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Parameter Estimation in Chemical Engineering;
a case study for resin production

Walter Stortelder
CWI
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(e-mail: walterst@cwi.nl)

Abstract

In this report we present a study on parameter estimation in the field of resin production. The
mathematical model of the chemical process contains a set of 12 differential algebraic equations
(DAEs) and 16 unknown parameters; 8 series of measurements are available, performed under
different initial conditions and at different temperatures. To estimate the unknown parameters
we solve the system of model equations and tune the model by varying the parameters in order
to fit the solution of the DAEs with the measurements.

The differential equations are solved by the BDF method. As a fitness criterion we use
the sum of the squared weighted residuals, which is minimised by a Levenberg-Marquardt
algorithm.

Not only the optimal parameter values are determined, but also their reliability is inves-
tigated in combination with the feasibility of the mathematical model. With the available
measured data 12 of the 16 unknown parameters could be estimated within acceptable sta-
tistical bounds.

AMS Subject Classification (1991): 65C20, 65L08, 93B30.

Keywords and Phrases: Parameter estimation, reaction kinetics, resin production, chemical
modelling, model verification, reparameterisation.
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1 Introduction

Parameter estimation can be applied in a wide variety of sciences, such as biology, chemistry,
geophysics, electronic engineering, mechanical engineering, etc.. Whenever, besides a model with
unknown parameters, a set of corresponding data is given, parameter estimation can be applied.
One of the textbooks in this field is [Bar74]. Parameter estimation can be regarded as the inverse
of simulation. In simulation the model and the initial conditions are known completely and the
future behaviour of the process is investigated by numerical simulation of the model. In case
of parameter estimation the governing equations of the model and/or the corresponding initial
conditions contain some unknown parameters. On the other hand additional information about
the behaviour of the process is given. In the present paper, we consider the situation in which a
number of measured data is available.

The model in this paper describes a mechanism of methylolation of melamine by formaldehyde.
The methylolation is reversible, nine methylol melamines can be identified. Condensation is not
considered. For details on this chemical process we refer to [GHW66]

2 Reaction Mechanism

A schematic representation of the chain reactions of interest is given in Figure 1. In this figure we
added a label, ‘a’-‘k’, to every chemical component of interest, formaldehyde is represented by an
‘o’ and has no label. The explanation of the labels is given in Table 1.

label | abbreviation | full name

a melSol solid melamine

b melAq dissolved melamine

c mon mono-methylol melamine

d di N,N’-di-methylol melamine

e NN N,N-di-methylol melamine

f tri N,N’,N”-tri-methylol melamine

g NNN’ N,N,N’-tri-methylol melamine

h tet N,N,N’,N”-tetra-methylol melamine
i NNN'N’ N,N,N’,N’-tetra-methylol melamine
j pen penta-methylol melamine

k hex hexa-methylol melamine

Table 1: Labels, abbreviations and full names of the chemical components.

The reaction mechanism between melamine in solid and dissolved form, labels ‘a’ and ‘b’ respec-
tively, is unknown. This causes a less straightforward modelling of the process. The adaptations
and assumptions we made to overcome this inconvenience will be discussed later.

All other reactions involve the binding and loosening of formaldehyde. The reaction rates
which correspond to the binding have a positive subscript. The subscript of a reaction rate is 2
when the binding of formaldehyde is next to another formaldehyde element and 1 otherwise (when
the binding is on a free stick of A, see Figure 1). Negative subscripts indicate the reverse reaction
rates.

For cyclic chemical reaction parts the product of the reaction rates corresponding to the clock-
wise part should equal the product of the reaction rates anti-clockwise. From the reaction scheme
we see that this condition is fulfilled automatically.

3 Experiments Performed

As we mentioned before, for parameter estimation we need not only the model with some unknown
parameters, but also a set of measured data. Eight series of measurements were performed under



Figure 1: Reaction scheme

different initial conditions and at different temperatures. During each series, at a sequence of
times, a sample of the reaction volume was taken, in which the formaldehyde concentration and
the concentrations of the components with the labels ‘b’ to ‘k’ were measured. By measurement
we mean the value of the concentration of one chemical component at a specific time, i.e. at each
point of time we have 11 measurements. The total number of measurements (N) equals 583.

4 Model Equations

Every differential equation of the mathematical model corresponds to a change in concentration
of a chemical species. The derivation of the equations is based on second order reaction kinetics
and on conservation of mass.

For illustration we focus on the formation, i.e. the change of concentration per unit of time, of
mono-methylol melamine (label ‘c’) out of dissolved melamine (label ‘b’) and formaldehyde. This
production depends on ki, on the concentrations of formaldehyde and dissolved melamine and on
the number of possibilities for the binding of formaldehyde to dissolved melamine. In this case there
are six places where the formaldehyde can be bound. The reverse reaction depends on k_;, and on
the concentration mono-methylol melamine and water. For this case we only have one possibility
for the loosening. Following these rules for the reaction kinetics and denoting the formaldehyde
concentrations with [F'M], the water concentration with [H2O] and the concentration of a methylol
melamine by its corresponding abbreviation (see Table 1) inside square brackets, we can derive



the differential equations for all the species with the labels ‘c’ to ‘k’, as well as for formaldehyde
and water. The resulting differential equations are:

d[lzz” L [FM] (6melAg] + 4[mon] + 2[di] + AN N] + 2NN N'] + 2[NNN'N']) —
ko[F M| ([mon] + 2[di] + 3[tri] + [NNN'] + 2[tet] + [pen]) +
k_1[H20] ([mon] + 2[di] + 3[tri] + [NNN'] + 2[tet] + [pen]) + (1)
k_o[H20] (2[NN] + 2[NNN'] + 2[tet] + 4[NNN'N'] + 4[pen] + 6[hez]) ,
d[H,0] d[FM]
- - (2)
dt dt
@ = 6k [FM][melAq] + 2k_1[Hy0][di] + 2k_s[H,0][NN] —
4k, [F M][mon] — ka[F M][mon] — k_1[H20][mon] , (3)
@ = ko[FM][mon] + k_y[HyO][NNN'] — 4k, [FM][NN] — 2k_,[H;0][NN], (4)
% = 4k [FM][mon] + 3k_y [H20)[tri] + 2k_o[H>O][NNN'] —
2ky [FM][dd] — 2ko[F M][di] — 2k_1 [H50][dd] (5)
% = 4k [FM][NN] + 2ky[F M][di] + 4k_,[H,O][NNN'N'] +
2k_1[H,O|[tet] — ko[FM][NNN'] — 2k, [FM][NNN'] — (6)
2k_s[HoO|[NNN'] — k_1[H2O][NNN'] ,
d[;:i] = 2k [FM][di] + 2k_s[HaO][tet] — ko[ F M][tri] — 3k_1[HO[trd] , (7)
W = ko [FM]INNN'] + k1 [Hy0][pen] — 2k [FM][NNN'N"]
4k_s[H,O[NNN'N'"] (8)
d[s:t] = 3ko[FM][tri] + 2k, [FM][NNN"] + 4k_o|H,O][pen] —
2ko[F M][tet] — 2k_o[HO)[tet] — 2k_1 [H2O|[tet] , (9)
d[z‘;"] = 2ky[FM][tet] + 2k, [FM][NNN'N"] — k_, [H50][pen] —
4k_[H2O][pen] + 6k_o[H2O]hex] — ko[F M][pen] , (10)
d[’;:””] = ko[FM][pen] — 6k_o[H»0][hex] . (11)

The concentrations are given in mol/kg, the time, ¢, in minutes and —hence— all reaction rates,
k;, in kg/(mol min). These reaction rates, which are not known a priori, are the parameters to
be estimated. We assume that the change of the reaction volume due to the dissolvation of solid
melamine may be neglected.

From the measurements we know that the temperature was not constant over all the ex-
periments. Therefore we account for a temperature dependency in the reaction rates by using
Arrhenius’ law: 7E_

k(D) = fie(FF), i {-2,-1,1,2}. (12)
Here f; is a pre-exponential factor, E; the activation energy, R the gas constant and T the
temperature (in Kelvin). By taking into account this temperature dependency, the number of
unknown parameters is doubled.

To solve the set of differential equations, (1)-(11), we need a set of initial conditions. These
conditions contain the concentrations of the species of interest at the beginning of an experiment.
All the initial concentrations are zero except for water, formaldehyde and dissolved melamine

(label b?).



5 Treatment of the Melamine Concentrations

We already mentioned that the reaction mechanism between solid and dissolved melamine is
unknown. This means that we are not able to derive an equation relating the concentrations
of these species. On the other hand the concentration of dissolved melamine appears in the set
of differential equations, which means that this concentration is indispensable for solving the
differential equations. For each sample taken during the reaction the concentration of dissolved
melamine has been determined. To obtain this concentration at the intervening time intervals we
used a linear interpolation between the corresponding two subsequent measured concentrations of
dissolved melamine.

This leads to a total of 11 differential equations, (1)-(11), and an algebraic equation due to
the linear interpolation of the dissolved melamine concentration. The input file for the model
equations, as it will be used by the splds program [EHS95], can be found in Appendix A.

6 Parameter Estimation

The resulting system of differential algebraic equations (DAEs) contains, due to the Arrhenius’
law, eight unknown parameters (f; and E;). Besides these unknowns we also do not know the
exact initial concentration of formaldehyde for all the series. Because we have eight series of
measurements, we get eight extra unknown parameters: [FM;(t)] , 7 € {1,...,8}.

For a convenient shorthand notation we introduce a 16-dimensional parameter vector § and a
12-dimensional state vector, y(t,6) of varying concentrations, depending on ¢t and 6, as:

6 = ( flaElaf—laE—lanaE%f—2;E—2a[FMl(tO)]a[FMQ(tO)]a
[F Ms(to)], [F Ma(to)], [F Ms(to)], [F Ms(to)], [F Mz (to)], [F Ms(to)] )",

Yy = ( [mequ]a [FM]: [HzO], [mon], [NN]a [dz];
[NNN'], [tri], NN N'N'], [tet], [pen], [hex] )T .

The system of differential algebraic equations and the corresponding initial conditions are now
denoted by:

E% = f(tayag) ’ y(thg) = y0(9) ’ (13)

where E is a diagonal, 12x 12 matrix, with (E)1; = 0and (E); = 1fors € {2,...,12}. This matrix
E accounts for the distinction between differential and algebraic equations. The vector function
f: R x RY2 x RS - IR'? contains the information with respect to the linear interpolation
(first component) and the differential equations for ys,...,y12 (the righthand sides of (1)-(11)).
A measured datum, or shortly: measurement, is one experimentally determined concentration,
denoted by the triple:

{ﬂi,ci,ti} s iE{l,...,N}, (].4)

with 7; the measured value, ¢; the measured component, t; the time of the measurement and NV
the number of measurements.

Finally, we want to estimate the unknown parameter vector, 6, in such a way that the weighted
sum of squared discrepancies

N
S6) =Y wiye.(ti,6) — %) (15)
=1

is minimal. The weights, w;, are based on a priori knowledge about the accuracy of the measure-
ments.



7 Numerical Implementation

In order to use a gradient-based minimisation method and to perform some statistical analyses
we solve, besides the model equations (13), the sensitivity equations with respect to the unknown
parameters. The sensitivity equations, which can be derived analytically from (13) by a computer
algebra package, are given by

ddy Ofoy Of

dto8 9y oo = 88’
Inspection of (16) shows that the Jacobian of the sensitivity equations contains m (the number
of unknown parameters) copies of the Jacobian of the original model equations. This means that
the sensitivity equations inherit the stiffness character of the original equations. In case of a
BDF method (see e.g. [Gea71]), when a certain order and step strategy has been provided for the
numerical solution of (13), the same strategy can be used to solve (16) numerically. In this way
(16) can be solved very efficiently (see [Hem72]).

To minimise S(6) from (15) by Levenberg-Marquardt iterations, we need an initial guess for

the unknown parameters, 6;,;. Departing from this initial guess, 8 = 6;,,;, we obtain, by numerical
integration of (13), the corresponding N-dimensional vector of weighted discrepancies

.. 0 ]
with %y(tﬂae) = %yo(‘g) . (16)

Y(0) = wi(ye (ti, 0) — ¥i)i=1,..,N - (17)
Now we can write the sum of squares (15) as
S@) =Y (0) IP=YT(0)Y (®) - (18)

Simultaneously, the sensitivity equations (16) lead to the calculation of the N x m matrix

40 = Z50 = (wigu.) (19)

The minimisation of (18) is done by an iterative procedure. Suppose 6 is a trial vector and its
correction is given by 6. The squared sum of the improved parameter vector can be approximated
by a quadratic function of 60 as follows

SO+60) = YT(6+60)Y(0+66)
(Y(8) + A(0)80)T (Y (6) + A(6)56) (20)
= YT @O)Y(0)+ 2607 AT (0)Y (9) + 667 AT (6) A(6)66 .

Q

Its minimum is given by the normal equations
AT(6)A(0)660 = —AT ()Y (6) , (21)

where —AT(8)Y () is the descent direction. The last formula is the starting point of a Gauss-
Newton method. It is obvious that the Gauss-Newton procedure becomes unstable if the matrix
A(6) is (almost) singular. A well known remedy is the use of the Levenberg-Marquardt method,
which changes (21) into

(AT(0)A(0) + AT )50 = —AT(9)Y (6) , (22)
where X is adjusted to the condition of the matrix A(6). The Levenberg-Marquardt method can
be seen as a combination of Gauss-Newton and steepest descent.

To solve 86 from (22), we use the singular value decomposition (SVD) of the matrix A(8),

A(B) =U@)S(0)VT(0), (23)

where U(f) and V() are N x m and m x m matrices, respectively, such that UT(8)U(8) = I,
and VT (0)V(0) = V(0)VT() = I,,,. The m x m-matrix X(8) is diagonal and contains the singular
values in a non-decreasing order. Substitution of (23) into (22) leads to the following expression
for the correction of the parameter vector

86 = —V(8) (Z2(6) + AL,) " S(OUT(9)Y (6) . (24)



8 Statistical Background

We assume that the errors in the measurements are statistically independent, scaled by the weights,
w;, in such a way that they have equal variance (02?) and come from a Gaussian distribution. In
case of these reasonable assumptions, the weighted least squares result is identical to the maximum
likelihood estimate. The (weighted) experimental errors of the measurements, denoted by Y'(8) as
n (17), have the subsequent covariance matrix:

E (Y(O)YT(0)) = oI, . (25)

A combination of this last expression with (21), using the SVD, yields the covariance matrix of
66:
E(60667) = 0® (ATA) ™ = o?VE2VT | (26)

Here it is important to note that for the statistical analysis we use (24) with A = 0. The non-
vanishing A is only used in the minimisation process for regularisation. The covariance matrix,
evaluated for the final estimate of 6, gives insight into the neighbourhood of the local minimum
found.

Upon convergence of the Levenberg-Marquardt algorithm we obtain a final estimate of 6,
denoted by 8 = 8 + 0. We can write the corresponding final sum of squares as:

5(9) YT (0 + 66)Y (6 + 56)
~ YT(O)Y () -8 (VE2VT) 66 , (27)

where the matrices V and ¥ come from the SVD (see (23)).
Assuming that the linear approximation is valid in the vicinity of § and using standard, linear

~

statistics (see [BW&8]) we know that S(6)/0? and 667 (VE2V71)60/02 have a x2-distribution with
N —m and m degrees of freedom respectively. An unbiased estimate of o2 is given by

~

s2=S(0)/(N —m) . (28)

The confidence region at level a is the ellipsoidal region

m

667 (VE2VT) 86 < ——S(B)Falm,N —m) , (29)

where F,(m, N —m) is the upper a quantile for Fishers F-distribution with m and N —m degrees
of freedom. The independent confidence interval for each estimate is given by:

] 8; — 60%,6; + 60; [ , (30)

with:

68; = \/Nm S(B)Fa(m, N —m) (VE-2VT),, .

—m
Other quantities often used, but only recommended in combination with independent confidence
intervals, are the dependent confidence intervals:

] 6; — 561 .6; + 66] [ , (31)

with:

5ol — \/ m  S@)Fa(m,N —m)
! N—m (VEVT),,

The reader is referred to Figure 2 for a graphical interpretation. The principal axes of the
ellipsoidal confidence region coincide with the columns of the matrix V. The distance from the
origin to the ellipse along the i¢-th column of V' is proportional to the reciprocal of the ¢-th singular
value. This means that small singular values give rise to an elongated confidence region in the
corresponding direction. The independent confidence interval of the i-th parameter (30) coincides
with the projection of the ellipsoidal region on the i-th parameter axis, its intersection yields the
dependent confidence interval (31).



N *
0, + 50,
Figure 2: Graph of a 2-dimensional intersection of the ellipsoidal region from (29), centred at 8.

9 Reparameterisation and Results

The initial estimates for the pre-exponential factors and the activation energies (based on literature
[GHW66]) and the initial formaldehyde concentrations (given by the experimentalists) are listed in
Table 2. For numerical reasons it is better to have the parameters of the same order of magnitude.

parameter value parameter | value
f 1.35x10™ | FMy(to) | 8.41
E; 9.8 x10* | FMa(ty) | 7.61
f_1 3.98X108 FMg(to) 5.60
E_1 6.8 ><104 FM4(t0) 5.58
f2 ]..66><1015 FM5(t0) 4.80
E, 1.2 x10° | FMg(to) | 4.81
-2 8.91x10° | FMy(to) | 4.80
E_, 9.0 x10* F Mg(to) 5.58

Table 2: Initial estimates of the unknown parameters.

To obtain this we take the natural logarithm of the pre-exponential factors, f;, and the activation
energies are scaled by a factor 1/1000, E} = E;/1000. The scaled initial parameter estimates are
listed in the second column of Table 3.

After the above mentioned scaling, the first numerical tests were performed. The results are
reported in Table 3. The corresponding graphs of the calculated concentrations and the measured
values of N,N’ N”-tri-methylol melamine (label ‘f” in Figure 1) during the second experiment and
penta-methylol melamine (label ‘j°) during the eighth experiment for the initial and final parameter
values are shown in Figure 3.

The results from Table 3, with respect to the sum of squares and the corresponding graphs are
satisfactory; the numerical solution fits the measurements within reasonable bounds. However,
the confidence regions for the pre-exponential factors and the activation energies are unsatis-
factory. Inspection of the singular values shows that four of them are extremely small. The
corresponding eigenvectors, the last four columns of V', can be identified with pairs {In(f;), E}},
for i € {—2,—1,1,2}. The same holds for the four largest singular values. This means that an in-
tersection of the ellipsoidal region with the {In(f;), E}}-plane gives an elongated ellipse, of which
the principal axes are rotated with respect to the coordinate axes. The presence of elongated
ellipsoidal regions can also be seen from the quotients of the independent and dependent confi-
dence regions. This indicates that for each pair {In(f;), E}}, only one parameter can be estimated
accurately after an appropriate reparameterisation of either In(f;) or E}.

A well known reparameterisation for the pre-exponential factor (see [BDB86, Wat94]) is given



initial | final independent | dependent

est. est. confidence confidence

(Oini) | (6) regions (66*) | regions (60T)
In(f1) 32.54 | 20.17 5.12 0.0728
E} 98.00 | 65.38 14.0 0.198
In(f—1) | 19.80 | 24.81 20.5 0.469
E*, 68.00 | 91.27 57.7 1.32
In(f2) 35.05 | 14.17 21.8 0.261
E3 120.00 | 51.03 59.7 0.717
In(f_2) 22.91 9.126 32.2 0.407
E*, 90.00 | 47.61 88.4 1.13
FM; 8.41 | 8.745 0.622 0.582
F M, 7.61 | 8.536 0.609 0.578
FM; 5.6 5.097 0.607 0.604
FM, 5.58 | 6.098 0.712 0.701
FM; 4.8 4.671 0.766 0.760
F Mg 4.81 4.724 0.768 0.752
F M, 4.8 5.383 0.694 0.686
F Mg 5.58 | 6.065 0.702 0.683
S®) | 336.6 | 14.76

Table 3: Initial estimates and final estimates of 6 plus statistics.

exp—> 2
tat

[ ep-3 |

men.

010 [rm—rin 1 6001 me—] 02 (00 [ 11y
exp-> 2 menu | [ exp-8 |
048 05
b

T g T X
ynax X ymax
i er
030 0.0
ynin yrin

000 [rm—in 1 60.0]  —] 000 [rmm—in

| 12001 e— i

menu

1 120,01 e—] 2

Figure 3: Measured (‘x’) and calculated (solid line) concentrations of N,N’N”-tri-methylol
melamine (label ‘f’) during the second experiment (left half) and the penta-methylol melamine
(label ) during the eighth experiment (right half), for the initial (upper half) and final (lower

half) parameter values from Table 3.
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by the expression:

B(T) = fiexp (;,E)

_ f;exp( = (%-%ﬁ)) i€{-2,-1,1,2}, (32)

with:

—E;
=g (7).

The temperature T} is the reference temperature and should be close to the temperatures during
the experiments. An appropriate choice for Tj is the averaged temperature over all the performed
experiments. Note that the reparameterised pre-exponential factors, f;, represent the reaction
rates, k;, at T' = Ty. The results after this reparameterisation are given in Table 4 for Ty = 333K.

initial final independent | dependent

estimates | estimates | confidence confidence

(Bini) (4/9\) regions (66*) | regions (EGT)
In(f7) -2.74 -3.376 0.134 0.073
EY 98.00 65.33 14.0 7.38
In(f*,) | -4.68 -8.047 0.65 0.467
E*, 68.00 91.91 57.2 38.3
In(f3) -8.15 -4.181 0.621 0.261
E3 120.00 54.23 61.4 25.1
In(f*,) -9.49 -7.986 0.893 0.405
E*, 90.00 53.03 88.9 38.2
FM; 8.41 8.743 0.621 0.582
F M, 7.61 8.534 0.608 0.578
FMs; 5.6 5.097 0.607 0.604
FM,y 5.58 6.097 0.712 0.702
FM;5 4.8 4.672 0.766 0.760
F Mg 4.81 4.723 0.768 0.752
FM; 4.8 5.382 0.694 0.686
F Mg 5.58 6.065 0.703 0.683
S(6) 335.7 14.77

Table 4: Initial and final estimates of 6, plus statistics, after reparameterisation of the pre-
exponential factor.

The reparameterisation does not change the problem, the sum of squares and the parameter
values are unaffected. Only the confidence regions of the reparameterised parameters improve.
Inspection of the singular values shows again that four of them are extremely small. The difference
with the results from Table 3 is that now the last four columns of the matrix V' can be identified
with the activation energies, E;, i.e. the parameters which are the least well determined. This
means that the longest principal axis of the elongated ellipse is rotated towards the E;-axis after
the reparameterisation. The singular values and the columns of matrix V are shown in Figure 4.

The available measurements were carried out at temperatures between 323K and 353K. Nu-
merical experiments showed that we need a wider range of temperatures to estimate E; more
accurately.

10 Conclusions

In this paper we presented a general approach for parameter estimation in dynamical systems,
which are described by a set of differential algebraic equations. This approach has been applied to

11
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Figure 4: The squared entries of the matrix V are matched on a grey scale (upper part). The
black squares indicate small values and white squares represent values close to 1. Each row of
the matrix corresponds to a parameter. The logarithm of the corresponding singular values are
plotted in the lower part.

a real life problem from reaction kinetics in order to estimate unknown reaction rates and unknown
initial concentrations. The experiments were performed at different temperatures, which makes it
necessary to use Arrhenius’ law to derive the reactions rates. The unknown initial concentrations
and pre-exponential factors could be estimated satisfactorily. For that purpose, however, we needed
a reparameterisation of the pre-exponential factor. Due to the small range of the temperatures
during the experiments it was not possible to estimate the activation energies with sufficient
accuracy.

The strength of the method is the capability to decide for which parameters sufficient infor-
mation is available in order to perform an accurate estimation.

12
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Appendix A. The Model File

This appendix contains the model file as it was used as input for the parameter estimation program,
splds ([EHS95]). Comment lines start with a “#”.
The experimental data can be obtained via the author.

# declaration part

Variables :=[melAq,FM,H20,mon,NN,di,NNN,tri,N4,tet,pen,hex];

Parameters:=[fal,El1,faml,Eml,fa2,E2,fam2,Em2,
FM1,FM2,FM3,FM4 ,FM5,FM6 ,FM7 ,FM8] ;

Constants :=[temp,R,ttO,ttl,melO,mell,begin,
iFM1,iFM2,iFM3,iFM4,iFM5,iFM6,iFM7,iFM8];

# initial settings

Cdefault[temp] := 323;
Cdefault [R] = 8.34;
Cdefault[tt0] = 0.0;
Cdefault[tt1] = 5.0;
Cdefault[melO] := 0.12;
Cdefault[mell]l := 0.124;
Cdefault[begin]:= 1.0;
Cdefault[iFM1] := 1.0;
Cdefault[iFM2] := 0.0;
Cdefault[iFM3] := 0.0;
Cdefault[iFM4] := 0.0;
Cdefault[iFM5] := 0.0;
Cdefault[iFM6] := 0.0;
Cdefault[iFM7] := 0.0;
Cdefault[iFM8] := 0.0;

# scaling factor and reference temperature

fac :=1000.0;
Tref :=333;

# for the reparameterisation

RT1:=1.0/C[temp]-1.0/Tref;
RT2:=1.0/C[temp]-1.0/Tref;
RT3:=1.0/C[temp]-1.0/Tref;
RT4:=1.0/C[temp]-1.0/Tref;

# reparameterised reaction rates

k1 := exp(-P[fal ]-P[E1 ]*fac/C[R]*RT1);
kml:= exp(-P[fam1]-P[Em1]*fac/C[R]*RT2);
k2 := exp(-P[fa2 ]-P[E2 ]*fac/C[R]*RT3);
km2:= exp(-P[fam2]-P[Em2]*fac/C[R]*RT4) ;

# for the linear interpolation for dissolved melamine

melbeg:= C[melO];
melend:= C[mell];

# the corresponding algebraic equation (glmelAq]=0).

glmelAq] := melbeg+(melend-melbeg)*(t-C[tt0])/(C[tt1]-C[tt0])-Y[melAq];
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# the differential equations

£ [FM] -k1*Y[FM]*(6.0*Y[melAq] + 4.0*Y[mon] + 2.0*Y[di] +
4.0%Y[NN] + 2.0*Y[NNN] + 2.0%Y[N4])-
k2*Y [FM]*(Y[mon] + 2.0%Y[dil + 3.0*Y[tri] +
Y[NNN] + 2.0%Y[tet] + Y[pen]) +
km1*Y[H20]*(Y[mon] + 2.0*Y[di] + 3.0*Y[tri] +
YINNN] + 2.0*%Y[tet] + Y[penl) +
km2*Y [H20] *(2.0*%Y[NN] + 2.0%#Y[NNN] + 2.0*Y[tet] +
4.0xY[N4] + 4.0*%Y[pen] + 6.0*Y[hex]);

£ [H20]
f [mon]

-f[FM];

6.0%k1 *Y[FM]*Y[melAq]+2.0*km1*Y[H20]*Y[di]l+
2.0%km2*Y [H20] *Y [NN]-4.0%k1 *Y[FM]*Y[mon]-
k2 *Y[FM]*Y[mon]-km1*Y[H20] *Y [mon] ;

k2*Y [FM] *Y [mon] +km1*Y [H20] *Y [NNN] -

LO*k1*Y [FM] *Y[NN]-2.0xkm2*Y[H20] *Y[NN] ;
.Oxk1*Y [FM] *#Y [mon] +3.0*km1*Y [H20] #Y [tri]+
.O%km2*Y [H20] *Y [NNN] -2. O*k1*Y [FM]*Y [di]-
L0*k2*Y [FM] *Y [di]-2.0xkm1*Y[H20] *Y[di];
.O¥k1*Y [FM] *Y [NN]+2.0xk2*Y [FM] *Y[di]+
.Oxkm2*Y [H20] *Y [N4] +2.0*km1*Y [H20] *Y [tet] -
k2xY[FM] *#Y [NNN]-2.0*k1*Y [FM]*Y[NNN]-
2.0%km2+Y [H20] *Y [NNN]-km1*Y [H20]*Y [NNN] ;
2.0%k1*Y[FM]#Y [di]+2.0*km2*Y [H20] *Y[tet] -
3.0%k2*Y [FM] *Y [tri] -3.0*km1*Y [H20] *Y [tri];
k2*Y [FM] *Y [NNN] +km1*Y [H20] *Y [pen] -
2.0%k1*Y[FM] *Y [N4]-4.0*km2*Y [H20] *Y [N4] ;
3.0%k2*Y[FM] *Y [tri] +2.0%k1*Y[FM]*Y [NNN]+

4. 0*km2*Y [H20] *Y [pen] -2.0*%k2*Y [FM] *Y [tet] -
2.0xkm2*Y [H20] *Y [tet]-2.0*km1*Y [H20] *Y [tet];
2.0%k2*Y [FM] *Y [tet] +2.0*k1*Y[FM] *Y [N4] -
km1*Y [H20] *Y [pen] -4 . 0*km2*Y [H20] *Y [pen] +
6.0*km2*Y[H20]*Y[hex]—k2*Y[FM]*Y[pen];

k2*Y [FM] *Y [pen] -6 . 0xkm2*Y [H20] *Y [hex] ;

£ [NN]

fldil =

£ [NNN] =

NN ORI NN

fltril

£ [N4]

fltet]

f [pen]

f [hex]

# initial conditions (different for every series)

YStart [melAq] :=0.12*C[iFM1]+0.14*C[iFM2]+0.11*C[iFM3]+
0.17*C[iFM4]+0.25%C [iFM5]+0.3*C[iFM6]+
0.15%C[iFM7]+0.17*C[iFM8] ;

YStart [FM] :=P[FM1]*C[iFM1]+P [FM2] *C [iFM2] +P [FM3] *C [iFM3] +
P[FM4]*C[iFM4]+P [FM5]*C [iFM5]+P [FM6] *C [iFM6] +
P[FM7]1*C[iFM7]+P [FM8]*C[iFM8] ;

YStart[H20] :=34.0;

YStart[mon] :=0.0;
YStart [NN] :=0.0;
YStart[di] :=0.0;
YStart[NNN] :=0.0;
YStart[tri] :=0.0;
YStart [N4] :=0.0;
YStart[tet] :=0.0;
YStart[pen] :=0.0;
YStart[hex] :=0.0;

# used to estimate the relative error during the numerical integration

YSize[melq] :=10.0;
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YSize [FM]
YSize [H20]
YSize [mon]
YSize [NN]
YSize[di]
YSize [NNN]
YSize[tril
YSize [N4]
YSize[tet]
YSize[pen]
YSize [hex]

# lower bounds for the unknown parameters

ParMin[faill
ParMin[E1]

ParMin[fami]
ParMin[Em1]
ParMin[fa2]
ParMin[E2]

ParMin[fam2]
ParMin[Em2]
ParMin [FM1]
ParMin[FM2]
ParMin[FM3]
ParMin[FM4]
ParMin [FM5]
ParMin[FM6]
ParMin [FM7]
ParMin [FM8]

# upper bounds for the unknown parameters

ParMax[fa1]
ParMax[E1]

ParMax [fami]
ParMax [Em1]
ParMax[fa2]
ParMax [E2]

ParMax [fam2]
ParMax [Em2]
ParMax [FM1]
ParMax [FM2]
ParMax [FM3]
ParMax [FM4]
ParMax [FM5]
ParMax [FM6]
ParMax [FM7]
ParMax [FM8]

iy
o
O OO OO OO0 OO O Oo

1]
o
O OO O OO OO0 OO0 O O OO

:=5.48;
:=196000/fac;
:=9.36;
:=136000/fac;
:=16.3;
:=240000/fac;
:=18.98;
:=180000/fac;
:=16.82;
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