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ABSTRACT

This paper describes the mathematical modelling of a part of the blood coagulation mechanism. The model

includes the activation of factor X by a puri�ed enzyme from Russel's Viper Venom (RVV), factor V and

prothrombin, and also comprises the inactivation of the products formed.

In this study we assume that in principle the mechanism of the process is known. However, the exact structure

of the mechanism is unknown, and the process still can be described by di�erent mathematical models. These

models are put to test by measuring their capacity to explain the course of thrombin generation as observed in

plasma after recalci�cation in presence of RVV. The mechanism studied is mathematically modelled as a system

of di�erential-algebraic equations (DAEs). Each candidate model contains some freedom, which is expressed

in the model equations by the presence of unknown parameters. For example, reaction constants or initial

concentrations are unknown. The goal of parameter estimation is to determine these unknown parameters in

such a way that the theoretical (i.e., computed) results �t the experimental data within measurement accuracy

and to judge which modi�cations of the chemical reaction scheme allow the best �t.

We present results on model discrimination and estimation of reaction constants, which are hard to obtain

in another way.

1991 Mathematics Subject Classi�cation: 65C20, 65K10, 90C31, 92C40, 65L05.

Keywords and phrases: Mathematical simulation, blood coagulation, parameter estimation, model discrimi-

nation, interactive modelling.

Note: Work carried out under the project `Modelling of processes in Chemistry' (no. MAS2.6).

1. Introduction

One of the problems encountered in the study of a complicated biochemical process like thrombin

generation in plasma, is that neither the reaction mechanism nor the reaction constants and initial

concentrations are precisely known. The knowledge on the reaction mechanism of the process is ob-

tained mainly through experiments on isolated parts of the system. The elements of the system, i.e.

the clotting factors and their interactions, are separated from blood plasma and their interaction is

studied under circumstances that are necessarily not precisely identical to those under which they

cooperate in plasma. In fact it is not even known whether the reaction scheme that we deduce from

such experiments is indeed the one operative in plasma. There may exist unknown factors or reactions,

and reactions that have been shown to be possible in principle may not occur in reality. An example of

this is the fact that factor Xa can activate factors V and VIII under experimental circumstances, but

that this reaction does not seem to play a role in clotting plasma [MT90]. Also the reaction conditions

y Financially supported by the Dutch Technology Foundation (STW).
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in plasma are di�erent from those used for the study of the interaction of isolated factors. They may

even be unsuitable for the study of such interactions. The kinetic parameters of activation of factor V

by thrombin, e.g., can not be measured directly in plasma because the presence of natural thrombin

inhibitors renders it impossible to achieve a �xed enzyme concentration.

In this article we introduce mathematical model validation and parameter estimation as a possible

solution to these problems. In this procedure, on basis of the existing biochemical knowledge, a proba-

ble reaction mechanism is postulated. This is transformed into a set of di�erential-algebraic equations,

which contains unknown parameters. These parameters correspond with the reaction constants and

initial concentrations of the reactants, both approximatively known from previous experiments and

used as an initial guess for the parameters to be estimated. Then, one or more results of the reaction

process are monitored, e.g. the course of thrombin concentration in plasma in time after triggering of

the coagulation process, and the parameters in the model are adapted to obtain an optimal �t. Dif-

ferent hypothetical reaction mechanisms can be tested in parallel to see which one results in a better

�t. If the best �t leads to improbably large discrepancies between the computed and the experimental

results, the model is adapted and the validation process is repeated.

In this paper we brie
y indicate this process of model derivation and validation. In fact, the process

consists of checking a long sequence of improving models, adapted during the process for a wide range

of reasons. The �nal model should not only lead to a satisfactory �t, but should also be simple, in

accordance with established facts, and {preferably{ it should not contain an unreasonably large number

of parameters. In order to validate the many models and to estimate the corresponding parameters,

an interactive software package for parameter estimation on a fast computer is an indispensable tool.

Such a computer program, called spIds [EHS95] and partially constructed by two of the authors, was

available to carry out the necessary computations.

The model we consider in this paper describes thrombin formation, a part of the blood coagulation

process, by a system of di�erential-algebraic equations. The variation in time of the concentrations of

each reactant is described by a (di�erential) equation. The chain of reactions which leads to thrombin

starts with the activation of factor X by RVV, followed by the activation of factor V, the production

of prothrombinase in the presence of phospholipid and the activation of prothrombin. We also take

into account the inactivation of the factor Xa by anti-thrombin III (ATIII) and the inactivation of

thrombin by ATIII and �2-macroglobulin (�2M).

A description of the experiments used is given in Section 2, followed by a derivation of the reaction

mechanism in Section 3. The step from reaction mechanism to mathematical equations is given in Sec-

tion 4. The parameter estimation process is brie
y described in Section 5. The results and conclusions

are given in Section 6 and 7, respectively.

2. Experimental Data

In order to obtain the required data, four experiments were performed, which resulted in four series

of measurements. The output of the system used for our tests was the course of thrombin-like ami-

dolytic activity. This activity is caused by two types of molecules: thrombin itself and the thrombin-�2
macroglobulin complex (brie
y denoted as IIa and IIa��2M respectively, in the reaction scheme, Figure

1).

The data were obtained as follows. To 240 �l of de�brinated plasma, in which the clotting factors

are contained, we add 3.6 �l of a suspension of procoagulant phospholipids (1 �M) and 80.4 �l of a

solution of RVV. This concentration of RVV was halved in the subsequent experiments. The thrombin

generation process was started at t = 0 by addition of 36 �l of CaCl2 (100 mM). At di�erent time

intervals, more frequently in the initial phase of the reaction and less frequently at the end, we took

0.01 ml samples from the reaction mixture and added it to 0.49 ml of a solution of the chromogenic

substrate S2238 (0.5 mM) in a bu�er that contains the Ca+2 chelating agent EDTA in order to stop

further thrombin generation. Thrombin and �2M-thrombin split the yellow-coloured para-nitroaniline

from S2238. After 2 min. this reaction is stopped by adding citric acid and the colour is measured



Mathematical Modelling in Blood Coagulation 3

and used to determine the thrombin activity in the sample. Time measurements for the thrombin

generation are made automatically and samples are taken until a stable end level of amidolytic activity

is observed. This takes about 15 minutes.

3. Reaction Mechanism

At this point we �rst present a commonly accepted reaction sequence for thrombin generation in

Figure 1. Thereafter we describe three possible variants as found in [Hem93]. In this section the

reaction mechanism and its alternatives are given in a schematic way. In Section 4 we give a more

precise description by deriving di�erential equations. This is followed by an overview of the motivation

and selection criteria involved in choosing one set of equations in favour of its alternatives.

In the reaction schemes the coagulation factors are denoted by their Roman numbers, the subscript

`a' indicates their activated form, `PL' and `PT' denote phospholipid and prothrombinase, respectively.

`ATIII' and `�2M' (anti-thrombin III and �2-macroglobulin) are responsible for inactivation of the

factors IIa and Xa.

X Xa

V Va

II IIa

ATIII
Xa−ATIII

ATIII

IIa
− ATIII

IIa−
α

2M

PTPL

RVV

2α M

Xa
Va

+ +

r1

r
3

r4

r5 r
6

r7

r8

r
9

r2

Figure 1: The reaction scheme for the part of the blood coagulation studied.

In the scheme of Figure 1, the activation of X by RVV, (reaction r1), leads to Xa, followed by its

inactivation by ATIII (r2). Next, factor V is activated by IIa (r3). The factors Xa, Va and PL produce

PT in a reversible association (r4 and r5). Subsequently, thrombin (IIa) is formed out of prothrombin

(II), either in the presence of PT (r6) or of Xa (r7). Finally, IIa is inactivated either by �2M or by

ATIII (r8 and r9, respectively).

In this study we show that the above scheme is suitable to explain the experimental results. It

summarises the present common knowledge, but it is not necessarily complete and/or unique. We

also investigate a number of possible alternatives. One such alternative concerns the formation of

prothrombinase (PT), not in a trimolecular reaction but as a sequence of bimolecular reactions (Fig-

ure 2). Two other alternatives are given in the Figures 3 and 4. In the former we account for the

existence of the intermediate meizothrombin that in itself has amidolytic activity [BTH+95], in the

latter we account for the existence of an intermediate form of the �2M-thrombin complex [MFG92].

All proposed alternatives are more complex than the reaction mechanism we start with in Figure

1. By \more complex" we mean that it has more state variables and more intermediate reactions,
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PT

Va

Xa+

+
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PL
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Figure 2: The alternative reaction scheme to account for prothrombin formation.

IIa

ATIII

IIa
− ATIII

IIa−
α

2M

2α M

Xa
PT

IIamII

ATIII

IIa
− ATIIIm

Figure 3: The alternative reaction mechanism for the formation of thrombin by the introduction of an

intermediate reactant, meizothrombin (mIIa).

which implies that they are likely to �t better because there are more degrees of freedom available.

In Section 5 we will derive model equations from the reaction schemes and judge by statistical tests

if an increase of the complexity of the model leads to a signi�cant improvement of the �t between the

calculated model responses and the observed data.

II IIa

ATIII

IIa
− ATIII

α
2M

IIa− 2α M

Xa
PT

m IIa− 2α M

Figure 4: The alternative reaction mechanism for thrombin inactivation by �2M . Here we assume that

IIa�2M transforms further into an amidolytic less active form, mIIa�2M .
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4. Model Equations

From the four reaction schemes as they are introduced in Section 3, mathematical model equations

were derived. It is obvious that the schemes presented lead to di�erent sets of equations. But also from

a single reaction scheme various sets of alternative mathematical model equations can be derived. As an

example we consider the reaction r1, which is present in all four reaction schemes. The concentrations

of the chemical species are given in nM and indicated by `[ ]'; the time, t, is given in minutes.

The dimension of the reaction constants are derived from these units. The change in time of the

concentration of factor X can be given by the well-known Michaelis-Menten relation:
d[X ]

dt
= �r1 = �

kcatX � [X ] � [RV V ]

kmX + [X ]
: (4.1)

Although we know from literature that this relation is likely to be valid, it may be replaced by

closely related expressions. In cases where kmX � [X ] or kmX � [X ], expression (4.1) transforms

respectively into the alternatives

r1 = kk1 � [X ] � [RV V ] ; (4.2)

with kk1 � kcatX=kmX or

r1 = kk2 � [RV V ] ; (4.3)

with kk2 � kcatX . Both alternatives have one parameter less than the Michaelis-Menten relation and,

depending on the ratio kmX=[X ], they can replace (4.1) without loss of accuracy. A third possible

alternative reads:

r1 = kk3 � [X ] ; (4.4)

which follows from (4.2), when RV V -dependence is negligible. Similar alternatives exist for the other

reactions. Together, this leads to a large number of candidate models.

From all these candidates we select that model (or subset of models, if the statistical tests do not

lead to a decisive answer) which, (i) is in accordance with established knowledge in the �eld, (ii)

is devoid of irrelevant steps (cf. the Michaelis-Menten reaction mentioned above), and (iii) �ts the

phenomena observed.

In Section 5 we will highlight the process of parameter estimation and deal with model validation.

In the last part of the present section we give the set of model equations which was chosen from the

candidates on the basis of the criteria (i)-(iii). This set is one of the possible mathematical represen-

tations for the scheme given in Figure 1. and as such it is an example of the many possible systems

of DAEs. In addition, it describes the connection with the experiments.

The selected system of equations reads:

d[X ]

dt
= �r1 ; (4.5)

d[Xa]

dt
= r1 � r2 � r4 + r5 ; (4.6)

d[V ]

dt
= �r3 ; (4.7)

d[V a]

dt
= r3 � r4 + r5 ; (4.8)

d[PL]

dt
= �r4 + r5 ; (4.9)

d[PT ]

dt
= r4 � r5 ; (4.10)

d[II ]

dt
= �r6 � r7 ; (4.11)
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d[IIa]

dt
= r6 + r7 � r8 � r9 ; (4.12)

d[IIa�2M ]

dt
= r9 ; (4.13)

AmAct = [IIa] + 0:556 � [IIa�2M ] ; (4.14)

r1 =
kcatX � [X ] � [RV V ]

kmX + [X ]
; (4.15)

r2 = kiXa � [Xa] ; (4.16)

r3 =
kcatV � [V ] � [IIa]

kmV + [V ]
; (4.17)

r4 = kPT � [V a] � [Xa] � [PL] ; (4.18)

r5 = kPL � [PT ] ; (4.19)

r6 =
kcatII � [II ] � [PT ]

kmII + [II ]
; (4.20)

r7 =
kcat2 � [II ] � [Xa]

km2 + [II ]
; (4.21)

r8 = kiIIa�2M � [IIa] ; (4.22)

r9 = kiIIaATIII � [IIa] : (4.23)

The concentration of RVV is supposed to be constant during each experiment. However, it should be

noted that [RVV] di�ers for the di�erent experiments. The inactivation of IIa and Xa in the presence of

ATIII and �2M is modelled by �rst order reactions (r2, r8 and r9). This implies that the concentrations

of these inhibitors do not occur in the equations.

The available measurements concern the amidolytic activity, which is expressed as the equivalent

amount of thrombin (nM). This means that, in addition to the equations describing the chemistry,

an equation for the amidolytic activity should be added. This equation is given in (4.14). It takes

into account that the amidolytic activity does not only depend on the activity of thrombin (IIa), but

also on the activity of the thrombin inactivated by �2M (IIa�2M). It is known from [Hem93] that the

inactivated form shows an activity of 55.6% of the active thrombin.

In addition to the system of nine di�erential equations (4.5)-(4.13), we need the same number of

initial conditions. At the start (t = 0), the initial concentrations of all state variables are zero, except

for [PL], [II], [V] and [X].

5. Parameter estimation and model validation

The system of equations (4.5)-(4.23) contains 13 reaction constants. None of these constants nor the

initial concentrations of the coagulation factors [II], [V] and [X] are known exactly, but they are

assumed to be constant for each experiment. These 13 reaction constants, plus the three unknown

initial conditions, are the quantities we want to determine; the unknown parameters. We summarise

these parameters in Table 2. From the current literature we know upper and lower bounds for the

concentrations of the clotting factors in normal plasma: i.e. [750nM,2200nM] for II, [10nM,30nM] for

V and [70nM,200nM] for X.

The parameters are determined in such a way that the model responses �t the measurements in

a least squares sense. Besides the parameters, con�dence regions for the parameters are derived. For

more details about the numerical solution of the model equations, minimisation of the least squares

criterion and the con�dence regions the reader is referred to [Hem72] or [Sto96].

To get more insight in our process of model discrimination, we compare each of the four options,

(4.1)-(4.4), in combination with the reactions r2 to r9 from Figure 1 as they are described in (4.16)-

(4.23). The expressions for r2 to r9 are obtained by a similar process of selection and validation as we

will describe below.
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Under the assumption of (4.16)-(4.23) we immediately reject option (4.4), because it implies that

RV V has no in
uence on the reaction scheme, which is not in agreement with the experiments.

Under the assumption of (4.16)-(4.23), with one of the options (4.1), (4.2) or (4.3) we compare

the corresponding model performances shown in Table 1. From this table it is obvious that the �rst

r1 # par df S(b�)
(4.1) 16 104 6460.4

(4.2) 15 105 70203.8

(4.3) 15 105 100511.0

Table 1: Comparison for the three remaining options (4.1), (4.2) and (4.3). We show the number of

parameters (# par), the degrees of freedom (df: the number of measurements minus the number of

free parameters) and the least squares sum (S(b�)).
alternative performs better than the other two, if we take only S(b�) into account. In order to decide

if one model performs signi�cantly better than another, we use the F-ratio test (see Appendix A). To

apply this test to the three remaining options for r1, we take the reaction scheme from Figure 1 and

r2 to r9 as in (4.16)-(4.23). The relevant data for the F-ratio test are given in Table 1. The test of a

signi�cant di�erence between (4.1) and (4.2) consists of computing the quantity (cf. (A.2))

X(4:1);(4:2) =
6460:4=104

70203:8=105
= 0:0929 ; (5.1)

and to check whether this number is between 1=F�

2
(105; 104) and F�

2
(104; 105), i.e. 0.602 and 1.661,

respectively, for � = 0:01. The ratio (5.1) exceeds the bounds of this region, which means that the

model with (4.1) accounts signi�cantly better for the phenomena observed. Therefore, r1 from (4.2)

is rejected. Similarly (4.3) is rejected, because it performs even poorer, as can be seen from Table 1.

Also, the other models which are derived from alternative schemes described in the Figures 2, 3

and 4, have been tested. All these alternatives give rise to models with more state variables and more

parameters. However, following the same strategy none of them turned out to perform signi�cantly

better.

6. Results

An initial estimate for the parameters consists of an educated guess from the existing biochemical lit-

erature ([Hem93] and references therein). These initial values are given in Table 2. The �nal estimates,

and the corresponding con�dence regions are also listed in this table. For details on the statistics, the

reader is referred to [Sto96]. The sum of squared residuals for the initial estimates was 2:40� 10
7, after

minimisation it was reduced to 6:287� 10
3.

The measurements (120 in total and 30 for each experiment) and the model responses for the �nal

estimates of the parameters are given in Figure 5. The plots show a very acceptable �t between the

computed and measured values, i.e. a �t within the measurement accuracy, which means that the

model gives a su�ciently accurate description of the measured quantities.

The independent and dependent con�dence regions as they are listed in the fourth and �fth column

of Table 2 show that by far not all the parameters can be estimated within reasonable accuracy. From

the singular value decomposition of the covariance matrix of the parameters (see e.g. [Hem72]), we can

deduce that with the current model and the available measurements 5 parameters (or combinations

of parameters) can be estimated with acceptable accuracy. By making use of other chromogenic sub-

strates, additional measurements for Va and Xa can be obtained in order to estimate more parameters

more accurately.

The parameter km2 tends to become small during the parameter estimation procedure and the idea

came up to replace the corresponding reaction, r7 (cf. (4.21)), with kk5 � [Xa], in order to reduce the
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para- initial �nal independent dependent

meter est. est. con�dence con�dence

(�ini) (b�) regions (���) regions (��y)

kcatX 5.00�10
3 2.391�10

2 5.301�10
3 1.963�10

1

kmX 4.00�10
2 2.365�10

1 5.776�10
2 6.335�10

0

kiXa 2.50�10
�1 4.531�10

0 1.408�10
1 3.667�10

�1

kPT 1.00�10
�1 1.229�10

2 3.117�10
5 4.152�10

1

kPL 1.00�10
1 8.014�10

2 2.032�10
6 2.711�10

2

kcatV 1.40�10
1 7.844�10

0 2.166�10
3 1.862�10

0

kmV 7.20�10
1 1.497�10

2 4.261�10
4 3.666�10

1

kcatII 2.00�10
3 4.387�10

1 8.678�10
2 2.956�10

0

kmII 2.10�10
2 6.225�10

1 2.147�10
2 2.073�10

1

kcat2 2.30�10
0 1.240�10

1 2.596�10
2 9.150�10

�1

km2 5.80�10
1 6.148�10

�2 2.937�10
1 1.630�10

1

kiIIaATIII 1.30�10
0 7.859�10

�1 5.794�10
�1 4.423�10

�2

kiIIa�2M 1.50�10
0 1.762�10

�1 4.611�10
�2 2.673�10

�2

Xini 1.33�10
2 8.125�10

1 1.729�10
3 7.556�10

0

Vini 1.67�10
1 6.712�10

0 1.663�10
2 5.821�10

�1

IIini 1.33�10
3 5.093�10

2 2.677�10
2 2.112�10

1

S(�) 2.40�10
7 6.287�10

3

Table 2: Initial guess and �nal estimates for the parameters and their con�dence regions.

number of parameters by one. The corresponding model gave negative results for the concentration

of factor II, which is a consequence of adapting r7 ( the inequality [II ] � km2 did not hold on the

whole time interval), and was therefore rejected.

The term r7 is inevitable, because without this term the production of thrombin will not even start.

This can be seen from the reaction scheme of Figure 1 and the fact that the initial concentrations

of IIa and Va are zero. Before the start of the experiments the expectation of the biochemists was

that the activation of prothrombin (II) would be mainly performed by prothrombinase (PT) and that

the contribution of Xa would be marginal here. In other words: r7 would be small compared to r6
and therefore (after initiating the reaction) could be neglected after a few seconds. By investigating

the separate contributions to the thrombin production for r6 and r7 during the simulations, we found

that the contribution of r7 is about 50% of the production by r6 and therefore not negligible. This

conclusion should, however, be strictly limited to the case of RVV as a factor X activator and be

extrapolated to other experimental setups.

Although the results of Table 2 may look poor with respect to the con�dence regions, it appears

that with the current data we were able to discriminate between many models in a systematic way

and to come up with a model which �ts the observations satisfactorily.

7. Conclusions

In this paper we compare a number of possible reaction schemes which describe part of the blood

coagulation mechanism. For each scheme mathematical model equations have been derived and pa-

rameters have been adapted in order to obtain a best �t with a set of experimental data. Depending

on the complexity of the model, and the quality of the �t, judged by the statistical criteria, we were

able to discriminate between many candidate models. The �nal model is compact, meets the estab-

lished knowledge in the �eld and �ts the measurements satisfactorily. A large number of more compact

models were rejected on the account of the measurements. More sophisticated models were rejected

because the increase of complexity did not account for a su�cient improvement of the �t.



Mathematical Modelling in Blood Coagulation 9

Figure 5: Plots of the measurements (`+') and the model responses for the �nal estimates of the

parameters from Table 2 over the 4 experiments with decreasing concentrations of RVV.

With the �nal model selected not only its parameter estimates are presented, which are optimal in

a least squares sense with respect to the available data, but also the corresponding con�dence regions.

Additional experiments can make the con�dence regions smaller, but they may also lead to a more

complex model in favour of one of the alternatives which had to be rejected in this paper.

In this sense the presented model can be a good starting point for ongoing research and may show

its value when more experimental data are available.
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A. F-ratio test

We refer to [Rat83] for an introduction to the statistical tests which should be performed and help

the modeller to decide what parameters can be skipped or what model should be chosen. When we

have two models with approximately the same �t, the model with the fewest parameters is favourite

for further investigation. What we mean by approximately will be made more precise below.

Suppose we have two solutions coming from di�erent models

y(t; �) and z(t; �): (A.1)

We use ny andm� for the dimension of y and �, respectively. The dimensions of z and � will be denoted

by nz andm�. In general, di�erent models describing the same physical process have di�erent numbers

of state variables or parameters. The only restriction is that the vectors y and z both contain the state

variables for which measurements are available.

From the two models we get optimal parameters and corresponding sums of squares: b�, b�, S(b�) and
S(b�). From the normal assumption with respect to the measurement error, and assuming that the

optimal parameters are close to the true parameters, we know that:

X =
S(b�)=(N �m�)

S(b�)=(N �m�)
� F(N �m�; N �m�) : (A.2)

Where F(p; q) denotes the Fisher's F distribution with p and q degrees of freedom respectively. From

the characteristics of an F distribution we know:

E(X) =
N �m�

N �m� � 2
; (for: N �m� > 2)

and

P

�
1

F�

2
(N �m�; N �m�)

� X � F�

2
(N �m�; N �m�)

�
= 1� � ;

where F�

2
(N �m�; N �m�) is the upper �=2 quantile for Fisher's distribution (see e.g. [MGB74]).

Notice that the expectation of X does not depend on m�. When the two models have about the same

performance, X will be close to its expectation. Whenever X exceeds F�=2(N �m�; N �m�), which

means that S(b�) is signi�cantly larger than S(b�), the model which corresponds to y(t; �) is rejected

in favour of the model which corresponds to z(t; �). Of course, the opposite happens if X is less then

1=F�

2
(N �m�; N �m�). In all other cases no conclusion can be drawn, although if there is a model

with less parameters, then this one is favourite for reasons of compactness.


