densities (rabbits and foxes) by (y1,y2). The parameters
for birthrate of the rabbits, appetite and death rate of the foxes are denoted by p1, p2 and ps3
respectively. The predator-prey model is now described by the subsequent set of differential
equations:

dyr
e E P1Y1 — P2y1Y2 , (1.10)
dt
dyo
% = p2y1Yy2 — P3Y2 - (1.11)

The initial condition of this problem is given by the initial state (y1(0), y2(0)). (In Section
1.2.3 we will treat a specific example with y;(0) = 1.0 and y3(0) = 0.3.) For this model we
get: nog=nodg=2, noaq=0 and nop=3.

A possible data-set is given in Section 1.3.2, it contains both densities, y; and y2, from
t = 0.5 to t = 5.0 with intervals of A¢ = 0.5, in dimensionless time-units. This means
nobs=20 and

Uy = 91(0.5), Fg) = 92(0.5), 73y = 71(1.0), ..., Y20 = 72(5.0)

are given.

1.2 The model file

The model file contains the mathematical description of the process studied. In this section
we describe first the precise form in which the model should be given on the model file. The
novice user is advised to read the formal description in combination with the examples at the
end of this section to obtain a more concrete picture of the model file.

The model file is written in the MAPLE language and it will be interpreted by the MAPLE
program. This means that the user has disposal of the complete MAPLE language to express

his problem in a mathematical form. However, generally only a very small part of the language
is necessary to specify the differential(-algebraic) equations, the initial condition and the few
other data that are necessary to formulate the model.

First we specify the contents of the model file, and after that we give two examples of a
model file corresponding with the Examples 1 and 2 from Section 1.1.

Some parts of the model file are obligatory and some are optional. Besides the typical
lines that are found in the model file, as given in the template in Section 1.2.1, the user is free
to use additional MAPLE language to help the mathematical formulation of the problem.

The lines that appear in the model file are used in order to:

1. Define the list of state variables as Variables. This list corresponds to the names
of the components of the state vector, y(¢;p). Instead of the variables yi,...,Ynoq, the
user is free to choose names that are more meaningful for the problem at hand.

The names of the actual variables (e.g. vari, 1 < i < noq) are free for the user to
choose. The number of variables, noq, is known to the program by the length of the list
Variables.

2. Define the list of unknown parameters as Parameters. The names of the parameters
(e.g. parj, 1 < j < nop) are free for the user to choose, but they should be different
from the variable names. The number of parameters, nop, is known to the program by
the length of the list Parameters.

3. Define optionally a list of constants as Constants. The length of this list will be
identified as noc. The list contains the names for constants, introduced by the user, to
help indicate quantities that are known and fixed in each experiment(part), but possibly
different in other experiments or experiment parts.

The optional list Constants gives the opportunity to identify constants that have a
fixed value for one (part of an) experiment, but that may be different (but still fixed)
in an other (part of the) experiment.

The names of the actual variables are free for the user to choose, but they should be
different from the parameter and variable names.

If such constants are introduced in the model file, each constant should be initialised
by the user with a (default) value. For each constant (e.g. named conk) this is done by
assigning a value to Cdefault [conk]. In the data file the user will have the opportunity
to overwrite these values with different values for particular (parts of) experiments. In
Section 1.2.4 we shall see how these constants can be used.

4. Define optionally a list of constraints as SideConditions that should be satisfied
by the parameter values. The length of this list will be identified by nosid. The list
contains a name for each constraint of the form r;(p) < 0, cf. (1.3), that is specified by
the user. Besides these additional (possible non-linear) constraints that are specified by
the user, we have constraints of the form

Pmin < Y4 < Pmax ,

to indicate a feasible box region of the parameters.

All names introduced in the above lists should be unique names, appearing
only once in all four lists.

10.

. Define the right-hand sides, f(¢,y;p), of the differential equations in (1.1) or (1.2),

by assigning an algebraic expression (depending on all available Y[vari], P [parj], and
Clconk]) to the array elements f [varl], for 1 < 1 < nodgq.

. Define the algebraic equations, g(¢,y;p) = 0, of the DAEs by assigning an algebraic

expression (depending on all available Y[vari], P[parj], and C[conk]) to the array
elements g[varl], for nodqg+ 1 <1 < noq.

Define the initial states, yo(p), in (1.1) or (1.2) by assigning an algebraic expression
(depending on P[parjl, and C[conk]) to the array element YStart[vari], for 1 <i <
noq. It is necessary to assign expressions to all possible YStart [vari], for 1 < i < nogq.

If the user forgets one of the above, required assignments, he will receive an
error message. More assignments are optional. In the case that an optional
specification is omitted, the program will use a default setting as given in
Table 1.2.

Determine the nop-dimensional rectangle in parameter space, where the unknown pa-
rameter vector resides. In the model file lower- and upper-bounds for the parameter
values can be given. Therefore arrays ParMin and ParMax are introduced, for which

ParMin[parj] < pj < ParMax[parj]; j=1,---,nop.

If no arrays ParMin and ParMax are specified, the default values ParMin[parj] = 0 and
ParMax|parj| = 1 are assumed, for j = 1,---,nop.

. Define the additional constraints, that were introduced in SideConditions. These

additional (possibly nonlinear) constraints in the parameter space are specified by as-
signing the expressions 7(p), as in equation (1.3), to the array of expressions r[sidl],
with 1 = 1,---,nosid, where the index sidl is the name in the list of 1-th parameter
constraint. We call these additional constraints side conditions. Such expressions only
depend on the unknown parameters P[parj] and the known constants C[conk].

Indicate the order of magnitude for the components in the state vector, so that
lyi(t)| < YSize[vari|; i=1,---,noq.

These YSize-values are used for scaling purposes only and play a minor role in the
computations. If no YSize is specified, its elements are assumed to be equal to 1.0.

1.2.1 A model file template

In Table 1.3 we give a template of the MAPLE-text on the model file. The choice of most
names used in the MAPLE text are at the user’s discretion, except for the reserved words
Variables, Parameters, Constants, Y, P, f, g, r, YStart, YSize, ParMin, ParMax. 2 See for

the reserved words Table 1.2.

Here, varl, vari, varnoq, parl, parj, parnop, conl, conk, commnoc, sidl, sidl

and sidnosid, are names that can be selected by the user; RHSexpressionj, ALGexpressioni

2Bug: at the moment the following names should not be used either: ee, ez, es, ytrans, rr, rn, DF.

Table 1.2: Summary of reserved names and default values in the model file

Reserved name Assignment| Default value Type in
MAPLE
Variables yes list ¢
Parameters yes list
Constants optional list
SideConditions | optional list
t no name
Y no table ®
P no table
C no table
f yes table ¢
g for DAEs table
r optional r[sidl]=-1.0% table €
1 <1 < nosid
YStart yes table ¢
YSize optional YSize[vari]=1.0, table /
1 <i<noq
ParMin optional ParMin[parj]=0.0, | table
1<j<nop
ParMax optional ParMax[parj]l=1.0, | table
1< j<nop
Cdefault optional Cdefault [conk]=0.0,| table
1 <k <noc

%list of names

btable of variables

“table of expressions, depending on Y, P and C

4Can still give rise to an error in case an element of the list SideConditions is
omitted here

“table of expressions, depending on P and C

ftable of floating point numbers

are algebraic expressions depending on the independent variable t, the dependent vari-
ables Y[vari], the parameters P[parj], and the constants C[conk] (with i=1, ...,noq,
j=1, ...,nop, k=1, ...,noc). The RHSexpressionj corresponds with f;(t,y;p), (j =
1,...,nodq), and describes the right hand side of the j-th differential equation; the i-th al-
gebraic equation, g¢;(t,y;p), (¢ = 1,...,noaq), is represented by ALGexpressioni. For all
i = 1,...,noq, INITexpressioni corresponds with the initial condition, y;(fo;p), of the i-
th component of the differential-algebraic equations, and it may depend on P[parj] and
Clconk]. The assignments to Cdefault, Ysize, ParMin and ParMax are expressions for nu-
merical values (floating or fixed point numbers).

Extra model constraints with respect to the unknown parameters, besides p ;) < p <
pmax, can be added at the end of the model file. These side conditions, which are al-

Table 1.3: The template of a model file
Variables:=[varl,vari,varnoq];

Parameters:=[parl,parj,parnop];
Constants:=[conl,conk,connoc];
SideConditions:=[sidl,sidl,nosid];
Cdefault[conl] := constantl;
Cdefault[conk] := constantk;
Cdefault[connoc] := constantnoc;
f[vari]:
glvari] := ALGexpressioni;
f[varj]:

RHSexpressionl;

RHSexpressionj;

glnoq] := ALGexpressionnoq;
YStart[varl] := INITexpressionl;
YStart[vari] := INITexpressioni;
YStart[varnoq] := INITexpressionnog;
YSize[varl] := ysizel;
YSize[vari] := ysizei;
YSize[varnoq] := ysizenoq;
ParMin[parl] := parmini;
ParMin[parj] := parminj;
ParMin[parnop] := parminnop;
ParMax[parl] := parmaxi;
ParMax[parj] := parmaxj;
ParMax[parnop] := parmaxnop;
r[sidl] := SIDEexpressionl
r[sidl] := SIDEexpressionl
r[sidnosid] := SIDEexpressionnosid;

lowed to be non-linear, are supplied in the form r[sidl]:= SIDEexpressionl (with 1=1,

. ,nosid). Here, SIDEexpressionl is an algebraic expression, depending on the unknown
parameters P [parj] and the known constants C[conk], representing the expression r;(p), the
[-th component in equation (1.3). The number of side conditions (nosid) corresponds with
the dimension of 7(p). We assume, as we do for INITexpressioni, that SIDEexpressionl
is (MAPLE-) differentiable with respect to p. For RHSexpressionj and ALGexpressioni we
assume (MAPLE-) differentiability with respect to p and to y.

1.2.2 Model file for example 1

In this section we show the model file that corresponds with the example of the falling ball
of Section 1.1.1. Comment lines in the model file start with ‘#’.

#introduction of the symbol names used
Variables :=[Sv,Sh];
Parameters:=[G,V];

#specification of the differential equation
f[Sv]:=P[G]*t;

#specification of the algebraic equation
g[Sh] :=P[V]*t-Y[Sh];

#initial values
YStart[Sv]:= 0;
YStart[Sh]:= 0;

#parameter bounds for G
ParMin[G] :=0;
ParMax[G] :=25;

#parameter bounds for V
ParMin[V] :=-10;
ParMax[V] :=15;

#a guess for the upper bounds of the state variables
YSize[Sv]:= 20;
YSize[Sh]:= 10;

1.2.3 Model file for example 2

The second example model file corresponds with the Lotka-Volterra model, as described in
Section 1.1.2. In particular we refer to the differential equations (1.10) and (1.11) for the
model. For the differential equations in the model file, we can simply choose the names:
BirthRate, Appetite, DeathRate, rabbit and fox, instead of the symbols p1, po, ps, y1
and y9. So, the model file reads:

#introduction of the symbol names used
Variables :=[rabbit,fox];
Parameters:=[BirthRate,Appetite,DeathRate] ;

#specification of the differential equations
f [rabbit] :=P[BirthRate]*Y [rabbit]-P[Appetite]*Y [rabbit]*Y[fox];
f [fox] :=P[Appetite] *Y [rabbit]*Y [fox]-P[DeathRate] *Y[fox] ;

#the initial conditions
YStart [rabbit]:=1.0;
YStart [fox] :=0.3;

#bounds for the parameter space
ParMin[BirthRate]:= 0.0;
ParMin[Appetite]
ParMin[DeathRate]:
ParMax [BirthRate]:

0.0;
0.0;
2.0;

b

10

]
NN

ParMax [Appetite]
ParMax[DeathRate] :

o we

o O

#guess for the size of the state variables
YSize [fox] :=1.0;
YSize[rabbit] :=1.0;

1.2.4 Example of a more extended model file

The setup of the model file gives many more possibilities than those we showed in the previous
two examples. Therefore, in this section, we present an extension of example 1 to give an
(artificial) example which shows more possibilities for a model file. E.g. we introduce known
constants and a sidecondition for the unknown parameters.

To obtain this we add:

e an extra unknown parameter, Sv0, which represents the unknown initial position in the
vertical direction.

e a known constant, Sh0, which is the known initial position in the horizontal direction.
For this horizontal position we usually have Sh0=3, however in some experiments its
value may be different.

e a known constant, VvO, corresponds with the initial speed in the vertical direction, which
may take different values in different experiments.

a known constant, M, the mass of the ball.

e a known constant, MaxKin3, which is an upper bound for the kinetic energy at ¢ = 3.0.

a side condition, KinEner3, which prevents the kinetic energy at ¢ = 3.0 from exceeding
the upper bound MaxKin3 by making a proper choice of the unknown parameters. The
horizontal speed is equal to P[V] for all ¢ and the vertical speed at ¢ = 3.0 is 3 x P[G] +
C[Vv0]. The kinetic energy at ¢t = 3.0 is given by half the mass times the squared speed
at t = 3.0:

2CM) * ((3 * P[G] + C[Vv0])® + (P[V])?) .

The extended model file becomes:

#introduction of the symbol names used
Variables :=[Sv,Sh];
Parameters:=[G,V,Sv0];

Constants :=[Sh0,Vv0,M,MaxKin3];
SideConditions:=[KinEner3];

#setting of the default values for the known constants
Cdefault[Sh0] :=1.0;

Cdefault[Vv0]:=3.0;

Cdefault[M]:=2.0;

Cdefault [MaxKin3] :=800;

11

#introduction of the DAEs
f[Sv] :=-P[G] *t+C[VvO];
g[Sh] :=P[V]*t-Y[Sh]+C[ShO];

#the initial conditions (depending on an unknown parameter
#or a known constant)

YStart [Sv] := P[Sv0];

YStart [Sh] := C[ShO];

#bounds for the unknown parameters
ParMin[G] :=0;

ParMin[V] :=-10;

ParMin[Sv0] :=-5;

ParMax[G] :=25;

ParMax[V] :=15;

ParMax [Sv0] :=5;

#an additional restriction for the unknown parameters
r[KinEner3] := 0.5%C[M]*((3*P[G]+C[Vv0])**2+P [V]**2)-C[MaxKin3] ;

#a guess for the upper bounds of the state variables
YSize[Sv]:= 20;
YSize[Sh]:= 10;

1.3 The data file

The less experienced user is advised to read this formal description of the data file in combi-
nation with the examples in Section 1.3.1, 1.3.2 and 1.3.3.

The data file contains the measured values (the observations) obtained from the process
studied. From equation (1.4) we see that the measured value 3., (¢;) is related with the point
of time ¢; and the component ¢; of the state vector, 1 < ¢; < noq. All information about a
single measured value should be on the same line in the data file. So the data part of the
simplest data file consists of nobs lines, with on each line three numbers: ¢;, ¢; and 7;. The
numbers ¢; and 7; are floating point numbers. The number ¢; is an integer that corresponds
with the ¢;-th variable in the list Variables. This number ¢; can also be replaced by the
symbolic name that appears in the list Variables. The lines corresponding with a single
experiment should appear in the order of increasing (more precisely: non-decreasing) ¢;.

A single experiment

In the simplest possible data file, the data part is preceded by two lines: (1) a line containing
some identification of this data set: an arbitrary string of at most 24 characters, and (2) a
line containing only the word START and the value #y. This obligatory line denotes that
the initial value problem should start for ¢ = ¢5. The data part is closed by a single line,
containing the word STOP and the value for te,q, the time at which the initial value problem
ends.

12

If the user wants to provide a weight w; for the weighted sum of squares (1.5), he can do
this by adding the real number w; as the 4-th number on the line for the i-th observation. If
no weight is specified, this has the same effect as w; = 1.0.

In case the user wants to skip a measurement, he can inactivate the measurement by
putting a 0 as the 5-th number at the end of the corresponding line. We give this number
the name active. The default setting is 1, which means that the measurement is active, i.e.
is taken into account in the computation.

Multiple experiments

Another important option is to take several experiments into account for the same model
and the same parameters, but possibly with different values of the model constants as given
in Constants. In this manual we use the word ezperiment for a sequence of observations
(measurements) ordered in time. In case of a parameter estimation problem with a series of
experiments the user should provide a series of data parts, each of which is preceded by a line
containing the value ¢y (to denote that a new initial value problem is considered, starting at
t = t9). In order to specify what values for the constants are used, the restart line can be
immediately preceded by a number of lines which contain the word CONSTANT, the constants
name, and the constants value.

In this way, a data file can contain measurements from many different experiments corre-
sponding to the same model file. If some constants change from one experiment to the other,
the corresponding measurements have to be separated by a constant block. 3

It is also possible to change the model constants at distinct values ¢ with tp < t < tepng-
At such times, teont, a discontinuity in the process of the experiment occurs and the change
of constants is specified in the data file. So, each experiment may consist of different, distinct
parts in time, where the constants have fixed values. Such periods during experiments are
called experiment parts.

At the beginning of every experiment the constants are set equal to their default values
from the model file and adaptation will be performed after every constant line in the datafile.

Data file syntax

Summarising we find the following syntax for the information on the data file.

DATA_FILE: identification_line ; EXPERIMENT_BLOCK
EXPERIMENT_BLOCK: EXPERIMENT [; EXPERIMENT_BLOCK]
EXPERIMENT: START_PART [; CONTINUATION] ; stop_line
CONTINUATION: CONTINUATION_PART [; CONTINUATION]
START_PART: start_line [; CONST_PART] ; DATA_PART
CONTINUATION_PART: continue_line [; CONST_PART] ; DATA_PART
CONST_PART: constants_line [; CONST_PART]

DATA_PART: data_line [; DATA_PART |

identification_line: DATASET , data-set-name

start_line: START , %y [, experiment-name |

continue_line: CONTINUE , tcont

3Tt is important to note that by measurement we mean one single measured value and by experiment part
we refer to a set of measurements which are performed under the same conditions.

13

stop_line: STOP , tend

constants_line: CONSTANT , conk , b;
data_line: tz,cz,:f],[,wz[,0|1[,0|1]]]
comment_line: #, a sequence of characters ending with carriage return

In this syntax description, ‘;” means ‘followed on the next line by’,
‘,” means ‘followed on the same line by’, ‘[|’ means ‘optional’,
and ‘|’ means ‘or’.

ti, Ui, w; and b; are floating point numbers;

¢;, is a natural number;

¢; can be replaced by vari from Variables;

conk is an element from Constants in the model.

data-set name and experiment name are sequences of at most 24 characters. The first binary
flag (0|1) on the data line denotes that the observation is active; the second flag denotes
whether the observation is a break-point All data lines in an experiment block, following a
"START ; tp ; name”-line, should be ordered in time: i < j = ¢; < t;. Also the possible t.on¢
should satisfy this ordering. Any such sequence beginning with a ¢y is called an ezperimental
sequence and can be identified by a name.

1.3.1 Data file of Example 1

In this first example we give about the simplest possible data file, which corresponds with the
assumed measurements on page 5, with nobs=4. Instead of the variable names in the second
column of each data line, Sv and Sh, also a number 1 or 2 can be used (i.e. its number in the
list [Sv, Sh]). (Again, lines starting with ‘#’ are comment lines.)

identification line

DATASET test_balll

#

starting line of the first experiment; expl starts at t=0.0
START 0.0 expl

#

data lines

t_i c_i obs_i

1.0 Sv -4.71

1.0 Sh 3.02

2.0 Sv -19.6

2.0 Sh 6.48

#

stop line; expl ends at t=3.0

STOP 3.0

1.3.2 Data file for Example 2

In this data file for Example 2, compared to the previous data file for Example 1, we start
adding a weight and a value (0 or 1) for the variable that may (in)activate a data line. For each
data line the time, the component and the measured value (observation) are indispensable,

14

the numbers on the fourth and fifth position are optional. Note that the several entries on a
line are separated by spaces: the exact position on the line is irrelevant.

The numbers in the fourth column correspond to the weight of that particular measure-
ment. In case this number is omitted the weight of the measurement on that line is set equal
to the default value 1.0. By taking larger weights, as we do in this example for the rabbit,
we assume these data to be more accurate. The weights, w; in formula (1.5), indicate the
relative importance of that particular measurement.

The binary flag in the fifth column shows if the corresponding measurement is used for the
parameter estimation problem. In case of 1, which is also the default value, the measurement
is active. If the fifth column contains 0, the corresponding measurement is neglected. For the
parameter estimation problem this has the same effect as deleting this line from the data file.

In case the fourth and fifth column of a data line are empty, the corresponding measure-
ment is active and has weight 1.0. If we want to inactivate this data line we can do this by
putting a value in the fourth column (this has to be done because, otherwise no distinction
between the fourth and the fifth column can be made) and 0 in the fifth or just by setting
the weight equal to zero. In the latter case the number of observations, nobs, is larger. If
active is set to zero the value of nobs is 1 less. If measurements have to be inactivated
we prefer to take 0 for the corresponding values of active, because the value of nobs is the
number of measurements which is really of interest for the parameter estimation problem. (It
has its influence in the computation of the statistics.) Although we have 20 observations in
the subsequent data set, nobs = 17 because active is 0 on three data lines. Moreover only
16 observations influence the weighted sum of squares (equation (1.5)), as the weight on the
sixth data line is zero.

identification line

DATASET Barnes_problem

#

starting line; the experiment starts at t=0.0
START 0.0

data lines
active_i

[e]
o'
0
[

t_1i c_i
.5 rabbit
fox
rabbit
fox
rabbit
fox
rabbit
fox
rabbit
fox
rabbit
fox
rabbit
fox
rabbit

e
1
O OO O OO OO OO OO O H

w
(4]
NP NRPNMRPEPNMNONMNRLNRELNDSE
o

WO NO1TO O, W

B W WWWMNMNNMNNMNNRE, PP PRPOOH H H
N
(¢3]

O U1 01 ©O O U1l O O U1 o1 O O WL
O O O OO OO OO HFrORFr oK

~
N
o

15

4.0 fox 0.25

4.5 rabbit 0.8 2.0

4.5 fox 0.3

5.0 rabbit 1.0 2.0

5.0 fox 0.35

#

stopline; the experiment stops at t=5.0.

STOP 5.0

1.3.3 Example of a more extended data file

In this section we will show all the possibilities of setting up a more complex data file. We
show a data file that contains the data from two experiments and the second experiment
contains two parts with different constants.

At the start of an experiment, a named constant that appears in the list Constants takes
the value that is specified in the Cdefault list of the model file. This value can be overruled by
a value specified in a constants_line of the data file. This value holds only for that experiment
(in the data file) in which it appears till the value is overruled again.

The initial conditions for the second experiment are different from the initial conditions
for the first experiment with respect to initial horizontal position and the initial vertical
speed. During the second experiment, at ¢ = 3, the speed of the ball in the vertical direction
is changed instantaneously. In case of an instantaneous change of one or more of the known
constants during an experiment, a new ezxperiment part is introduced.

identification line

DATASET test_ball2

#

starting line; experimentl starts at t=0.0
START 0.0 experimentl

#

constant lines

CONSTANT ShO 0.0

CONSTANT VvO 0.0

#

data lines

t_i c_i obs_1i w_i active_i
0.5 Sv -1.22 0.5

0.5 Sh 1.51 0.6

1.0 Sv -4.71 0.8

1.0 Sh 3.02 0.9

1.5 Sv -11.1 1.3

1.5 Sh 4.54

2.0 Sv -19.6

2.0 Sh 6.48

2.5 Sv -30.5 1.8

2.5 Sh 8.11 1.0 0
3.0 Sv -44.3 1.9

16

3.0 Sh 9.51

3.5 Sv -59.9 1.4
3.5 Sh 11.2

4.0 Sv -78.6 1.6
4.0 Sh 12.7

4.5 Sv -99.2 1.4
4.5 Sh 14.5

5.0 Sv -122 1.7
5.0 Sh 16.2

#

stop line of the first experiment; experimentl stops at t=5.0

STOP 5.0

#

starting line of the second experiment; experiment2 starts at t=0.0
START 0.0 experiment2

#

constant lines

CONSTANT ShO 2.0

CONSTANT VvO 1.0

#

data lines

t_1i c_i obs_1i w_i active_i
1.0 Sv -5.83 0.9 1

1.0 Sh 3.48 2.5 1

2.0 Sv -20.72 1.1 0

2.0 Sh 8.56 2.8 1

#

continuation line; proceed from (experiment2) part 1 to part 2 at t=3.0

CONTINUE 3.0
#

constant line
CONSTANT VvO 2.0

#

data lines

#t_1i c_i obs_i w_i active_i

4.5 Sh 16.4 5.0 1

4.5 Sv -111.4 5.0

#

stop line of the second experiment; experiment2 stops at t=4.8

STOP 4.8

17

18

Chapter 2

Starting splds

2.1 Starting the program

To start the program, we should have both a model file and a data file available. The program
is started in a UNIX-environment by typing the line:

splds dmserverMACH filterMACH nengineMACH ModelFile DataFile (2.1)

dmserverMACH filterMACH and nengineMACH are the names of the machines on which we
want to run the server of the data base manager, the filter and numerical engine (nengine)
respectively. The GUI always runs on the local machine.

For a description of the model and data file we refer to Section 1.2 and 1.3 respectively.
The model-file and the data-file in line (2.1) are only initial settings. With the GUI we can
switch to another problem by selecting another model and/or data file. As a result of (2.1)
the following takes place:

e A numerical engine is generated corresponding with the model and data file.

e The database manager, numerical engine, filter and GUI are coming up in separate
windows. Give them a place on the screen.

Now the different processes start to communicate. After some seconds everything is silent in
the windows and the word is with the user. At that moment we can start to investigate our
problem. We can steer the numerical engine, have a look into the solution space to see graphs
of the solution components and the measurements or have a look into the parameter space
and follow the path of a local search, see the quality of parameter estimates, and study the
confidence region of a solution found.

2.2 The structure of splds

The global structure of the program package splds together with the files that contain the
information which is exchanged between the modules, is illustrated in Figure B.1 in Ap-
pendix B.

19

20

Chapter 3

The graphical user interface (GUI)
of splds

In Section 3.1 we give a general description of the widgets we use in the GUI (widgets are
objects that appear on the screen, such as buttons, places in which we can type information,
etc.). In Section 3.2 we describe the options in the main window of the splds. When such
an option leads to another window we devote a separate section to it. An overview of all the
options in the GUI of splds is given in appendix C.

3.1 The widgets used in the GUI

In this section we will give an overview of the widgets used in the GUI of splds.

Text widget

Text widgets are rectangles which are used to show us information from the application. It
is a static widget which means that it takes no information from the user.

Input field widget

The input field is a widget which can be used to give textual input to the application. We
can edit the input field by using the keyboard. The GUI can take only float and integer input
fields, so that we can only type this kind of information into it. If we try to type in something
else it is not shown and a bell will ring. Whenever we press the mouse inside an input field a
cursor will appear there and the colour of the input field change. We have the following edit
possibilities:

e The <Backspace> key characters erases in front of the cursor.
e The <Delete> key erases characters behind the cursor.
e The <Esc> erases the whole input field.

e The left and right arrows move the cursor in the input field. It is also possible to place
the cursor at a different position in the input field by using the mouse.

21

e We can also use the mouse to select a part of the input field which will be removed
when we type the <Backspace> key or be replaced by whatever we type.

When we press the <Tab> or <Return> the input field is returned to the application
program and input is directed to the next input field (if there is one in the window).

Button widget

We can push buttons with the mouse. Buttons of the type we use have the property that
they return to its normal position when we release the mouse. On the screen they look as
rectangles which come out of the background. Most buttons in the GUI are grey and when
we point to a button with the mouse, its colour will change into light grey. When we push
the button, it will change colour, go into the background and come back from it immediately.

Slider widget

This widget is useful for letting us indicate a value between some bounds. A slider has a
minimum, maximum and current value which are all floats. The current value is changed by
moving the mouse inside the slider area. For finer control, hold down the left or right <shift>
key while moving the slider. Whenever the value of a slider is changed, this is reported to
the GUL

Menu widget

Menus can be used to choose from different options. Each menu widget has a box with a
label. Whenever we press the mouse — with the left or the right mouse button — inside
the box the pop-up menu will appear. Then we can make a selection from this menu. This
selection has to be made with the right mouse button. (Therefore the easiest way to make a
selection in a menu is to use the right mouse button for both getting the pop-up menu and
making the selection.) When we click outside the menu box, no selection is made.

To use the menus, act as follows:

1. Press the right mouse button over the pull-down menu. We see a list of menu entries.

2. While holding the mouse button down, move the cursor up and down over the entries
in the menu. When we move the cursor individual entries will be highlighted.

3. Highlight one of the choices; then release the mouse button to activate a command.

Choice widget

A choice widget is an object that allows us to choose among a number of possible choices.
The current choice is shown in a box. We can either cycle through the list of choices using
the left or middle mouse button or get the list as a menu using the right mouse button. The
choice widget is a kind of menu widget that shows its choice.

Browser widget

A browser widget is a box that contains a number of lines of text. We use browser widgets in
the GUI for showing information. If the whole text does not fit into the box, automatically
a scroll bar is added so that we can scroll through the information.

22

Colour-map widget

In a colour-map widget we can select a colour. Figure 3.1 shows a colour-map widget. In
that figure we can see the first 64 entries. we can scroll through the colour-map to see more
entries. We select a colour by pressing the left mouse button on some entry. After selection
the widget is automatically removed from the screen We can also decide not to change the

colour by pressing the cancel button.

Figure 3.1: The colour-map widget

File selector widget

A file selector widget provides an easy way to select a file. Figure 3.2 shows a file selector.

Give a data file.

ftmp_mntizeus.cwinlzeusiufs 15/nwZ/everipeide2dM ORK

*.data

PROBLEMS
VERN
VERO

bal.data
barnes.data
barnes? . data
barneszi.data

Figure 3.2: The file selector widget

In the window of the file selector all the files in a directory are listed that satisfy a certain

23

pattern. A pattern can be any kind of regular expression, e.g. [a-f]*.data, which gives all
files starting with a letter from a to f and ending with .data. In the top of the window we see
a message as “Give a --- file”. We can choose by mouse a file from the list given or type a
file name directly. We can also walk through the directory structure, either by changing the
directory string by pressing the mouse on it, or by pressing the mouse on a directory name
(shown with a D in front of it). It is also possible to change the pattern by pushing the mouse
on it. Note that directories are shown independent of whether they satisfy the pattern. When
we are satisfied, i.e. found the correct directory and indicated the file name required, we can
press the button labelled “Ready” or press the <Return> key. We can also double click on
the file name in the browser. If we press the “cancel” button no file is selected and the file
selector disappears

3.2 Main window of the GUI

change model

change data

change control

solution space

parameter space

global editors

higtony

report

miscellaneous

par & sum info

integrator

analyse minimum

cal anapar |

start computation

stop computation

splds info get help Cjuit

filker task —= | no task

ME task —= | no task

warning |

Figure 3.3: The main window of the GUI

Before we give a summary of the options in the main window (see Figure 3.3), we will explain
some general principles and terminology.

For splds we use the words “active” and “activate” to express respectively that something
(this can be a file, a variable or a parameter) is or becomes the current value known to the
application (i.e. to the data base manager). So when we activate a model file, this file contains
the model that is studied, and the active parameter vector is the one that is currently used
for the computation (see also the description of the ok button below).

When we speak about the y and p vector we mean the vector of state variables (the
solution vector) and the vector of unknown parameters respectively.

Windows, which communicate with the data base manager, have “cancel” “ok” and “done”
buttons. These buttons can raise a blush (they turn pink; see also the description of the ok
button below). Windows without communication with the data base manager only have

24

quit buttons. To prevent describing them each time in the sections devoted to the different
windows, we describe them here. These buttons perform the following actions:

quit With this button a window that has no communication facilities with the data base
manager can be closed.

cancel With this button a window, containing communication facilities with the data base
manager, can be closed, without sending the data shown to the data base manager.

ok This button closes the window and sends the data shown in the window to the database
manager. We say that we activate the data or that the data become active. When we
adapt data shown in some window, the adapted data are only known to the GUI and
not known by the data base manager. To put extra emphasis on the different values of
data in the GUI and in the database manager, the buttons “cancel” “ok” and “done”
raise a blush when we adapt data in a window. After pressing the “ok” button this
blush disappears and the data shown in the window is sent to the data base manager
(becomes active). As a result of this activation, windows can be updated.

done This button performs an “ok” action followed by a “cancel” action.

3.2.1 “change model” menu

With the “change model” menu we can modify the model or switch to another problem, by
selecting or changing a model file and activate it. To be sure that the current active data are
consistent with the model, after activating a model file (offering the modified or new model
to the application) we also have to activate a data file (first select one).

In the “change model” menu we can make a selection from the following options.

select file With this option a file selector comes up, which enables us to select a model file.

edit file With this option we start up an editor (at this moment we use the “vi” editor) on
the selected model file and modify it.

activate file With this option we make the selected model file active, which means that
the model file is read and the problem described in this file will be the one studied.
Notice that activating a model file automatically changes the program used to solve
the differential equations etc., however activating the model file does not automatically
check the consistency with the current data. To make this check, the current data have
to be activated again.

We can only activate a file when we first select one. When we forget it, we get a message
in a separate, dialogue window. The message disappears when we press the “ok” button
in this window.

3.2.2 “change data” menu

In the “change data” menu we can switch to a new data set by selecting or changing a data
file and make it active.
In this menu we can make a selection from the following options.

select file With this option a file selector comes up, which enables us to select a data file.

25

edit file With this option we start up an editor (at this moment we use the “vi” editor) on
the selected data file and modify it.

activate file With this option the selected data file is read and the corresponding data are
activated, which means that these data are used for the analysis.

We can only activate a file when we first select one. When we forget it, we get a message
in a separate window. The message disappears when we press the “ok” button in this
window.

edit current data With this option the “Edit current data” window comes up (see Sec-
tion 3.3). In this window we see the active data, which can be edited interactively (do
not forget to send the adapted data to the database manager by the “ok” or “done”
button (see Section 3.2)). In this way we can change the active data without changing
the original data file.

save current data With this option the file “datf” is created which contains the active data.

3.2.3 “change control” menu

In the “change control” menu we can change the control parameters by selecting another or
changing the current control file and make it active. The control file contains all technical
parameters that control the numerical process. At default a convenient set of control param-
eters is active, but we can change it, if this is beneficial for the computations in the numerical
process.

In the “change control” menu we can make a selection from the following options.

select file With this option a file selector comes up, which enables us to select an existing
control file.

edit file With this option we start up an editor (at this moment we use the “vi” editor) on
the selected control file and modify it.

activate file With this option the selected control file is read and activated, which means
that the control parameters from this file are used for the subsequent computations.

We can only activate a file when we first select one. When we forget it, we get a message
in a separate window. The message disappears when we press the “ok” button in this
window.

edit current control With this option the “Edit current control” window comes up (see
Section 3.4). In this window we see the active control parameters. We can edit these
control parameters interactively. Do not forget to send the adapted data to the database
manager (make them active, see Section 3.2). In this way we can change the active
control parameters without changing the control file.

save current control With this option the file “ctrlfile” is created which contains the active
control parameters.

26

3.2.4 “solution space” menu
In the “solution space” menu we can make a selection from the following options.

create solution window This option opens the “Create solution window” window (see Sec-
tion 3.5). In this window we specify what kind of ”Solution - - -” window (see Section 3.6)
we want to make.

merge solution window Not yet implemented.

3.2.5 “parameter space” menu

In the “parameter space” menu we can make a selection from the following options.

create parameter window This option opens the “Create parameter window” window (see

p b P p

Section 3.8). In this window we specify what kind of ”Parameter ---” (see Section 3.9)
window we want to make.

3.2.6 “global editors” menu

In the “global editors” menu we can make a selection from the following options.

global edit solution windows This option opens the “Global edit solution windows” win-
dow (see Section 3.11).

global edit parameter windows This option opens the “Global edit parameter windows”
window (see Section 3.12).
3.2.7 “history” menu

This menu is still under construction
In the “history” menu we can make a selection from the following options.

save Not yet implemented.
save & quit Not yet implemented.

load Not yet implemented.

3.2.8 “report” menu

This menu is still under construction.

3.2.9 “miscellaneous” menu
In the “miscellaneous” menu we can make a selection from the following options.

draw grid in solution windows This option draws a green 10 by 10 grid in all the ”So-
lution - --” windows (see Section 3.6).

draw grid in parameter windows This option draws a green 10 by 10 grid in all the
”Parameter - --” windows (see Section 3.9).

MCsim With this option the “MCsim” window comes up (see Section 3.13).

27

3.2.10 “comp” choice

At the moment splds supports four types of computations. After selection the computation
is started by pressing the “start computation” button.

anapar In this mode, splds analyses a given parameter vector; a simulation of the model
equations with active parameter vector will be performed. The parameter analysed will
be the “current” or “active” parameter vector. This parameter vector can be set by the
left mouse in a “Parameter ---” window (see Section 3.9) or in the “Parameter & sum
info” window (see Section 3.14). The result of a computation “anapar” is:

e The numerical solution of the system of DAEs for the active parameter vector. This

can be shown for every particular experiment as a graph in the solution windows
of the GUI (see Section 3.10)

e The computation of the discrepancies with the measurements.

e The computation of the weighted sum of squared discrepancies! (see the text widget
ActSos in Section 3.14).

locmin In this mode, splds calculates a local minimum of the weighted sum of squares by a
Levenberg-Marquardt (LM) method starting from the “current” or “active” parameter
vector as the initial estimate. During this iterative method the vector p and its corre-
sponding sum of squares will change, but the parameter vector stays within the active
parameter space (see Section 3.14). These changes are reported in the ”Parameter - --”
windows (see Section 3.9) and the “Parameter & sum info” window (see Section 3.14).
The initial parameter vector can be set in the same way as by the “anamin” option.

glomin In this mode, splds searches for a global minimum in a rectangular sub-domain of
the parameter space. This sub-domain is specified with the ParMin and ParMax vector
in the “Parameter & sum info” window (see Section 3.14). The algorithm for this
computation is still under construction

MCsim In this mode splds performs a Monte Carlo simulation. For every simulation the
original measurements are perturbed with noise from a Gaussian distribution. This
perturbation is followed by a local minimisation to compute the optimal parameter
vector corresponding to the perturbed data. The optimal parameter values for every
simulation are plot in the parameter windows. The input quantities for a Monte Carlo
simulation can be set in “MCsim” window (see Section 3.13).

3.2.11 “info” button

The “info” button opens the “Info” window (see Section 3.19) which shows some information
about splds. This option is still under construction.

3.2.12 “help” button

The “help” button opens the “Help” window (see Section 3.20) which shows us the help
facility of splds. This option is still under construction.

Henceforth we will shortly speak about the sum of squares.

28

3.2.13 Other main window options

We give a summary of the remaining widgets in the main window of the GUI.

start computation This button starts the computation selected in the “comp” choice (see
Section 3.2.10).

stop computation This button stops the present computation in the numerical engine.
The button is red when a stop flag is on. When the numerical engine actually stops the
computation the button becomes grey.

par & sum info This button opens the “Parameter & sum info” window (see Section 3.14).

analyse minimum This button performs an analysis of the minimum found in a local min-
imisation process (an ”anamin” computation) and opens the “Analyse minimum” win-
dow (see Section 3.16).

integrator The “integrator” button opens the “Integrator” window (see Section 3.19).
filter task In this text widget the activity of the filter is reported.

NE task In this text widget the activity of the numerical engine is reported.
warning In this text widget possible warnings are shown.

quit This button stops all the processes of the splds application.

3.3 “Edit current data” window

In the “Edit current data” window we can edit the current data in a limited way; it is not
possible to add new observations, but an existing observation can be made inactive. This latter
action is equivalent to removing an observation from the corresponding data file. Figure 3.4
shows the “Edit current data” window.

We give a summary of the widgets in this window.

time In this float input field we can change the time ¢; of the measurement. Notice the
requirement that the sequence #; should be non-decreasing for every experiment (see
Section 1.3).

component In this choice widget we can adapt the component, ¢;, of the state vector cor-
responding to the measurement (see eq. (1.4)).

measurement In this float input field we can change the measured value (7; in eq. (1.4)).

weight With this float input field we specify the weights, w;, of the sum of squares (see
eq. (1.5)). An observation with a zero weight does no longer contribute. The weight is
proportional to the accuracy of the corresponding measurement.

active With this choice widget we can make an observation active or inactive. The default
value is active. An inactivated observation does no longer contribute to the sum of
squares. Contrary to a zero weight, an inactive measurement doesn’t contribute to
the number of measurements or observations (nobs), which is used for the statistical

29

na

= =
wn on

=

1l

=

L i]) oo |
| .
L s] P oo |
L e [[P oo
[i (. . e
TS i () FE N [
L i fos] P IS oo |
Lo s J] [FE oo
L oz] P oo |
Lo e] FJSE oo |

ra ra r~a r~a
on on

&
|
:
T
T

Figure 3.4: The “Edit current data” window

analyses. For most situations an inactive measurement is preferred to a zero weight.
The inactive observations are drawn in the “Solution - --” windows with yellow markers.
(Notice that we now use the word “active” in a different way than in “The active model
--+”7 (see Section 3.2). We do not think that this is confusing).

brkpnt With this choice widget we add or remove breakpoints. It is not used at the moment.

scroller With this slider we can scroll the observations. Only a maximum of ten observations
are shown at the same time.

3.4 “Edit current control” window

In the “Edit current control” window we can adapt the control parameters of the numerical
process to our own wishes. splds starts with a default setting of these parameters. Figure 3.5
shows the “Edit current control” window.

We give a summary of the widgets.

SqSabt Not in use now.
SqSret Not in use now.

IVPtol With this real input field we can adapt the relative, local error bound for the nu-
merical solver of the initial value problem (IVP).

30

SgSabt (0.001]
Sg3ret §0.001
IPiol [1e-06
WPhrt f1e-12
LiatAxlt § 100

Lidlamb 0.0

Lidrtal §0.0071
Lidatal §0.007

Falpha §0.03

|cance|| | oke I | done I

Figure 3.5: The “Edit current control” window

IVPhrt With this real input field we can adapt the allowed minimal ratio of the smallest
and the largest step-length during the numerical integration of the IVP.

LMMxIt With this integer input field we can adapt the maximum number of iterations of
the Levenberg-Marquardt process.

LMlamb With this real input field we can adapt the initial setting of the parameter A in
the Levenberg-Marquardt process (for details see [2], page 7).

LMrtol With this real input field we can adapt the relative tolerance of the Levenberg-
Marquardt process.

LMatol With this real input field we can adapt the absolute tolerance of the Levenberg-
Marquardt process.

Falpha With this real input field we can adapt the a-point of the Fishers distribution (for
details see [2], page 8).

3.5 “Create solution window” window

The visualisation of the observations and the numerical solution of IVP is done in the “Solution
--” windows (see Section 3.6). In the “Create solution window” window we specify the
quantities (time or a component of the solution vector) along the axes of the graphs for these
visualisations. Figure 3.6 shows the “Create solution window” window.
We give a summary of the widgets.

exp This choice denotes to which experiment number the graph will refer.

x-axis This choice denotes the solution component displayed along the horizontal or x-axis
of the graph.

31

line colar

X—axis line width

y—axis make window

data marker quit

”

Figure 3.6: The “Create solution ---” window

y-axis This choice denotes the solution component displayed along the vertical or y-axis of
the graph.

data marker This choice selects the marker for the observations.

line colour With this button a colour selector comes up to select the colour of a graph.

line width With this slider we can select a line width for the graph.

make window With this button a “Solution ---” window comes up (see Section 3.6).

3.6 “Solution ---” window

A “Solution ---” window gives a two dimensional graph, along the axes we find the quanti-
ties from the previous (“Create solution window”, section 3.5) window. Figure 3.7 shows a
“Solution - - -”

We give a summary of the widgets.

window.

exp This text widget denotes the experiment number to which the graph refers.

xmin With this slider we can adjust the minimum on the x-axis.

xmax With this slider we can adjust the maximum on the x-axis.

ymin With this slider we can adjust the minimum on the y-axis.

ymax With this slider we can adjust the maximum on the y-axis.

menu In this menu we can perform some additional actions in the solution windows namely:

edit With this option an “Edit solution window - - -” window comes up (see Section 3.7).
print Not in use. Use an UNIX utility for making a bitmap of the screen.

quit The window is closed.

The text widgets at the bottom and the left side of the graph denote the quantity along the
x-axis and y-axis respectively.

32

wmin +
0.00 m— =min t 6.00 _m KA

Figure 3.7: A “Solution - --” window

By the left mouse we can inquire a position in a “Solution ---” windows. When we press

the left mouse button in this window a text widget will come up, containing the position in
the solution space. When we release the left mouse button the text disappears.

In the banner of this window we see an index number. When we start up an editor in
this window (see the option in the menu “menu”) this leads to an “Edit solution window - - -”
window. This window has the same index as the corresponding “Solution ---”
this way we can see which editor belongs to which solution window.

window. In

3.7 “Edit solution window ---” window

” window (see Figure 3.8) we can change some settings of the

window. For the meaning of the index see Section 3.6.
The widgets in this window have the same meaning as those in the “Create solution
window” window (see Section 3.5). However we have an extra widget in this window.

In an “Edit solution window - - -
corresponding “Solution - - -”

show y win This button is only visible when we close the “Solution ---” window with the

same index as the “Edit solution window - --” window. With this button the “Solution
---” window reappears. We need this button when we merge pictures (see Section 3.2.4).

33

”

Figure 3.8: An “Edit solution window ---” window

3.8 “Create parameter window” window

In the “Create parameter window” window (see Figure 3.9) we can specify which two-
dimensional subspace of the parameter space we want to see in the “Parameter ---” windows
(see Section 3.9).

Figure 3.9: The “Create parameter window” window

We give a summary of the widgets.
x-axis This choice denotes the parameter component which is on the x-axis of the graph.

y-axis This choice denotes the parameter component which is on the y-axis of the graph.

2

make window With this button a “Parameter ---” window comes up (see Section 3.9).

3.9 “Parameter ---” window

In a “Parameter ---” window (see Figure 3.10) we observe a two-dimensional subspace of

the parameter space. It is also possible to change the current parameter vector by mouse
and start a “locmin”, “steplocmin” or “anapar” computation (see Section 3.2.10). We can
also investigate the character around the final parameter estimates, follow the path of a local
search and study the confidence region of a final estimate of the parameter vector. Further
it is possible to put the sum of squares along one of the axis (as a function of a parameter
component).

In this window we can make a selection from the following options.

xmin With this slider we can adjust the minimum on the x-axis.

xmax With this slider we can adjust the maximum on the x-axis.

34

” window

Figure 3.10: A “Parameter ---

ymin With this slider we can adjust the minimum on the y-axis.

ymax With this slider we can adjust the maximum on the y-axis.

menu With this menu we can perform some additional actions in the ”Parameter ---” win-
dows. We will enumerate them.
edit With this option the corresponding “Edit parameter window ---” window comes

up (see Section 3.10).
print Not in use. Use an UNIX utility for making a bitmap of the screen.

quit The window is closed.

The text widgets at the left side and bottom of the window denote the component of the
parameter vector or the sum of squares along the x-axis and y-axis respectively.
In a “Parameter ---” window the mouse is used in the following way:

e When we press the left mouse button in a ”Parameter ---” window a text widget will

come up in which we can read the position in the parameter space. When we release the
mouse this text disappears and we see a marker “+” moving to the position of the cursor.
This position represents the values of the components of the current parameter vector.
In the “Parameter & sum info” window (see Section 3.14) we see the corresponding
change in the “IniPar” text widget. The “cancel” “ok” and “done” raise a blush to
indicate that the change IniPar is not known by the database manager. By pressing

35

the right mouse button the IniPar is send to the database manager and the blushing
of the buttons will stop. This can also be done by pressing the “ok” or “done” button
in the “Parameter & sum info” window (see Section 3.14).

e When the computation type is “locmin” (see Section 3.2.10) we can start a local minimi-
sation by pressing the right mouse button. The widget “NE task” (see Section 3.2.13)
indicating the task of the numerical engine, shows the text “locmin”. For the other
computation types the right mouse button does not work.

e When the computation type is “locmin” (see Section 3.2.10) we can also use the middle
mouse button for doing a single step of a local minimisation. We call this computation
type a “steplocmin”. A “steplocmin” is a special case of a “locmin” computation. In
the widget “NE task” (see Section 3.2.13) the text “steplocmin” appears. For the other
computation types the middle mouse button performs no task.

e It is also possible to delete a graphical object. This can be a point, a path of a local
search or a confidence interval. With the key “d” pressed and pointing to the object
with the left mouse button we can delete an object in a ”Parameter - - -” window (see Sec-
tion 3.9). Notice that the corresponding objects in the other ”Parameter - --” windows
are also deleted.

In the banner of every ” Parameter - - -” window we see an index number. When we start up
an editor in this window (see the option in the menu “menu”) this leads to an “Edit parameter

” window with the same index as the “Parameter - --” window we started from. In
»”

window - - -

this way we can see which editor belongs to which ”Solution - --” window.

3.10 “Edit parameter window ---” window

” window (see Figure 3.11) we can change some settings of

window. For the meaning of the index see Section 3.9.

In an “Edit parameter window - - -
the corresponding “Parameter - --”

”

Figure 3.11: An “Edit parameter window - --” window

The meaning of the widgets in this window is the same as in the “Create parameter
window” window see Section 3.9.

3.11 “Global edit solution windows” window

In the window “Global edit solution windows” we can adjust the minimum and maximum
values of the solution components. For drawing the solution components in the solution win-
dows we need the minimum and maximum values of these components. When, for example,
a “locmin” computation is performed, we get sequences of sets of calculated solution vectors.
In these sets we have per experiment, all the calculated solution vectors at different ¢ values.

36

To determine per experiment the minimum and maximum values of the components, we use
the first set received from the numerical engine (via the database manager). The length of
the intervals (maximum - minimum values) is enlarged with 20%. When we are not satisfied
with the minimum and maximum values for some experiment we can change them in this
window. Figure 3.12 shows a “Global edit solution windows” window.

Figure 3.12: The “Global edit solution windows” window

We give a summary of the widgets.

exp This choice widget denotes the experiment number for which we want to adjust minimum
and maximum values.

fact This float input field denotes the factor by which the length of an interval, formed by
the minimum and maximum of a solution component, is enlarged.

FDM With this button we retrieve the last computed set of solution vectors from the data
base (FDM = From Data base Manager).

bg colour With this button a colour selector comes up to select a colour for the background
of all the ”Solution - --” windows.

bounds for t In this two float input field we can specify the minimum and maximum for ¢.
bounds for y In these 2 xnoq float input fields we can specify the minimum and maximum
for the solution components.

3.12 “Global edit parameter windows” window

In the “Global edit parameter windows” window we can change the colour and width of the
lines drawn in the ”Parameter ---” windows. We can also delete the points drawn after an

37

path colar

path width

bg colar

sO0Smax 1DD|

delete paths

delete points

guit

Figure 3.13: The “Global edit parameter windows” window

“anapar” and the paths drawn during a “locmin” (see Section 3.2.10). Figure 3.13 shows the
“Global edit parameter windows” window.
We give a summary of the widgets.

path colour With this button a colour selector comes up to select a colour for drawing the

path of a local search in the ”Parameter - --” windows.

path width With this slider we can change the line width of the path of the local search.

bg colour With this button a colour selector comes up, in which we can select a colour for

the background of the "Parameter ---” windows.

sosmax With this real input field we can change the upper bound of the sum of squares we
used for drawing the ”"Parameter ---” windows.
” window we can set one of the components of the p vector or the

”

In a ”Parameter - - -
sum of squares along an axis. For the drawing in the ”Parameter - - -
the upper and lower bounds of the variables along the axes. We use respectively ParMin
and ParMax (see Section 3.14) for the default values of the upper and lower bounds of
the parameter components. For the upper bound of the sum of squares we use the real
input field “sosmax”. The lower bounds is fixed on zero. After adapting the “sosmax”
input field all the “Parameter ---” windows are redrawn with the new bounds. This
will also happen when we adapt the ParMin and ParMax in the “Parameter & sum info”
window (see 3.14).

windows we need

delete points With this button we can delete the points drawn after an “anapar” compu-
tation.

delete paths With this button we can delete the paths drawn after a “locmin” computation.

”

There is also a possibility to delete globally (that means for all ”Parameter ---” windows

together) a graphical object (see Section 3.9).

38

3.13 “MCsim” window

In the “MCsim” window we can specify a Monte Carlo Simulation. Figure 3.14 shows the
“MCsim” window.

noMcs f1o0 |[seed |1]
count fo [} |

name mean
| ime |0 |Hos
L x |Jo | Jos
Ly o | fos
|_cancel || oke || done

Figure 3.14: The “MCsim” window

We give a summary of the widgets.

noMCs This integer input field denotes the number of the Monte Carlo simulations we want
to perform.

seed This integer input field denotes the seed of the random number generator.
count In this text widget the number of Monte Carlo simulations is counted.

del With this button the memory necessary for storing the Monte Carlo simulation is given
free.

name In these nog + 1 text widgets we see respectively the time and the nog + 1 names of
the solution components

mean In these nog float input fields we can specify the mean of the Gaussian distribution,
from which the perturbation of the time or specified solution component will be taken.

dev In these nog + 1 float input fields we can specify the deviation of the Gaussian distribu-
tion, from which the perturbation of the time or specified solution component will be
taken.

3.14 “Parameter & sum info” window

In the “Parameter & sum info” window we can set our initial guess of the parameter vector.

This current parameter vector can act as the starting point of a local minimisation. During

the computation of a local minimum we can follow the path of the changing parameter and

its corresponding sum of squares. Figure 3.15 shows the “Parameter & sum info” window.
We give a summary of the widgets.

39

MISOS —= 2058 | ActS0S —= | 0.1645

name IniPar fixed ActPar parmin parmax

i | Jostordl | no |] oseos |ff-2 RE |

| Joszoz [f] no |f 2078 |{]-2 | 4 |

1.3 | _no Ji| 1815 | -2 | Jas |

| cancel I| ake I| done I

Figure 3.15: The “Parameter & sum info” window

IniSOS This text widget contains the initial sum of squares corresponding to the initial
parameters. Before any calculation has been done, we see a question mark in this field.
Having started the minimisation process it receives a value after the first iteration in
the process. During the minimisation process this value will not change any more.

ActSOS This text widget shows us the current value of the sum of squares during the
minimisation process (the Active Sum Of Squares).

name In these nop text widgets we see the names of the unknown parameters.

IniPar In these nop real input field we give the initial value of the parameter vector. These
values can also be adapted by using the sliders under the real input fields. The ini-
tial values of the unknown parameters should be in the rectangular parameter domain
([ParMin, ParMax]).

fixed In these nop choice widgets we indicate which components of the parameter vector
are constant during the minimisation process. These fixed parameters are treated as a
known constant.

ActPar These nop text widgets show the parameter vector during the present (or most
recent) calculation of the numerical engine. During an “anapar” and the first iteration
of a “locmin” ActPar and IniPar are equal. ActPar is always inside the rectangular
parameter domain (denoted by ParMin and ParMax).

ParMin In these nop float input fields we give the lower bound of the current parameter
domain.

ParMax In these nop float input fields we give the upper bound of the current parameter
domain.

Ini=act With this button we assign ActPar to IniPar.

done After pressing the done button the default action of done is performed (see Section 3.2)
followed by a re-drawing of the “Parameter ---”
been changed or an update of ParIni.

windows when ParMin or ParMax has

ok Note the remark by the previous option.

40

3.15 “Integrator” window

During the minimisation process we can obtain information about the actions of the numerical
engine. In each step of the minimisation process the set of DAEs has to be integrated at least
once. These computations can be time consuming and may give reason to adapt the control
parameters of the numerical engine on the fly (see Section 3.4). For every step of the numerical
integration some variables, which give inside information about the actions of the IVP solver,
are reported. These variables are shown in the “Integrator” window. Figure 3.16 shows the
“Integrator” window.

exp arder l g5 HUitI

log(step) |-1.22|

tact | 1.31 |

Figure 3.16: The “Integrator” window

We give a summary of the widgets.
exp This text widget shows the experiment number for which the IVP solver is active.
time This text widget shows the actual value of the integration variable.
log(step) This text widget shows the logarithm of the actual step-length in the IVP solver.

order This text widget shows the order of the integration (order € {1,...,5}).

3.16 “Analyse minimum” window

In the “Analyse minimum” window we can choose how we want to see the results of an analysis
of the minimum found in a local minimisation process. This can be as numerical data in a
separate window (see Section 3.18), or as drawn confidence regions in the ”Parameter - --”
windows. Figure 3.17 shows the “Analyse minimum” window.

In this window we can make a selection from the following options.

show dependent confidence region When this choice is in the “yes” mode an analysis
of the local minimum will be made (“anamin”) when a computation of a local minimum
(”locmin” or ”steplocmin”) has been completed. It shows the dependent confidence
region as a green ellipse in the ”Parameter ---” windows. A square green marker is
drawn around the corresponding parameter.

show independent confidence region As previous option, but now it applies to the in-
dependent confidence region. The line of the independent confidence region and the
marker around the parameter are blue.

show singular vectors Option is under construction.

41

show dep. conf. region
|show indep. conf. region
show singular vectars

show gradient vector

show min. by number E

showsvo |||
select repart file E
add to report

analyse minimum E

Figure 3.17: The “Analyse minimum” window

show gradient vectors Option is under construction.

show minimum by number This button opens the “Show minimum by number” window
(see Section 3.17).

show SVD This button opens the “Show SVD” window (see Section 3.18).
select report file Option is under construction.

add to report Option is under construction.

3.17 “Show minimum by number” window

In the “Show minimum by number” window (see Figure 3.18) we give some numerical infor-
mation about confidence regions.

This window shows a browser in which some variables are shown (see Figure 3.18). These
are the names of the parameters (parnam), the parameter values for which an analysis of
the minimum (“anamin”) has been made, the variables parICI, parDCI and the condition
number of the right orthogonal matrix V7 (see Section 3.18). The sizes of the independent
and the dependent confidence regions are given by parICI[i] and parDCI[i] respectively.
In Section 3.4 the quantity Falpha was mentioned; now we can determine the (1-Falpha)
independent and dependent confidence regions by parvis[i] + parICI[i] and parvis[i]
=+ parDCI[i] respectively. In this, parvis[i] is the i-th component of the parameter vector.
(As long as the visualisation of the GUI is synchronous with the calculation in the numerical
engine, Actpar and parvis are equal.)

clear This button clears all the information stored in the browser.

42

Figure 3.18: The “Show minimum by number” window

3.18 “Show SVD” window

The “Show SVD” window gives graphical insight with respect to the parameters which can
be estimated relatively well. Figure 3.19 shows the “Show SVD” window.
We give a summary of the widgets.

101og(sigmali]) The picture shown under '9log(sigmali]) is a histogram of *log(c;). The
o; (with i € {1,...,nop}) are the singular values of the Jacobian matrix J = dy;/dp;,
evaluated at the local minimum (see [2] on page 6). When a p; is fixed (see Section 3.14)
we see a “f” in the corresponding place in the histogram.

V[j,i]l**2 The picture shown under V[j,i]**2 is a nop by nop grid. Each cell of the grid

corresponds with an entry in the matrix V from the singular value decomposition (SVD)

J =UXVT. So the i-th column is associated with the i-th singular value and the j-th

row is associated with the j-th parameter. As the colour of a entry is associated with
1712-1-, it indicates what parameters are associated with what singular vectors. In this way
we can immediately see what parameters are well determined. A vf-i <shift (see next
option) is mapped onto a grey colour. A higher value corresponds with a lighter grey
colour. A vjzz- >shift is mapped onto red. When a p; is fixed (see Section 3.14) the
corresponding entries 1)12-1- are black with a green cross in it.

shift With this slider we can determine the shift value. This value plays a role in the way
the vJZ-z- entries are coloured.

When we press the left mouse button on a particular entry vf-z- a text widget comes up con-

taining the values v2; and o; or the text “fixed”, when the entry vjz-z- corresponds with a fixed

Jt
parameter component. When we release the mouse on the entry this text widget disappears.

43

[oso F— [|

Figure 3.19: The “Show SVD” window

3.19 “Info” window

—

Figure 3.20: The “Info” window

Figure 3.20 shows the “Info” window. This browser contains information about the splds
application. This option is still under construction.

44

3.20 “Help” window

Figure 3.21: The “Help” window

Figure 3.21 shows the “Help” window . In this browser we want to offer some help. This
option is still under construction.

Acknowledgement

The authors would like to thank Robert van Liere of the department of interactive systems
at CWI for the many discussions concerning the data base manager and the adaptations he
made for this application.

Tobias Baanders made the splds logo look more professional on the basis of a draft from
one of the authors.

45

Appendix A

List of Abbreviations

Table A.1: Summary of used abbreviations

abbreviation | meaning page
Act active 13,24
Actpar active parameter vector 40
ActSOS active sum of squares discrepancies 40
AE algebraic engine vi
aengine algebraic engine vi
anapar analyse parameter 28
bg background 37,38
brkpnt breakpoint 30
comp computation 28
count counter for the number of Monte Carlo | 39
simulations
DAE(s) differential algebraic equation(s) 1
DCI dependent confident interval 42
del delete 39
dev deviation 39
dmserver data base manager server vi, 19
exp experiment 31
fact factor 37
Falpha a-point of the Fishers distribution 31
FDM from data base manager 37
glomin global minimisation 28
GUI graphical user interface 21
ICI independent confidence interval 42
Ini initial 35,40
Inipar initial parameter vector 35
IniSOS initial sum of squared discrepancies 40
Ivp initial value problem 1
IVPhrt ratio of the minimum and maximum step | 31
size of the initial value problem solver

46

abbreviation | meaning page

IVPtol local error bound of the initial value prob- | 30
lem solver

LM Levenberg-Marquardt 28

LMatol absolute tolerance for the Levenberg- | 31
Marquardt minimisation

LMlamb tuning parameter (A) of the Levenberg- | 31
Marquardt minimisation

LMMxTt maximum number of Levenberg-Marquardt | 31
minimisation steps

LMrtol relative tolerance for the Levenberg- | 31
Marquardt minimisation

locmin local minimisation 28

log logarithm (base 10) 41,43

MC Monte Carlo 28

MCsim Monte Carlo simulation 28

NE numerical engine 29

nengine numerical engine vi, 19

noaq number of algebraic equations 2

nobs number of observations 3

noc number of constants 3

nodq number of differential equations 2

noMC number of Monte Carlo simulations 39

nop number of parameters 2

noq number of number of equations 2

nosid number of side relations 3

ODE(s) ordinary differential equation(s) 1

par parameter or parameter vector 29

parDCI dependent confidence interval of active pa- | 42
rameter vector

parICI independent confidence interval of active | 42
parameter vector

parnam user defined name of a component of the | 42
parameter vector

parvis parameter vector used for visualisation | 42
purposes

splds simulation and parameter identification for | 1
dynamic systems

SgSabt absolute tolerance with respect to the | 30
sum for squared discrepancies during the
minimisation

SqSret relative tolerance with respect to the | 30

sum for squared discrepancies during the
minimisation

47

abbreviation | meaning page

sosmax upper bound for the sum of squared dis- | 38
crepancies, (only used for visualisation
purposes)

sum sum of squared discrepancies 28

SVD singular value decomposition 43

win window 33

x-axis horizontal axis of a solution or parameter | 31
window

Xmax upper bound for visualisation purposes | 32
along the horizontal axis

xmin lower bound for visualisation purposes | 32
along the horizontal axis

y-axis vertical axis of a solution or parameter | 32
window

ymax upper bound for visualisation purposes | 32
along the vertical axis

ymin lower bound for visualisation purposes | 32

along the vertical axis

48

Appendix B

The structure of splds

@ algebraic engine ?
names

modelfilg)

numerical engine data bank filter f filter.awk
data manager datf
/ X -
reporter.f
reporter.script reporter.tex parc
gnuplot visu
™ resu

@o@ Ve

Figure B.1: The structure of the splds application

49

Appendix C

Survey of all options in the GUI

In this section we will give a tree structure of all the options (actions) in the GUI. When
such an option leads to another window a separate section is devoted to it in Chapter 3. In
the subsequent overview these sections are listed between brackets. All the other options are
explained in Section 3.2.

change model
select file
edit file
activate file
change data
select file
edit file
activate file
edit current data (3.3)
time
component
measurement
weight
active
brkpnt
scroller
cancel
ok
done
save current data
change control
select file
edit file
activate file
edit current control (3.4)
SqSabt
SqSret
IVPtol

50

IVPhrt
LMMxIt
LMlamb
LMrtol
LMatol
Falpha
cancel
ok
done

save current control

solution space
create solution window

exp

X-axis

y-axis

data marker

line colour

line width

make window
exp
xmin
xXmax
ymin
ymax
menu

edit window

print
quit
cancel
merge solution window

parameter space

exp

X-axis
y-axis

data marker
line colour
line width
show y win
quit

create parameter window

X-axis

y-axis

make window
xmin
Xmax
ymin

51

(3.5)

(3.6)

(3.7)

ymax
menu
edit window
X-axis
y-axis
quit
print
quit
cancel

global editors
global edit solution window

exp
fact

fdm

bg colour
bounds for ¢
bounds for y
cancel

ok

done

global edit parameter windows

history
save
load

report

path colour
path width
bg colour
sosmax
delete paths
delete points
quit

miscellaneous
draw grid in solution windows

draw grid in parameter windows

MCsim
parameter & sum info

IniSOS

ActSOS

IniPar

fixed

ActPar
ParMin
ParMax
ini = act
cancel

52

(

(

(

3.10)

3.11)

3.12)

ok
done
integrator
exp
time
step
order
quit
analyse minimum
show dependent confidence region
show independent confidence region
show singular vectors
show gradient vectors
show minimum by number
clear
quit
show SVD
V[j,1i]**2
00g(sigmali])
shift
quit
select report file
add to report
quit
start computation
stop computation
splds info
quit
splds help
quit
quit
filter task
NE task

warning

53

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

Bibliography

[1] P.W. Hemker. Numerical methods for differential equations in system simulation and in
parameter estimation. In H.C. Hemker and B. Hess, editors, Analysis and Simulation of
Biochemical Systems, pages 59-80. North Holland Publ. Comp., 1972.

[2] P.W. Hemker and J. Kok. A Project on Parameter Identification in Reaction Kinetics.
Technical Report NM-R9301, Centrum voor Wiskunde en Informatica, P. O. Box 4079,
1009 AB Amsterdam, The Netherlands, 1993.

[3] M.H. Overmars. The Forms Library version 2.2, 1993.
[4] SGI. Graphics Library programming guide, 1991.

[5] J.J. van Wijk and R. van Liere. An Environment for Computational Steering. Technical
Report CS-R9448, Centre for Mathematics and Computer Science (CWI), 1994. Pre-
sented at the Dagstuhl Seminar on Scientific Visualization, 23-27 May 1994, Germany,
proceedings to be published.

54

Index

activate
control file, 26
data, 25
data file, 25, 26
algebraic engine, vi

background colour, 38
bounds

for t, 37

for y, 37
break-point, 14
button

help, 28

info, 28

change
model, 25
colour
background, 38
computation
choice, 28
start, 29
stop, 29
compute
global optimum (glomin), 28
local optimum (locmin), 28

Monte Carlo simulation (MCsim), 28
simulation for parameter value (ana-

par), 28

statistical analysis (analyse minimum),

29
constants, 3
constraints, 3
control file

activate, 26

edit, 26
select, 26
create

parameter window, 27

55

parameter window window, 34
solution window, 27
solution window window, 31

DAE, 1
data
active, 25
change, 25
edit, 26
save, 26
data file, 4, 12
activate, 25, 26
edit, 25, 26
select, 25
data part, 12, 13
database manager, vi
delete
paths, 38
points, 38
draw grid
in parameter windows, 27
in solution windows, 27

edit
control file, 26
control window, 30
data, 26, 29
data file, 25, 26
global
parameter windows, 27
solution windows, 27
parameter window - - - window, 36
solution window - - - window, 33
experiment, 13
part, 13
sequence, 14

FDM, 37
filter, vi
filter task, 29

graphical user interface (GUI), 3
GUI vi
gui, 21

integrator window, 41
IVP, 1

main window, 24
MAPLE language, 5
mean, 39
measurements, 3
menu
change control, 26
change data, 25
change model, 25
global editors, 27
history, 27
miscellaneous, 27
parameter space, 27
report, 27
solution space, 27
model, 2
model file, 4, 5
Monte Carlo simulation, 27, 39

name
in “MCsim” window, 39
in “Parameter & sum info” window, 40
numerical engine, vi

observations, 3, 12
ODE, 1

parameter - - - window, 34
parameter & sum info window, 39
path

colour, 38

width, 38

reserved words, 7

save
control, 26
data, 26
seed, 39
select
control file, 26
data file, 25
sensitivity, 43

56

show
confidence region
dependent, 41
independent, 41
gradient vectors, 42
integrator performance, 29
minimum by number, 42
minimum by number window, 42
parameter values, 29
singular vectors, 41
sum of squares, 29
SVD, 42, 43
side conditions, 7
sigma, 43
solution - - - window, 32
starting, 19

weighted least squares, 3
weights, 3
widget, 21
browser, 22
button, 22
choice, 22
colour-map, 23
file selector, 23
input field, 21
menu, 22
slider, 22
text, 21
window
help, 45
info, 44
integrator, 41
main, 24

