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ABSTRACT

We consider the first boundary value problem for a singularly perturbed parabolic PDE with convection on an
interval. For the case of sufficiently smooth data, it is easy to construct a standard finite difference operator and
a piecewise uniform mesh, condensing in the boundary layer, which gives an e-uniformly convergent difference
scheme. The order of convergence for such a scheme is exactly one and up to a small logarithmic factor one
with respect to the time and space variables, respectively. In this paper we construct high-order time-accurate
e-uniformly convergent schemes by a defect correction technique. The efficiency of the new defect-correction
scheme is confirmed by numerical experiments.

2000 Mathematics Subject Classification: 65M06, 65M12, 65M15

Keywords and Phrases: e-uniform method, singular perturbation problem, defect correction

Note: This research was supported in part by the Dutch Research Organization NWO under grant
N 047.008.007 and by the Russian Foundation for Basic Research under grant N 98-01-000362.

1. INTRODUCTION

We consider the first boundary value problem for a singularly perturbed parabolic PDE with con-
vection on an interval. The highest derivative in the equation is multiplied by an arbitrarily small
parameter €. When the parameter € tends to zero, boundary layers may appear that give rise to
difficulties when classical discretisation methods are applied, because the error in the approximate
solution depends on the value of . An adapted placement of the nodes is needed to insure that
the error is independent of the parameter value and depends only on the number of nodes in the
mesh. Special schemes with this property are called e-uniformly convergent. In the papers [1-5] we
introduced and analyzed e-uniformly convergent difference schemes for singularly perturbed boundary
value problems for elliptic and parabolic equations. If the problem data are sufficiently smooth, for the
parabolic equations with convection terms, the order of e-uniform convergence for the scheme studied
is exactly one and up to a small logarithmic factor one with respect to the time and space variables,
respectively, i.e. O(N~! In’N + K 1), where N and K are the number of intervals in the space and



time discretisation. Because the amount of the computational work is proportional to the number
K, higher order accuracy in time can considerably reduce computational expenses. Therefore, it is of
interest to develop methods for which the order of convergence with respect to the time variable is
increased.

For equations without convective terms the improvement of the accuracy in time, maintaining e-
uniform convergence by means of a defect correction technique, was also studied in [4, 5]. In this
paper we develop schemes for which the order of convergence in time can be arbitrarily large if the
solution is sufficiently smooth, similarly based on the defect correction principle, but now for a new
class of singular perturbation problems, viz., for equations with convective terms. In contrast to our
previous papers [4, 5], now we use a more elegant experimental technique for the determination of
convergence orders, which we apply to convincingly verify the theoretical results.

2. THE STUDIED CLASS OF BOUNDARY VALUE PROBLEMS

On the domain G = (0,1) x (0,7T], with boundary S = G \ G we consider the following singularly

perturbed parabolic equation with Dirichlet boundary conditions':

0? 0 0

Liyu(z,t) = {5 a(x,t)ﬁ + b(z,t) e c(x,t) — p(x,t)g} u(z,t) =
= f(xvt)a (xvt) € Ga (213“)
u(z,t) = (z,t), (x,t)€S8. (2.1b)
For S = Sy U SE, we distinguish the lateral boundary S* = {(z,t): z =0orz=1,0<t < T},
and the initial boundary So = {(=,t) : = € [0,1], t = 0}. In (2.1b) a(z,1), b(z,1t), c(z,t), p(z,t),
flz,t), (x,t) € G, and p(z,t), (x,t) € S are sufficiently smooth and bounded functions which satisfy
0<ap < a(z,t), 0<by < b(z,t), 0<po < p(x,t), c(x,t)>0, (z,t)€G. (2.1¢)

The real parameter ¢ from (2.1a) may take any values from half-open interval

e (0,1]. (2.1d)

When the parameter € tends to zero, the solution exhibits a layer in a neighbourhood of the set
SE={(x,t): =0, 0<t<T},ie., the left side of the lateral boundary. This layer is described by
an ordinary differential equation (an ordinary boundary layer).

3. DIFFERENCE SCHEME ON AN ARBITRARY MESH
To solve problem (2.1) we first consider a classical finite difference method. On the set G we introduce
the rectangular mesh

G =W X Dy, (3.1)
where @ is the (possibly) non-uniform mesh of nodal points, z*, in [0, 1], @p is a uniform mesh on the
interval [0,T]; N and K are the numbers of intervals in the meshes @ and Wy respectively. We define
T=T/K, ht = 21 — 2% h = max; hi, h < M/N, G, = GNGp, S, =SNG},

Here and below we denote by M (or m) a sufficiently large (or small) positive constant which does
not depend on the value of parameter £ or on the difference operators.
For problem (2.1) we use the difference scheme [9]

Aioyz(z,t) = f(z,t), (z,t) € Gy, (3.2a)
z(z,t) = o(x, 1), (x,t) € Sh. (3.2b)

Here

1 The notation is such that the operator L, p) is first introduced in equation (a.b).
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Aoyz(@,t) = {e a(z, )6z + b(x, )5, — ez, t) — p(x, )55} 2(x, 1),
bapa(at t) = 2+ B! (8,2(at, ) — bx2(at, 1)) |

Sez(a,t) = (W) (2(ah,t) — 22 11)

Spz(a,t) = (W)~ (2(2' 1) — 2(ah, 1)),

Srz(z',t) = 771 (2(a',t) — 2(2', t — 7)),
dz2(x,t) and dzz(z,t), dzz(x,t) are the forward and backward differences, and the difference operator

2
dzz2(x,t) is an approximation of the operator %u(m, t)) on the non-uniform mesh.
x

From [9] we know that the difference scheme (3.2), (3.1) is monotone. By means of the maximum
principle and taking into account estimates of the derivatives (see Theorem 5 in the Appendix) we
find that the solution of the difference scheme (3.2), (3.1) converges for a fixed value of the parameter
€ as:

| w(z,t) — z(x,t) | < M(e 2N~  +7), (2,t) € Gp. (3.3)

This error bound for the classical difference scheme is clearly not e-uniform.

The proof of (3.3) follows the lines of the classical convergence proof for monotone difference schemes
(see [9, 10]). Taking into account the a-priori estimates for the solution, this results in the following
theorem.

Theorem 1 Assume in equation (2.1) that a, b, ¢, p, f € H@t?"=2)(q), o € H ) (G), a > 4,
n = 0 and let the condition (8.1) with n = 0 be fulfilled. Then, for a fized value of the parameter €,
the solution of (3.2), (3.1) converges to the solution of (2.1) with an error bound given by (3.3).

4. THE e-UNIFORMLY CONVERGENT SCHEME

Here we discuss an e-uniformly convergent method for (2.1) by taking a special mesh, condensed in
the neighbourhood of the boundary layer. The location of the nodes is derived from a-priori estimates
of the solution and its derivatives. The way to construct the mesh for problem (2.1) is the same as in
[4, 5, 11]. More specifically, we take

G, =w*(0) x @ , (4.1)

where @y is the uniform mesh with step-size 7 = T/ K, i.e. Wy = Wy(3.1), and W* = W*(0) is a special
piecewise uniform mesh depending on the parameter o € IR, which depends on € and N. We take
o = o@4.1)(e, N) = min(1/2, m~leln N), where m = Mmy4.1) i an arbitrary number with a size of
about mo = mingla~*(z,t)b(z,t)]. The mesh W*(0) is constructed as follows. The interval [0,1]
is divided in two parts [0,0], [o,1], 0 < 1/2. In each part we use a uniform mesh, with N/2
subintervals in [0,0] and [o,1].

Theorem 2 Let the conditions of Theorem 1 hold. Then the solution of (3.2), (4.1) converges e-
uniformly to the solution of (2.1) and the following estimate holds:

lu(z,t) — z(z,t)| < M(N"'In N +7), (x,t) € G,. (4.2)
The proof of this theorem can be found in [10, 12].

5. NUMERICAL RESULTS FOR SCHEME (3.2), (4.1)
To see the effect of the special mesh in practice, we take the model problem

Lopuat)={e v O = far), @t ea (5.1)
(5.1)UT, = 685E2 o ot ul\zx, - z,t), T, ) .

u(z,t) = o(x,t), (z,t) €S,



where
flz,t) = =4t (x,t) € G, @(x,t) =0, (z,t)eS; T =1.
For the approximation of problem (5.1) we use the scheme (3.2), (4.1), where m =271, G), = 62‘.
Since the exact solution for this problem is unknown, we replace it by the numerical solution U, 2048
computed on a finest mesh G, with NV = K = 2048, for each value of €. Then the computed maximum
pointwise error is defined by

E(N,K,e) = max |z(z,t) —u"(z,t)]. (5.2)
(I,t)EGh

Here u*(x,t) is the linear interpolation obtained from the reference solution U2%#® corresponding to
the numerical solution z(z,t) of problem (3.2), (4.1). We compute E(N, K, ¢) for various values of ¢,
N, K. Note that no special interpolation is needed along the t-axis.

The results are given in Table 1. From the analysis of the numerical results we conclude that, in
agreement with (4.2), the order of convergence for large N = K is O(N~'In N + K1), i.e. almost
one with respect to the space and time variables. Thus, it corresponds with the theoretical results.

e\ N 16 32 64 128 256 512
1.0 2.178-03 1.179-03 6.046-04 2.989-04 1.410-04 6.073-05
2-1 6.460-03 3.555-03 1.840-03 9.126-04 4.312-04 1.859-04
22 1.533-02 8.465-03 4.402-03 2.188-03 1.035-03 4.467-04
2-3 2.950-02 1.639-02 8.544-03 4.257-03 2.017-03 8.708-04
2—4 4.819-02 3.275-02 2.238-02 1.148-02 5.510-03 2.399-03
2-5 6.342-02 3.601-02 2.334-02 1.454-02 8.192-03 4.061-03
26 7.341-02 4.263-02 2.409-02 1.498-02 8.460-03 4.192-03
2-7 7.763-02 4.651-02 2.495-02 1.521-02 8.601-03 4.269-03
2 8
2 9

7.939-02 4.819-02 2.618-02 1.534-02 8.669-03 4.307-03
8.015-02 4.893-02 2.673-02 1.540-02 8.707-03 4.326-03
2—10 8.050-02 4.927-02 2.699-02 1.543-02 8.728-03 4.336-03
2—18 8.082-02 4.984-02 2.730-02 1.547-02 8.749-03 4.345-03

E(N) 8.082-02 4.984-02 2.730-02 1.547-02 8.749-03 4.345-03

Table 1: Errors E(IN, N, €) for model problem (5.1) with the special scheme (3.2), (4.1)

In this table the function E(IN, K, &) is defined by (5.2). The bottom line, E(IN), gives the computed maximum for
each column.

6. IMPROVED TIME-ACCURACY

6.1 A scheme based on defect correction

In this section we construct a discrete method based on defect correction, which also converges e-
uniformly to the solution of the boundary value problem, but with an order of accuracy (with respect
to 7) higher than in (4.2).

The technique used in this paper to improve time-accuracy is based on the one in [4, 5]. For the
difference scheme (3.2), (4.1) the error in the approximation of the partial derivative (9/0t) u(z,t)
is caused by the divided difference 05 z(z, t) and is associated with the truncation error given by the
relation

ou 0u u

a(x,t) — 6{U($,t):271 Tw(x,t) — 671 T2ﬁ(x,t — ’19), ) (S [O,T]. (61)

Therefore, we now use for the approximation of (9/0t) u(x,t) the expression

dru(x,t) + Torzulx,t)/2,
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where &3 u(z,t) = 6,7 u(z,t — 7). Notice that J,; u(z,t) is the second central divided difference. We
can evaluate a better approximation than (3.2a) by defect correction
c —1 82’&
Ai.2)2%(x,t) = f(x,t) +27 pla, t)T W(m,t), (6.2)

with ¢ € W and t € Wy, where @ and @y are as in (3.1); 7 is step-size of the mesh @Wy; 2¢(x,t) is the
“corrected” solution. Instead of (82/0t?)u(x,t) we shall use 037 z(, t), where z(z,t), (z,t) € Gpa1)
is the solution of the difference scheme (3.2), (4.1). We may expect that the new solution z°(x,t) has
a consistency error O(72). This is true, as will be shown in Section 6.3.

Moreover, in a similar way we can construct a difference approximation with a convergence order
higher than two (with respect to the time variable) and O(N~! In N) with respect to the space
variable e-uniformly.

6.2 The defect correction scheme of second-order accuracy in time

We denote by 0,;2(x,t) the backward difference of order k:
67 2(2,t) = (017 2(@,t) = 017 2(x,t — 7)) /7, t> kT, k>1;
Sop 2(z,t) = z(w,t), (x,t) € Gh.

To construct the difference schemes of second order accuracy in 7 in (6.2), instead of (92 /9t%)u(x,t)
we use 0,7 2(7,t), the second divided difference of the solution to the discrete problem (3.2), (4.1).
On the mesh G}, we write the finite difference scheme (3.2) in the form

A(3_2)Z(1)({E,t) = f(xvt)a (:C,t) € G, (63)
Wz t) = olx,t), (z,t) € Sh,
where z(M)(x,t) is the uncorrected solution. For the corrected solution z(?)(x,t) we solve the problem

for (z,t) € G,

2
x,t2_178 u(z,0), t=r,
A(3.2)Z(2) ($7t) = f(.l?,t) + p( ) EZ ( ) ) (xvt) € Gh,

p(x, )27 70,7 20 (2, 1), t> 27
2@, t) = pla,t), (2,) € Sh. (6.4)
2
Here the derivative %tg(x’ 0) is obtained from the equation (2.1a). We shall call () (z, ) the solution

of difference scheme (6.4), (6.3), (4.1) (or shortly, (6.4), (4.1)).
For simplicity, in the remainder of this section we suppose that the coefficients a(z,t), b(z,t)
do not depend on ¢t

a(z,t) = a(z), bz,t) =b(x), (v,t)€qG (6.5)
and we take a homogeneous initial condition:

o(z,0) =0, z€]0,1]. (6.6)
Under the conditions (6.5), (6.6), the following estimate holds for the solution of problem (6.4), (4.1)

w(@,t) — 2@ (a, t) ‘ <M[N'WmN+72], (z,t)€Gh (6.7)

Theorem 3 Let conditions (6.5), (6.6) hold and assume in equation (2.1) that a, b, c, p, f €
H(@tm=2)(G) ¢ € HOet)(G), a > 4, n = 1 and let condition (8.1) be satisfied for n = 1.
Then for the solution of difference scheme (6.4), (4.1) the estimate (6.7) holds.

Proof. The proof of Theorem 3 is given in the Appendix, see Section 8.2.



6.3 The defect correction scheme of third-order accuracy in time

The above procedure can be used to obtain an arbitrarily large order of accuracy in time. Here we
only show how to construct the difference scheme of third order accuracy. On the grid G, we consider
the difference scheme

A2 2(3)(:10,75) = f(z,t) + (6.8a)

2
p(z,t) <CHT%U(£B,O) + Co72 88t3 u(x, O)) , t=m,

p(z,t) <0217—88_:2U(£C,0) + Copt? gt?’ u(x, 0)) , t =27, ) (.L“,t) € G,

p(z,t) (C’31T52;z(2)(:1c,t) + 0327253tz( )(x ,t)) , t>37
2(3)(x7t) = Lp(xvt)a (:C,t) € Sh'

Here () (2, t) and 2(?)(x,t) are the solutions of problems (6.3), (4.1) and (6.4), (4.1) respectively, the
derivatives (9%/0t%)u(x,0), (03/0t3)u(z,0) are again obtained from equation (2.1a). The coefficients
C;; are chosen such that they satisfy the following conditions

o ok
au(m,t) = dpu(z,t) + CHT@u(x,t — 7) 4 Cpar? @u( - 1)+ 0(r?),
o? o3 3
En u(z, t) = dpu(x, t) + 0217'8 su(r,t —27) + Copt? ﬁu( —27) + O(1°),

%u(m, t) = dpu(z, t) + Cs170y7u(x, t) + 0327'253#1,(.1?, t) + (’)(7'3).

It follows that
011 = 021 = 031 = 1/2, 012 = 032 = 1/3, 022 = 5/6 (68b)

By 2 (z,t) we denote the solution of the difference scheme (6.8), (4.1) and again, for simplicity,
we assume the homogeneous initial condition

(P(xv 0) =0, f(xa 0) =0, z € [07 ]-] . (69)

Under conditions (6.5), (6.9) the following estimate holds for the solution of difference scheme

(6.8), (4.1)
u(x,t) — 23 (x,t) ‘ <M [N 'hN+7], (2,t) € Gy (6.10)

Theorem 4 Let conditions (6.9) hold and assume in equation (2.1) thata, b, ¢, p, f € H (at2n=2)(q),
© € HEP)(G), o> 4, n =2 and let condition (8.1) be satisfied with n = 2. Then for the solution
of scheme (6.8), (4.1) the estimate (6.10) is valid.

Proof. The proof of Theorem 4 is given in the Appendix in Section 8.3.
In a similar way we could construct difference schemes with an arbitrary high order of accuracy

ON"'In N47"thH, n>2.

7. NUMERICAL RESULTS FOR THE TIME-ACCURATE SCHEMES
We find the solution of the following boundary value problem

Liyu(z,t) =0, 0<zx<l1, 0<t<T, T=1 (7.1)

u(0,t) =t 0<t<T, wu(x,t)=0, (x,t)€S, =>0.
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It should be noted that the solution of this problem is singular.

It is very attractively to use the analytical solution of problem (7.1) for the computation of the errors
in the approximate solution, as was in [4, 5]. But here a suitable representation (for computation)
of the solution u(z,t) is unknown. Instead of the exact solution, it is possible to use the solution of
the discrete problem on a very fine mesh. But this method is not effective because the analysis of
the order of accuracy for a defect-correction scheme requires a very dense mesh that leads not only to
large computational expenses but also to large round-off errors.

Hence, we use the method from [6], different from the above-mentioned techniques. The solution of
problem (7.1) is represented in the form of a sum

u(x,t) = VO (x,t) +v(x,t), (x,t)€q, (7.2)

where V) (z,t) is the main singular part (two first terms) of the asymptotic expansion of the solution
of problem (7.1), and v(x, t) is the remainder term, which is a sufficiently small smooth function. The
function V(l)(x,t) has a sufficiently simple analytical representation

VO (x,t) = Vo(a,t) + Vi(x,t), (z,t) €G,  where
Vo(w, ) = £10(z), W() = [exp(—=~12) — exp(—=1)]/[1 — exp(—=1)],
Vi(a, ) = —483z exp(—a/z) /[1 - exp(—1/2)],
Vo(z,t)| < M, [Vi(z,t)] < Me, (x,t) €G.
The function v(z,t) is the solution of the problem
Liayv(z,t) = fo(z,t), (x,t) €G, (7.3)
v(0,t) =0, wv(l,t)=-V1(1,t), 0<t<T, v(z,0) =0, 0<z<1,

with
fola,t) = —41* [t exp(—1/e) + 3z exp(—z/e)] / [1 — exp(—1/e)].

For the function v(x,t) the following estimate holds:

ak+ko
‘ " otko Y

(x,t)‘gMEQ[l—ks_k], (x,t) €G, k+2ko<4, k<3

Then the function v(z,t) and the product e2(9*/dx*)v(x,t) are e-uniformly bounded. Thus, we can
consider v(x,t) as the regular part of this solution.

(1.) We solve the discrete problem, which approximates the boundary value problem (7.3), on the
finest available mesh G}, = a(*)h(él.l) for N = K = 2048, for the chosen value of ¢, and there are no
difficulties to find the function v(z,t) = v2048(z,¢) and the reference solution

u(2, 1) 7.0y = w2 (2, 1) = VO (2,1) + 02 (2, 1),

(2.)  Further for solving problem (7.1), we —successively— use the scheme (6.3), (4.1) and the
defect correction schemes (6.4), (4.1) and (6.8), (4.1) to find the functions z(M)(z,t), 2 (2,t) and
23)(x,t), respectively. Note that z()(z,t) is the uncorrected solution, 2 (z,t) and 2 (z,t) are
the corrected solutions. In these cases we compute the maximum pointwise errors E(N, K, &) by
formula (5.2), where u*(x,t) is the linear interpolation obtained from the reference solution u2%48(z, t)
corresponding with the numerical solution z*) (w,t), k = 1,2,3 for the values N = 2%, i =2,3,...,10,
K=2j=23,...,10.

The computational process (1.) and (2.) is repeated for all values of e = 27", n =0,2,4,...,12. As
a result, we get F(N, K, &) for various values of ¢, N, K for each of the functions 2" (x,t), 2 (z,1),



K\ N 4 8 16 32 64 128 256 512 1024
e
4 | 1.51-1 1.42-1 1.03-1 6.86-2 4.39-2 2.67-2 1.58-2 9.21-3 5.36-3
8 1.39-1 1.38-1 1.02-1 6.82-2 4.36-2 2.65-2 1.56-2 9.00-3 5.15-3
16 1.32-1 1.36-1 1.02-1 6.80-2 4.35-2 2.63-2 1.55-2 8.88-3 5.03-3
32 1.29-1 1.35-1 1.01-1 6.79-2 4.34-2 2.63-2 1.54-2 8.81-3 4.97-3
64 1.27-1 1.35-1 1.01-1 6.79-2 4.34-2 2.62-2 1.54-2 8.78-3 4.93-3
128 1.26-1 1.35-1 1.01-1 6.78-2 4.34-2 2.62-2 1.53-2 8.76-3 4.92-3
256 1.26-1 1.35-1 1.01-1 6.78-2 4.34-2 2.62-2 1.53-2 8.75-3 4.91-3
512 1.26-1 1.34-1 1.01-1 6.78-2 4.34-2 2.62-2 1.53-2 8.75-3 4.91-3
1024 1.26-1 1.34-1 1.01-1 6.78-2 4.34-2 2.62-2 1.53-2 8.75-3 4.90-3
)
4 | 1.33-1 1.37-1 1.02-1 6.81-2 4.35-2 2.64-2 1.55-2 8.89-3 5.05-3
8 1.28-1 1.35-1 1.01-1 6.79-2 4.34-2 2.62-2 1.54-2 8.79-3 4.94-3
16 1.26-1 1.35-1 1.01-1 6.78-2 4.34-2 2.62-2 1.53-2 8.76-3 4.91-3
32 1.26-1 1.34-1 1.01-1 6.78-2 4.34-2 2.62-2 1.53-2 8.75-3 4.90-3
64 1.25-1 1.34-1 1.01-1 6.78-2 4.34-2 2.62-2 1.53-2 8.75-3 4.90-3
128 1.25-1 1.34-1 1.01-1 6.78-2 4.34-2 2.62-2 1.53-2 8.75-3 4.90-3
256 1.25-1 1.34-1 1.01-1 6.78-2 4.34-2 2.62-2 1.53-2 8.75-3 4.90-3
512 1.25-1 1.34-1 1.01-1 6.78-2 4.34-2 2.62-2 1.53-2 8.75-3 4.90-3
1024 1.25-1 1.34-1 1.01-1 6.78-2 4.34-2 2.62-2 1.53-2 8.75-3 4.90-3
M)
4 | 1.28-1 1.35-1 1.01-1 6.79-2 4.34-2 2.62-2 1.54-2 8.78-3 4.94-3
8 1.26-1 1.34-1 1.01-1 6.78-2 4.34-2 2.62-2 1.53-2 8.75-3 4.91-3
16 1.25-1 1.34-1 1.01-1 6.78-2 4.34-2 2.62-2 1.53-2 8.75-3 4.90-3
32 1.25-1 1.34-1 1.01-1 6.78-2 4.34-2 2.62-2 1.53-2 8.75-3 4.90-3
64 1.25-1 1.34-1 1.01-1 6.78-2 4.34-2 2.62-2 1.53-2 8.75-3 4.90-3
128 1.25-1 1.34-1 1.01-1 6.78-2 4.34-2 2.62-2 1.53-2 8.75-3 4.90-3
256 1.25-1 1.34-1 1.01-1 6.78-2 4.34-2 2.62-2 1.53-2 8.75-3 4.90-3
512 1.25-1 1.34-1 1.01-1 6.78-2 4.34-2 2.62-2 1.53-2 8.75-3 4.90-3
1024 1.25-1 1.34-1 1.01-1 6.78-2 4.34-2 2.62-2 1.53-2 8.75-3 4.90-3

Table 2: Errors E(N, K) for e = 2710

3(3)(:10, t). Analyzing these results, we observe convergence of the solutions for increasing N = K for
any of the functions 21, 22, 2) and for all values of ¢ used. In order to show this result we give
Table 2 only for € = 2710, The corresponding tables for other values of ¢ are similar.

In Table 2 the values of E(N, K) are given for the functions z(1), 2(2) and 2(3). For each of them we
see decreasing errors for N = K, i.e. we have e-uniform convergence. But the order of convergence,
which we observe, is about equal to one for all functions. All errors corresponding to the same values
of N, K but to different z(*) are similar.

We know that the error of approximation consists of two parts. One part is due to the discretisa-
tion of the space derivatives and the second is due to the time discretisation. We briefly call these
components the space error and the time error. Since by the defect correction we improve only the
accuracy with respect to the time, we expect a decreasing time error. It can be much smaller than the
space error and therefore the observed error in Table 2 corresponds only to the space error. In order
to show this we split the combined error in the space error (Table 3) and the time error (Table 5).
The structure of Table 3 is similar to that of Table 2.

Table 3 contains the values of the space errors computed by the formula

E(g)(NuK) = E(N’MK) _E(Ni+17K)7 i= 3a47"' 79; N; :2i~

We see that the errors are the same for all different K. The order of the errors in Table 2 and Table 3
are the same. From Table 3 we deduce Table 4, where the ratios of the space errors is given by

R®(N;,K) = E®(N;, K)/E®(N;y1,K), i=3,4,...,8.

In Table 4 we see the first order of the convergence with respect to the space up to a small logarithmic
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K\ N 8 16 32 64 128 256 512
ey
4 | 3.85-2 3472 2472 1.72-2 1.09-2 6.59-3 3.85-3
8 | 3.61-2 3.40-2 2462 1722 1.092 6.59-3 3.85-3
16 | 3.48-2 3.36-2 2.45-2 1.72-2 1.09-2 6.59-3 3.85-3
32 | 3.41-2 3.34-2 245-2 1.72-2 1.09-2 6.583 3.85-3
64 | 3.38-2 3322 2452 1.722 1.09-2 6.583 3.85-3
128 | 3.36-2 3.32-2 2.45-2 1.72-2 1.09-2 6.58-3 3.84-3
256 | 3.35-2 3.32-2 2452 1.72-2 1.09-2 6.583 3.84-3
512 | 3.35-2 3.31-2 245-2 1.72-2 1.09-2 6.58-3 3.84-3
1024 | 3352 331-2 2452 1722 1.09-2 6.583 3.84-3
2@
4 | 3.50-2 3.36-2 2.45-2 1.72-2 1.09-2 6.59-3 3.85-3
8 | 3.39-2 3332 2452 1722 1.092 6583 3.85-3
16 | 3.36-2 3.32-2 2.45-2 1.72-2 1.09-2 6.58-3 3.84-3
32 | 3.35-2 3.31-2 245-2 1.72-2 1.09-2 6.58-3 3.84-3
64 | 3.35-2 3.31-2 2452 1.722 1.09-2 6.583 3.84-3
128 | 3.34-2 3.31-2 245-2 1.72-2 1.09-2 6.583 3.84-3

1024 | 3.34-2 3.31-2 245-2 1.72-2 1.09-2 6.58-3 3.84-3
6
4 |341-2 3332 2452 1722 1092 6583 3.85-3
8 | 3.35-2  3.32-2 2.45-2 1.72-2 1.09-2 6.58-3 3.84-3
16 | 3352 3.31-2 2452 1722 1.092 6583 3.84-3
32 | 3342 3312 2452 1722 1.092 6583 3.84-3

1024 | 3.34-2 3.31-2 2.45-2 1.72-2 1.09-2 6.58-3 3.84-3

Table 3: Space Errors E®) (N, K) for e = 210

factor.
In a similar way we construct Table 5 for the time error:

EW(N,K;)=E(N,K;) — E(N,K;1+1), j=2,3,...,9
and Table 6 for their ratios

RYO(N,K;) = EO(N,K;)/EY(N, K1), j=2,3,4,...,8, K;=2.
In Table 5 we now observe a number of interesting results:

1. We see that the time error is essentially smaller than the space error. This explains the fact
that we do not see the effect of the time error in Table 2.

2. The errors for z(1) are larger than those for z(?) and, similarly, the errors for z(?) are larger than
those for z(3).

3. We see that approximately the same error (=~ 10~%) is obtained for 2 at K =512, for 2(?) at
K =32 and for (3 at K = 16. Because the computational work is proportional to K, we see
that the amount of work is essentially reduced by the defect correction.

4. Table 6, which shows the ratios of the errors, confirms the theoretical order of convergence as
derived in Section 6. From the theory, the solution 2(*)(z,t) of problem (6.3), (4.1) converges
with rate O(T) (estimate (4.2) and Theorem 2). The solution z(® (z,t) of problem (6.4), (4.1),
where z () (z, t) is the solution of problem (6.3), (4.1), converges with @ (72) (estimate (6.7) and
Theorem 3). The solution 23 (x,t) of problem (6.8), (4.1), where z® (x,t) and z V) (z,t)
are the solutions of problems (6.4), (4.1) and (6.3), (4.1) respectively, converges with O(13)
(estimate (6.10) and Theorem 4). The corresponding reduction factors are easily recognized in
Table 6.
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K\N | 8 16 32 64 128 256
ey
4 | 1.11 140 1.44 158 1.65 1.71
8106 138 143 158 165 171
16 | 1.04 1.37 143 158 1.65 1.71
32 |1 1.02 136 143 158 1.65 1.71
64 | 1.02 136 143 158 1.65 1.71
128 | 1.01 1.36 143 1.58 1.65 1.71

1024 1.01 1.36 1.43 1.58 1.65 1.71
2)

(

z

4104 137 143 158 1.65 1.71

8| 1.02 136 143 158 1.65 1.71

16 | 1.01 136 143 158 1.65 1.71

1024 | 1.01 1.35 1.43 158 1.65 1.71
~(3)

4102 136 143 158 1.65 1.71

8| 1.01 136 143 158 165 1.71

1024 | 1.01 1.35 1.43 158 1.65 1.71

Table 4: Ratios of Space Errors R(®) (N, K) for e = 2710

CONCLUSION

In this paper we have shown a defect correction procedure that can be used to easily improve the
time-accuracy for a parabolic singularly perturbed PDE;, still obtaining e-uniform first order accuracy
in the space discretisation.

The error in the approximation consists of two parts: one part due to space discretisation and the
other due to the time discretisation. The defect correction process only improves the accuracy with
respect to the time and it does not change the error with respect to the space variable. Using a new
experimental technique for the determination of the convergence orders, we have numerically revealed
the time and space error components separately. For the meshes used, the time error has been found
of the order 107410711 whereas the space error is of the order 1072-1073. Thus, the time error is
considerably smaller than the space error, and the total error is practically equal to the space error.

Numerical results confirm the theoretical bound that the order of convergence with respect to the
space variable is close to one, uniform in e. The numerical experiments also confirm that by defect
correction we are able to increase the time accuracy of the approximate solution from 1st to 2nd and
3rd order. As a result, we can essentially decrease the number of time intervals and therefore the
amount of computational work.
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K\ N 4 8 16 64 128 256 512 1024
ey
4 1.24-2 3.46-03 1.08-03 3.64-04 2.44-04 2.23-04 2.15-04 2.11-04 2.08-04
8 6.63-3 1.91-03 6.14-04 2.08-04 1.39-04 1.27-04 1.23-04 1.21-04 1.19-04
16 3.42-3 1.00-03 3.26-04 1.11-04 7.44-05 6.80-05 6.56-05 6.44-05 6.37-05
32 1.73-3 5.12-04 1.68-04 5.73-05 3.84-05 3.51-05 3.39-05 3.32-05 3.29-05
64 | 8734  2.59-04  854-05  291-05  1.95-05  1.78-05  1.72-05  1.69-05  1.67-05
128 4.38-4 1.30-04 4.30-05 1.47-05 9.84-06 8.98-06 8.67-06 8.51-06 8.42-06
256 | 2.19-4  6.54-05  2.16-05  7.37-06  4.94-06  4.51-06  4.35-06  4.27-06  4.22-06
512 | 1.10-4 3.27-05 1.08-05 3.69-06 2.47-06 2.26-06 2.18-06 2.14-06 2.12-06
e
4| 5.39-3  1.64-03  547-04  1.86-04  1.24-04  1.13-04  1.09-04  1.07-04  1.06-04
8 1.55-3 4.82-04 1.61-04 5.36-05 3.54-05 3.23-05 3.12-05 3.06-05 3.03-05
16 | 4.14-4 13104  4.36-05  1.43-05 9.41-06 85806 827-06 8.12-06  8.03-06
32 | 1.07-4 3.40-05 1.13-05 3.69-06 2.42-06 2.21-06 2.13-06 2.09-06 2.07-06
64 2.73-5 8.68-06 2.88-06 9.35-07 6.14-07 5.59-07 5.40-07 5.29-07 5.24-07
128 | 6.87-6  2.19-06  7.28-07  2.36-07  1.55-07  1.41-07  1.36-07  1.33-07  1.32-07
256 1.73-6 5.51-07 1.83-07 5.91-08 3.88-08 3.53-08 3.41-08 3.34-08 3.31-08
512 | 4.32-7  1.38-07 45808 14808  9.71-09  885-09  853-09  8.37-09  8.28-09
e
4 2.67-3 7.37-04 2.09-04 5.74-05 3.53-05 3.19-05 3.08-05 3.02-05 2.99-05
8 | 3154 92605 266-05 7.17-06  4.41-06  3.99-06  3.85-06  3.77-06  3.73-06
16 | 4.13-5 1.23-05 3.45-06 9.00-07 5.51-07 4.99-07 4.81-07 4.72-07 4.67-07
32 | 5366 16006 4.38-07 1.13-07 6.88-08 62308 6.01-08 5.90-08  5.83-08
64 | 6.84-7 20407 551-08 141-08  860-09  7.79-09  7.51-09  7.37-09  7.29-09
128 8.64-8 2.57-08 6.91-09 1.76-09 1.08-09 9.74-10 9.39-10 9.21-10 9.11-10
256 1.09-8 3.23-09 8.65-10 2.20-10 1.34-10 1.22-10 1.17-10 1.15-10 1.14-10
512 1.36-9 4.04-10 1.08-10 2.75-11 1.68-11 1.52-11 1.47-11 1.44-11 1.42-11

Table 5: Time Errors E®) (N, K) for e = 2710

K\N 4 8 16 32 64 128 256 512 1024
~(M
4| 187 181 177 1.7 175 175 175 1.75 1.75
81194 191 188 1.87 187 1.87 1.87 187 1.87
16 | 1.97 195 194 194 194 194 194 194 194
32| 199 198 197 197 197 197 197 197 197
64 | 1.99 199 198 198 198 198 198 198 1.98
128 | 2.00 199 199 199 199 199 199 199 1.99
256 | 2.00 2.00 2.00 200 200 200 200 200 2.00
~(2)
41349 340 339 347 350 3,51 351 351 351
8| 373 369 370 375 377 3707 377 397 3.77
16 | 3.86 3.84 3.85 388 3.89 389 389 3.89 3.89
321393 392 393 394 394 394 394 394 394
64 | 397 396 396 397 397 397 397 397 397
128 | 3.98 398 398 399 399 399 399 399 3.99
256 | 3.99 399 399 399 399 399 399 399 3.99
M E)
4| 849 796 7.85 800 801 800 800 800 8.00
8| 762 752 772 797 800 800 800 800 8.00
16 | 771 771 787 799 800 8.00 800 800 8.00
32| 784 785 794 800 800 800 800 8.00 8.00
64 | 792 792 797 800 800 800 800 800 8.00
128 | 796 796 7.99 800 800 800 800 800 8.00
256 | 798 798 799 800 800 8.00 800 800 8.00

Table 6: Ratios of Time Errors R® (N, K) for e = 2710
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APPENDIX

8.1 Estimates of the solution and its derivatives

In this Appendix we rely on the a-priori estimates for the solution of problem (2.1) on the domain
G = D x [0,T], and its derivatives as derived for elliptic and parabolic equations in [13, 11, 10].

We denote by H (*)(G) = H*/?(G) the Hélder space, where a is an arbitrary positive number [7].
We suppose that the functions f(z,t) and ¢(x,t) satisfy compatibility conditions at the corner points,
so that the solution of the boundary value problem is smooth for every fixed value of the parameter
€.

For simplicity, we assume that at the corner points Sy NSy the following conditions hold

o ko
SFe(Et) = Some(@t) =0, k+2k < [a]+2n, -
8.1
k+Fk
%]‘(m,t):o, 42k <[a]+2n-2,

where [ « ] is the integer part of a number o, & > 0, n > 0 is an integer. We also suppose that
[a]+2n > 2.

Using interior a-priori estimates and estimates up to the boundary for the regular function u(&,t)
(see [7]), where w(&,t) = u(x(§),t), &€ = x/e, we find for (z,t) € G the estimate

8k+ko
——u
Oxk Otko

This estimate holds, for example, for

(x,t)‘gMek, k+2ky<2n+4, n>0. (8.2)

ue HEH49(@), v >0, (8.3)

where v is some small number.

For example, (8.3) is guaranteed for the solution of (2.1) if the coefficients satisfy a € H (*+27=1)(G),
¢, p, f € HeP=2(@), o € Ht2)(G), a >4, n> 0 and condition (8.1) is fulfilled.

In fact we need a more accurate estimate than (8.2). Therefore, we represent the solution of the
boundary value problem (2.1) in the form of the sum

u(z,t) = Uz, t) + W(z,t), (2,t) €G, (8.4)

where U(z,t) represents the regular part, and W (x,t) the singular part, i.e. the parabolic boundary
layer. The function U(z,t) is the smooth solution of equation (2.1a) satisfying condition (2.1b)
for t = 0. For example, under suitable assumptions for the data of the problem, we can consider the
solution of the Dirichlet boundary value problem for equation (2.1a) smoothly extended to the domain
G" beyond of Sf (@* is a sufficiently large neighbourhood of G beyond of S¥.) On the domain G the
coefficients and the initial value of the extended problem are the same as for (2.1). Then the function
U(x,t) is the restriction (on G) of the solution to the extended problem, and U € H"+4+v)(@),
v > 0. The function W (x,t) is the solution of a boundary value problem for the parabolic equation

LonyW(z,t) =0, (z,t)eCG, W(xt)=u(xt)—-U(xt), (z,t)€S. (8.5)

If (8.3) is true then W € HCn+4+¥)(@). Now, for the functions U(z,t) and W (x,t) we derive the
estimates

ak-‘rko

Dk Btko U(m’t)' <M, (8.6)
8k+k0 .

o g W (ant) < D& explmans ). 87

(z,t) €G, k+2ko <2n+2,
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where r(z,) is the distance between the point = € [0, 1] and the set v which is the endpoints of the
segment [0, 1], ms 7) is a sufficiently small, positive number. The estimates (8.6) and (8.7) hold, for
example, when

U, W e HCH4)(@), v>0. (8.8)
The inclusions (8.8) are guaranteed if a € H (“t2=U(@), ¢, p, f € H@t=2)(G) ¢ € H @2 (G),
a >4, n > 0 and condition (8.1) is fulfilled. We summarize these results in the following theorem.

Theorem 5 Assume in equation (2.1) that a, b, ¢, p, f € H@T2"=2(G), o € H@T2)(G), a > 4,
n > 0 and let the condition (8.1) be fulfilled. Then, for the solution, u(x,t), of problem (2.1), and
for its components in the representation (8.4), it follows that u, U, W € H(@T2")(G) and that the
estimates (8.2), (8.6), (8.7) hold.

The proof of the theorem is similar to the proof in [10], where the equation

0? 0 ou

wu(w,t) + b(z,t) %u(ay,t) —c(z, t)u(z,t) — p(z,t) —(z,t) = f(z,1t)

ea(z,t) py

was considered.

8.2 The proof of Theorem 3

Let us show that the function 7 z(x,t), where z(z,t) = 2z(.3)(x,t) is the solution of the difference
problem (6.3), approximates the function dzu(z,t) e-uniformly. For simplicity we assume a(z,t),
b(x,t) to be constant on G. The function &; z(z,t) is the solution of the difference problem

Ag.oyds2(2,1) = foy(@,1),  (z,t) € GV, (8.9a)
S 2(2,t) = ps.oy(x,1),  (x,t) € SLY. (8.9Db)
Here
Gl =Ginit>kry, MG nit>kry, sH=GM\cM k>1,
As.9)072(x,t) = { € adzz + bdp — ¢(x,t) — pi(x,t) — p(x,t) 07} 652 (2, t),
fso) (@ t) = fi(w,t) + g, t)z(z, 1),
Peo)(@,1) = gr(z,1), ©=0,d, (z,t) €S},
0y (@) = ooy (@) =771 [2(0,7) — p(,0)], t=7, (z,8) €S,
o(x,t) = v(x,t — 7) where v(x,t) is one of the functions ¢(z,t), p(x,t).

The function &zu(z,t) = [u(z,t) —u(z,t —7)]/7, (x,t) € G, t > 7 is the solution of the differential
problem

L(s.10)07u(2,t) = f(s.10) (2, 1), (z,t) e G, (8.10a)

(5{’(1/(.1?,75) = ©(8.10) (J?,t), (xvt) € S[l] (810b)
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Here
GM=Gni>kry, aM=an{t>kr), SW=G"\ g, k>1,
_ o . ) 0
Lg.10)07u(z,t) = an + b% — é(x, t) — py(z, t) — p(x, t)a Sru(z,t),

Frsaa)= (o) + e o)+ o) (G o) = Srutenn)).
o0y (T, t) = pr(x,t), ©=0,d, (x,t) € s
(.10 (@, 1) =910 (@) = 77 [u(e,7) —(x,0)], t=7, (x,1) €S
Let us estimate
90(08.10) (z) — 90(08.9) (z) = Tﬁlw(% ),
where
w(z,t) = u(z,t) — z(z,t), (x,t) € Gp.
The function w(z,t) is the solution of the problem
Aggyw(z,t) = (Ae.3y — Lay) ulz, t), (x,t) € Gy, w(x,t) =0, (x,t)€ Sh.

The above assumptions and Theorem 5 lead to the estimates of the truncation error (the deduction
technique for these estimates are showed, for example, in [10, 8])

} (A(ﬁg) — L(Zl)) U(ac,t) | < M [N71 In N + T] s (x,t) S Gh
}(A(ﬁ_g) — L(Q.l)) W (z,t) | <M [671]\771 In N exp(—me™ ') —I—T} , (z,t) € Gp, z <o,

where U(xz,t) and W (x,t) are the regular and singular parts of the solution from (8.4); o = (4.1,
m = myg.7y. For the components W (z,t) and Wh(x,t) the following estimate is also satisfied

W (z,t)|, }Wh(x,t)| <MN™', (2,t)€Gh, x>0
Here W' (x,t) is the solution of the problem
A.3) Wh(z,t) =0, (z,t) € G, W'(x,t) =W (z,t) (x,t) € Sh.
Using the maximum principle we estimate w(z, t)
lw(z,t)| <M [N"'InN+7]t, (z,t) €Gh.
Further, for the derivatives we proceed similarly. On the boundary we have
|bpu(@,7) = 6522, 7) | = | 9h.10)(@) — 9fh0)(@) | M [N"'In N 7],
(@,t) e S, 1=,

i.e. the function dzz(x, T) approximates dzu(x, 7) e-uniformly. Now, it is easy to see that the solution
of the difference problem (8.9) approximates the solution of the differential problem (8.10) for the
divided difference. Thus, using the same argument as above, we derive the estimate

Sru(z,t) — 6rz(z,t)| < M [N *In N+71], (.t E@m.
; ; h
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Now, for the 2nd difference derivative we show that under condition (6.6) the function dy; z(z,t)
approximates the function do; u(x,t) e-uniformly on the set @;[LQ]. So, the functions dy2(x,t) and

dszu(x, t) are solutions of equations

A(8.11)6222(x7t) = f(8.11)(x7t)7 ({E,t) € GELQ]7 (8118“)

Lisa2)0s7u(@, ) = fs.12)(1,1), (2,1) € G2 (8.12a)

The equations are found by applying the operator d; to the equations (8.9a), (8.10a). At the left and
the right boundary the following conditions are satisfied:

Oz 2(x,t) = pa1)(z,t), (x,t) € S;[LQ], (8.11b)
dpzu(z,t) = a2y (z,t), (z,t) € S;[LQ], (8.12b)

where ,
P (@) = pola,t), 2=0,d, (z,t) €S, (8.11c)

P (@,t) = 90(%,11)(33) =09726.3)(2,t), t=271, (x,t) € S}[LQ],
¢(8-12) (x’t) = 8022(‘%7t)7 T = 0) d7 (xyt) 6 S[Q], (812c)
P(s.12) (1) = P19y (1) = o7 u (2,8), t=27, (x,t) € SP.
First we estimate
QO(OS.IQ) (fE) - 90(08,11) (LC) = 62{ u(x, t) — (522 ,ZZ(IE,t)7 t=2T.

For this purpose we write the function u(z,t) in a Taylor expansion in ¢
u(z,t) = aM (@)t + aP (@)t + vo(z, t) = ull (2, t) + va(2,0), (2,t) € G, (8.13)

where the coefficients a")(z), a® (z) should be determined. Inserting u(z,t), in its form (8.13), into
equation (2.1a) we come to the system

—p(m,O)a(l)(x) = f(x,0),

02 0
_ @) 2 _am = aW(p)—
2p(z,0)a'? (z) 4+ ca 922 (x) + baxa (x)

~ (cte. 00+ Fppte0)) a@) = 2 f.0),

from which the functions ") (z), a® (x) can be found successively. The function vy (z, t) is the solution
of the boundary value problem

Lig.yve(z,t) = fsaa)(z,t) = f(z,t) — L(2.1)U[2] (z,1), (z,t) €G, (8.14)
UQ(xvt) = 50(8.14)(x7t) = Lp(xvt) - U[Q] (xvt)7 (xvt) €S.

Estimating f(s.14)(2,t) and ¢(g.14)(2,t), and using the maximum principle we derive the estimate

|vo(x,t) | < Mt3, (x,t) €G. (8.15)



References 17

Further we have to construct the function z(x,t) in the form
—_(p @) (1) (2) 2 h — 2 h Yal
z(z,t) = (bg ' (x) + by (2)T)t + b~ (2)t° + vy’ (m, 8) = 2 (x, 1) + vy (2, t), (x,t) € G,

i.e. as an expansion in powers of 7 and ¢. Inserting z(z,t) into equation (6.3), we arrive at the
equations

—p(z, 000" (z) = f(a,0),

9 9
~2p(x,0)by” (z) + caz—bg" () +bz—bg ") (a)—

= (et 00+ ot 0) ) 0 @) = 5 1(2,0)
b (@) + M () = 0.
So, we have
2Bz t) = u@ (@, t) + bV (2)rt, (2,1) € Gy (8.16)
The function vJ'(x,t) is the solution of the discrete boundary value problem
A(6,3)U2h(l‘,t) = f(8'17)(.1?,t) = f(.]?,t) — A(6'3)Z[2] (J),t), (x,t) S Gh, (817)

UQh(x7t) = 50(8.17)(x7t) = Lp(xvt) -z 2 ({E,t), (xvt) € Sh~
Taking into account estimates of the functions f(s.17y(z,t) and ¢(s.17)(2,t), we derive the estimate

|vg(z,t) | <M [N"'In N +t]t? (x,t) € Gp. (8.18)
By virtue of relations (8.15), (8.16), (8.18) the following inequality is valid:
[ 0812 (#) — Py ()] = [ Gzt 1) — G52, 1) | < M [NV N 7], (819)
(z,t) € Gy, t=2T.
We continue by estimating dgzu(x,t) — dyz2(x,t) for ¢ > 27. Note that the functions dyzu(z,t) and
d572(x, t) are solutions of differential and difference equations, obtained from equations (2.1) and (6.3)
respectively by applying the operator do;. Moreover, the difference equation for d5;2(x, t) approximates

the differential equation for dyzu(x,t) e-uniformly. On the boundary Sy, for z = 0 or = 1, we have
dozu(x,t) = do72(x,t). Taking into account estimate (8.19) we find

| dgzu(x,t) — dozz(z,t) | <M [Nfl InN+7], (2t €Gn t=>27 (8.20)
So, we come to the estimates
‘5 su(z,t) — 6 12 (2, 1) ‘ <M[N'IhN+7], (2,t) €Gh, t>T. (8.21)
‘52fu(x,t) — o7z (2, 1) ) <M[N'InN+7], (2,t) €Gh, t=>27.
‘u(m,t) — 2 (z,1) ‘ <M [N 'InN+7°], (2,t) €Gh.

This completes the proof.
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Now, as a direct consequence of the theorem, we make two remarks to prepare the proof of Theorem

4.
Remark 1 Above we have found (8.20) for z*)(z,t), k = 1. In completely the same way we derive this
bound for k = 2, so that we obtain

‘52;u(x,t)—52;z(k)(x,t)‘gM[N—llnN+rk], (z,0) € Tn, t>27, k<2 (8.22)

Remark 2 Making use of (8.22), similar to the derivation of estimate (8.21), we also find

( Ssp u(z,t) — 855 2V (2, 8) ‘ <M I[NZ2mN+7], (2.,t)€Gh t>3r (8.23)

We briefly indicate the differences with the proof given above for (8.21). To estimate the difference between
dsz u(x, t) and 857 z(z,t) for ¢ = 37 we represent the function u(z,t) (with condition (6.9)) in the form

u(z,t) = a®(@)t? + a® (@) + vs(x,t) = w2, t) +vs(w,t), (x,t) € G,
and the function z(z,t) in the form
2(z,t) = u ¥ (@, 1) + (87 (@)1 + b (@) )t + 01 (2)78% + vd (2,1) =
=z [3](x,t) + v3h(x,t), (x,t) € Gh.

The coefficients of these expansions are found using equations (2.1) and (6.3) respectively. For the coefficients
we have the system

0

_ @y - 9
(.00 (x) = 2 f(a,0),
0? 0 0 1 82
_ (3) B )] Y @) _ e (2) _ - Y
39(0,000(0) + cag 50 0) 4 00D @) - (ele,0)+ 2550(0.0)) Do) = 525 7(w00)
—bl(l)(x)+a(2)(x) = 0,
0
=2p(x, 0)by” () + 7p(z,0)a® () + 3p(x, 0)a ¥ ()
(2 () 9w 0, B
(5720 + c(.0)) b0@) + 0 g0V @) + 120 (0) = 0,

~b" () —a®(z) + b (z) = 0.

The unknown functions a®, a®, bgl), b?), bél) can be found successively. For the function vs(z,t) and

va(z,t) the following estimates are derived

[vs(z,t)] < Mt (z,t) € G,

'vg(x,t)‘ < M[N'InN+t] £ (a,t)€Cn.

From these inequalities and the expression for 2% (z, ) it follows that (8.23) holds e-uniformly for ¢ = 37. The
remainder of the proof of the estimate (8.23) repeats with small variations the proof of the estimate (8.21).

8.3 The proof of Theorem 4
Notice that, if the following relations hold for the functions z ) (x,t), z®) (, 1)

’635u(x,t) — 652 D(z, 1) j <M[N'WmN+7], (2,t)€Gy t>3m, (8.24)

‘525u(x,t)—5252(2)(x,t)‘SM[NfllnN—l—Tz], (x,t) € Gy, t>2r7,
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then for the difference u(z,t) — 23 (x,t) = w® (x,t) we obtain
‘A(G,g)w(g)(ay,t) ‘ <M [N_l In N + TS} , (z,t) € G, w(g)(x,t) =0, (z,t) € Sh.

Hence we have

‘u(m,t)—z@)(x,t)‘ <M [N 'lmN+7], (z,t) € Gh.

Thus, for the proof of the theorem it is sufficient to show inequalities (8.24). These inequalities
follow from (8.22), (8.23). This completes the proof of Theorem 4.



