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ABSTRACT

In this paper we study the convergence of a multigrid method for the solution of a linear second order

elliptic equation, discretized by discontinuous Galerkin (DG) methods, and we give a detailed analysis of

the convergence for different block-relaxation strategies. In addition to an earlier paper where higher-order

methods were studied, here we restrict ourselves to methods using piecewise linear approximations. It is

well-known that these methods are unstable if no additional interior penalty is applied.

As for the higher order methods, we find that point-wise block-relaxations give much better results than

the classical cell-wise relaxations. Both for the Baumann-Oden and for the symmetric DG method, with a

sufficient interior penalty, the block relaxation methods studied (Jacobi, Gauss-Seidel and symmetric Gauss-

Seidel) all make excellent smoothing procedures in a classical multigrid setting. Independent of the mesh

size, simple MG cycles give convergence factors 0.2 – 0.4 per iteration sweep for the different discretizations

studied.

2000 Mathematics Subject Classification: 65F10, 65N12, 65N15, 65N30, 65N55

Keywords and Phrases: Discontinuous Galerkin method, multigrid iteration, two-level Fourier analysis, point-
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1. Introduction

Recently renewed interest arose in discontinuous Galerkin discretizations for partial differen-
tial equations of convection diffusion type [5, 6, 8]. An important reason is the new insight
in the use of these methods for elliptic equations [2, 3, 4] and their applicability in hp-self-
adaptive algorithms [11, 12].

However, thus far relative little attention has been paid to optimally efficient solution
methods for the algebraic systems arising from the discretization of the stationary problems.
Therefore, we study the possible use of a multigrid algorithm for this purpose. We concentrate
on the Baumann DG, the symmetric DG methods [2, 7]. It is well-known [1, 10, 13] that
these methods are not stable for the lowest order of approximation (p = 1), if no additional
stabilization is applied by means of an interior penalty (IP) parameter. All these methods can



2. The Linear discontinuous Galerkin Discretization 2

be described by the same formulas [2, 7], where the distinction between the various methods
is made by two parameters: σ, the sign (σ = +1 for Baumann and σ = −1 for symmetric
DG), and µ = ν/h, the interior penalty parameter.

Where in an earlier paper [7] we studied the convergence of a multigrid method for the
solution of the systems arising from higher order methods (p ≥ 3), in the present paper we
focus on the convergence of the multigrid method for the case p = 1. Because this case may
be used to accelerate the solution for p > 1 in the p-hierarchical structure of the hp-adaptive
approximation process.

For the higher order methods we showed that excellent convergence was obtained when
blockwise relaxation (Jacobi or Gauss-Seidel) is applied as a smoother, if the blocks are
formed by the degrees of freedom (dofs) associated with cell-vertices [7]. This motivates us
to study the smoothing abilities for the IP-DG method with a well chosen penalty parameter
µ .

The outline of the paper is as follows. In Section 2 we give a unified description of the
DG discretizations so that the different symmetric form, Baumann’s variant and the Internal
Penalty (IP) variants follow from the value of specific parameters (σ and µ) in the formulation.
For the linear trial functions that we restrict ourselves to, we give a description of the resulting
discrete operator in the form of a stencil that defines the resulting block-Toeplitz matrix.

In Section 3 we apply Fourier analysis to this discrete operator in order to study its sta-
bility properties. We observe that both the symmetric DG and Baumann’s variant have a
double zero eigenvalue, one of which has an eigenfunction that is not constant (the spurious
eigenvalue responsible for the instability of the methods). If a large enough penalty param-
eter is chosen, then it is seen that the instability disappears. However, for too large penalty
parameters we see that the discrete system becomes ill-conditioned.

In Section 4 we give a smoothing analysis of the point-wise and cell-wise block-relaxations
and a convergence analysis of the two-level algorithm. As in the case for higher degree trial
polynomials, dealt with in our earlier paper, we see also here that the use of point-wise
relaxation gives much faster convergence. By determining the spectral norm of the error-
amplification operator it is shown that the observed “good convergence” is guaranteed from
the second iteration step on; we find convergence with a rate of about 0.2 – 0.4 per iteration.

In Section 5 we report on numerical results for the solution of a one-dimensional Poisson
problem on the unit interval, where the solution has a thin boundary layer, its thickness
depending on a parameter ε. The results confirm the theoretical analysis.

2. The Linear discontinuous Galerkin Discretization

We consider the Poisson equation on the unit cube Ω, partly with Neumann and partly with
Dirichlet boundary conditions:

−∆u = f on Ω ,

with u = u0 on ΓD and n · ∇u = g on ΓN , where ΓD ∩ ΓN = ∅ and ΓD ∪ ΓN = ∂Ω.
The variational form of this equation, associated with the DG-methods [2, 7] reads: find
u ∈ H1(Ωh) such that:

B(u, v) = L(v) ∀v ∈ H1(Ωh), (2.1)
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where

B(u, v) =
∑

Ωe∈Ωh

∫
Ωe

∇u · ∇vdx −
∫

Γint∪ΓD

〈∇u〉 · [v] ds

+ σ

∫
Γint∪ΓD

〈∇v〉 · [u] ds + µ

∫
Γint∪ΓD

[u] · [v] ds (2.2)

and

L(v) =
∑

Ωe∈Ωh

∫
Ωe

fv dx + σ

∫
ΓD

〈∇v〉 · [u0] ds +
∫

ΓN

gv ds.

Here, for non-negative integer k, the space Hk(Ωh) is the broken Sobolev space [3, 9] on the
partitioning Ωh of the domain Ω,

Ωh =
{

Ωe

∣∣ ∪e Ωe = Ω, Ωi ∩ Ωj = ∅, i 
= j
}

.

The parameter µ denotes the interior penalty, and σ the character of the discretization: σ = 1
gives Baumann’s method (or NIPG if µ > 0), σ = −1 gives the symmetric DG (IP-DG for
µ > 0). The jump operator [ · ] and the average operator < ·> are defined at the common
interface1 between two cells Γi,j = Ωi ∪ Ωj , by

[w(x)] = w(x)|∂Ωi
ni + w(x)|∂Ωj

nj , (2.3)

〈w(x)〉 =
1
2
(
w(x)|∂Ωi

+ w(x)|∂Ωj

)
,

for x ∈ Γi,j . Here ni is the unit outward pointing normal for cell Ωi. In case of a vector
valued function, τ , we define

[τ(x)] = τ(x)|∂Ωi
· ni + τ(x)|∂Ωj

· nj , (2.4)

〈τ(x)〉 =
1
2
(
τ(x)|∂Ωi

+ τ(x)|∂Ωj

)
.

The interior boundaries are denoted by Γint = ∪Γi,j .
In this paper we restrict our analysis to the one-dimensional equation, since this can be

considered as an essential building block for the higher dimensional case where we use tensor
product polynomials. For test and trial space Sh ⊂ H1(Ωh) we use the space of discontinuous
piecewise polynomials on the partitioning Ωh. Then the discrete equations read: find uh ∈ Sh

such that

B(uh, vh) = L(vh) ∀vh ∈ Sh . (2.5)

1At a Dirichlet boundary the interface with a virtual (flat, exterior) adjacent cell, containing only the
Dirichlet data, is used.
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With a basis {φi,e} for the space Sh this leads to the linear system

N∑
e=1

1∑
i=0

ci,e

(∫
Ωe

φ′
i,e(x)φ′

j,e(x)dx − 〈φ′
i,e(x)

〉 · [φj,e(x)] |Γint∪ΓD
+

σ [φi,e(x)] · 〈φ′
j,e(x)

〉 |Γint∪ΓD
+ µ [φi,e(x)] · [φj,e(x)] |Γint∪ΓD

)
= (2.6)

N∑
e=1

1∑
i=0

∫
Ωe

fφj,e(x)dx + σ [u0] ·
〈
φ′

j,e(x)
〉 |ΓD

+ gφj,e(x)|ΓN
,

which we briefly denote by Lhuh = fh. In this paper we restrict ourselves to Sh consisting
of piecewise linear polynomials on a uniform partitioning for which we use the element basis
functions φj(ξ) = ξj(1− ξ)1−j, j = 0, 1, so that we have 2N basis functions φj((x−xe)/h) =
φj,e(t); j = 0, 1; e = 1, · · · , N . For this basis of piecewise linear polynomials the linear system
(2.6) has a 2 × 2-block-tridiagonal structure, with the discretization stencil:

1
h

[
− 1

2
1−σ

2
− hµ 1+σ

2
+ hµ −1−σ

2
1
2
σ 0

0 1
2
σ −1−σ

2
1+σ

2
+ hµ 1−σ

2
− hµ − 1

2

]
, (2.7)

if the equations (the weighting functions φe,j) and coefficients are ordered cellwise as [ce,0, ce,1]
N
e=1.

As we emphasized in [7] we can also order the equations and coefficients pointwise, according
to function values at the cell-interfaces, [ce−1,1, ce,0]Ne=2, which leads to the stencil:

1
h

[
1
2
σ −1−σ

2
1+σ

2
+ hµ 1−σ

2
− hµ − 1

2
0

0 − 1
2

1−σ
2

− hµ 1+σ
2

+ hµ −1−σ
2

1
2
σ

]
. (2.8)

Thus, with the possible exception for the equations at the boundaries, the discretization ma-
trix appears to be a block-Toeplitz matrix and is described by the repetition of either stencil
(2.7) or stencil (2.8). Both stencils describe one and the same matrix, but the distinction
between cell-wise and point-wise blocks materializes as soon as we consider block-relaxation
methods.

3. Fourier analysis of the discrete operator B(uh, vh)
In this section we first introduce the Fourier transform of a block-Toeplitz operator. We
describe the spectrum of the discrete operator Lh on an infinite domain, and we discuss
its stability properties. We notice the difference between this operator for piecewise cubic
approximations, as described in [7], and the corresponding operator for piecewise linears. We
recognize that for the latter a sufficiently large interior penalty parameter has to be chosen
in order to obtain a stable scheme. Then, for the stable schemes, we compute the order of
accuracy.
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3.1 Fourier analysis for a block Toeplitz operator Ah

In [7] we have shown that, for Ah = (am,j) ∈ R2�×2� an infinite block Toeplitz operator, we
have the identity∑

j∈�
am,jeh,ω(jh) = Âh(ω)eh,ω(mh) , with

Âh(ω) =
∑
j∈�

am,je
i(j−m)hω =

∑
k∈�

a−ke
ikhω =

∑
k∈�

ake
−ikhω, (3.1)

for all ω ∈ Th ≡ [−π
h , π

h ]. Here eh,ω(jh) = eijhω is an elementary mode, defined on the regular
infinite one-dimensional grid

Zh = {jh | j ∈ Z, h > 0} .

Furthermore, with Vh = Vh(ω) the matrix of eigenvectors v(ω) of Âh(ω), such that:

Âh(ω)Vh = VhΛh(ω), (3.2)

then, with (Vh ⊗ eh,ω)(jh) = Vh(ω)eijhω, we have

Ah(Vh ⊗ eh,ω) = Âh(ω)(Vh ⊗ eh,ω) = (Vh ⊗ eh,ω)Λh(ω). (3.3)

Hence, the columns v(ω)eh,ω(mh) of Vh ⊗ eh,ω are the eigenvectors of Ah and Λh(ω) is a
family of 2 × 2 diagonal matrices containing the eigenvalues of Ah on its diagonal.

3.2 Eigenvalues spectra of the discrete operator Lh

Now we study the eigenvalue spectra of the discrete operator Lh of (i) Baumann’s, (ii) the
symmetric-, and (iii) the internal penalty (IP) DG-method, all with linear elements. It is well
known that in this case Baumann’s and the symmetric DG-method are unstable and that
an additional penalty parameter µ = ν/h (IP DG-method) can be introduced in order to
stabilize the discrete operator Lh. To study the behavior of the three different DG-methods
we look at the eigenvalue spectra of L̂h(ω), since the eigenvalues and eigenvectors of L̂h(ω)
correspond with the eigenvalues and eigenvectors of Lh. Considering the point-wise stencil
(2.8) we write for L̂h(ω), using (3.1),

L̂h(ω) =
1
2h

(
1 + σ + 2ν − eωh + σe−ωh 1 − σ − 2ν − (1 + σ)e−ωh

1 − σ − 2ν − (1 + σ)eωh 1 + σ + 2ν − e−ωh + σeωh

)
. (3.4)

The eigenvalues λh(ω) of L̂h(ω) for respectively Baumann’s, the symmetric and the IP DG-
method are shown in Table 1. Note that the same eigenvalues are obtained if the cell-wise
stencil (2.7) is used instead of the point-wise stencil (2.8). Only the coefficients of the eigen-
vectors v(ω)eh,ω(mh) are collected either point-wise ([ce−1,1, ce,0]) or cell-wise ([ce,0, ce,1]).

If we study the eigenvalues λh(ω) of L̂h(ω) for Baumann’s DG-method, we see in Table
1 that they are real and non-negative: λ1(ω), λ2(ω) ∈ [0, 2/h]. Furthermore we see that
λ2 = 0 for ω = 0, which is the eigenvalue corresponding to the constant eigenfunction. This
eigenfunction corresponds with the equivalent eigenfunction for the continuous operator and
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λh(ω) Baum-DG symm-DG IP-DG
σ = 1, µ = 0 σ = −1, µ = 0 σ = −1, µ = ν/h

λ1(ω) 1+cos(ωh)
h

1−cos(ωh)
h

ν−cos(ωh)+|ν−1|
h

λ2(ω) 1−cos(ωh)
h

−1−cos(ωh)
h

ν−cos(ωh)−|ν−1|
h

Table 1: Eigenvalues of L̂h(ω).

is controlled by the boundary conditions. However, we see that there also is an additional zero
eigenvalue λ1 = 0 for ω = ±π/h, and the corresponding eigenvalue is oscillating piecewise
constant. This spurious zero eigenvalue causes the Baumann DG-method to be singular for
linear basis functions in test and trial space.

The same oscillating piecewise constant function is an additional eigenfunction, with λ2 =
0, for the discrete operator Lh for the symmetric DG-method. Furthermore, for this DG-
method we recognize the saddle-point behavior λ1(ω) ∈ [0, 2/h], λ2(ω) ∈ [−2/h, 0].

If we study the eigenvalue spectrum λh(ω) for the IP DG-method, then we still may choose
the penalty parameter ν. If we choose ν < 0, the method is stable in the sense that the
unique zero eigenvalue corresponds to the constant eigenfunction. However the method is
indefinite. If we choose the parameter 0 ≤ ν < 1 the method is indefinite and unstable (since
then there is a spurious zero eigenvalue with a corresponding oscillating piecewise constant
eigenfunction). For ν ≥ 1 the method is stable (the eigenvalues have non-negative sign). On
the other hand, for a large parameter ν the discrete operator is ill-conditioned.

Whereas Baumann’s non-symmetric DG-method has real positive eigenvalues for linear
polynomials in the test and trial space, this is not the case for higher order piecewise polyno-
mials. Figure 1 shows the eigenvalue spectra the Baumann and the symmetric DG-Method
for piecewise cubics, as analyzed in [7]. The spectrum of Baumann’s method shows complex
eigenvalues; in case of the symmetric DG-method the spectrum is real but indefinite. Notice

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Re

Im

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

Im

Re

Baumann-DG symmetric-DG
◦ : ωlow ∈ [−π/2h, π/2h], + : ωhigh ∈ [−π/h,−π/2h] ∪ [π/2h, π/h]

Figure 1: Eigenvalue spectra of discrete operator L̂h(ω) for cubic stencil.

the distinction between eigenvalues for low and high frequencies which is useful in the context
of multigrid. (Low frequency functions can also be represented on a twice coarser grid.)
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3.3 Consistency of the IP DG-method
In the previous section we have seen that the IP DG-method for the piecewise linear basis is
stable if ν ≥ 1. In this section we study the accuracy and the discrete convergence of this
method. For the analysis we use the point-wise stencil (2.8) and analogous to the treatment
in [7] we study the truncation operator

τh = LhRh − RhL, (3.5)

and the operator corresponding with the discrete convergence, Ch = L−1
h τh. In (3.5) Rh :

C1(Ωh) → R2�h is the injective restriction defined by

uh(jh) = (Rhu)(jh) =
[

u(jh)|Ωj−1

u(jh)|Ωj

]
.

The second restriction, Rh : C1(Ωh) → R2�h , is the Galerkin restriction defined by(
Rhf

)
(jh) =

[ ∫ jh
(j−1)h φ1,j−1(x)f(x) dx ,∫ (j+1)h
jh φ0,j(x)f(x) dx ,

for all f ∈ L2(Ω). Using τheω for the truncation error

τheω(x) = τheiωx = (LhRheω − RhLeω)(x),

and with the definition of Rh we find

τheω = Lheiωjh

[
1
1

]
− ω2heiωjh

[ ∫ 1
0 eiωh(t−1)t dt∫ 1
0 eiωht(1 − t) dt

]
,

where the basis functions are scaled to the master element Ω̂ = [0, 1]. So,

τheω =

(
L̂h(ω)

[
1
1

]
− h

[ ∫ 1
0 eiωh(t−1)t dt∫ 1
0 eiωht(1 − t) dt

]
ω2

)
eiωjh (3.6)

=:
(
L̂h(ω)R̂h(ω) − R̂h(ω)L̂(ω)

)
eiωjh,

where L̂h(ω) is the Fourier transform of the block Toeplitz matrix Lh for the point-wise
stencil. The order of the truncation error is found by expansion of (3.6) for h → 0. Since
eω = eiωx is continuous, both for Baumann’s method (σ = 1, µ = 0), and for the symmetric
DG-method without penalty (σ = −1, µ = 0) and with interior penalty (σ = −1, µ = ν/h),
the absolute value of the truncation error is

|τeω| =
[

1
6h2ω3 + O(h3ω4)
1
6h2ω3 + O(h3ω4)

]
. (3.7)

However from the previous section we know that only the IP DG-method is stable and definite,
provided we choose ν ≥ 1. So, for that method we can derive the discrete convergence from

L−1
h τh eω = L̂h

−1
(ω)

(
L̂h(ω)R̂h(ω) − R̂h(ω)L̂(ω)

)
eiωjh. (3.8)

The results are summarized in Table 2, distinguishing between penalty parameters µ = 1/h
and µ = ν/h with ν > 1. We see that we loose two orders of accuracy if µ = 1/h. The
IP DG-method is more accurate for a larger constant ν, but on the other hand, the method
becomes less attractive due to the worse condition number of the discrete operator Lh.
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IP, µ = 1/h IP, µ = ν/h, ν > 1( −1
3hω + O(h2ω2)

+1
3hω + O(h2ω2)

) (
− 1

12(ν−1)h
3ω3 + O(h4ω4)

+ 1
12(ν−1)h

3ω3 + O(h4ω4)

)

Table 2: The expansion of (3.8) for h → 0, i.e., the order of convergence of pointwise values
at the nodal points.

4. Smoothing analysis and convergence of the two-level algorithm

In this section we consider three block relaxation methods: Jacobi-, Gauss-Seidel-, and sym-
metric Gauss-Seidel block relaxations. If we want to apply these relaxations to the unstable
operators (Baumann or symmetric DG with µ = 0) with cell-wise blocks, then we notice that
(i) it is impossible to apply Jacobi relaxation because of the singular diagonal blocks, and (ii)
that block GS doesn’t converge because all eigenvalues of the iteration operator have abso-
lute value equal to 1. Point-wise block relaxation can be used. However, as can be expected,
spurious modes remain and no smoothing is achieved.

For the stabilized methods, with µ ≥ 1/h, all block relaxations are smoothers, but for
µ > 1/h point-wise block methods perform much better than the cell-wise block equivalents.

Because of this result, later in this section we drop the cell-wise relaxation and analyze
two-level convergence for each of the three point-wise block relaxations. We determine the
spectrum of the two-level iteration operator (for different values of µ) and compute for each
of the relaxations the optimal damping parameter and the corresponding convergence rate.

Finally, in order to show that fast convergence is not only an asymptotic property after
many iterations, but can be expected already in the first steps, we determine the spectral
norms for the iteration operators at the end of Section 4.2.

4.1 Smoothing analysis
Having shown in [7] for piecewise cubics that the smoothing properties of the damped block-
Jacobi (JOR) and the damped block-Gauss Seidel (DGS) are better for point-wise ordering
than for cell-wise ordering, we see the same for piecewise linear basis functions. In this
section we analyze the different smoothers for the linear case, again distinguishing between
the cell-wise (2.7) and point-wise (2.8) approach.

For the discrete system Ahx = b we consider the iterative process

x(i+1) = x(i) − Bh(Ahx(i) − b) , (4.1)

with Bh an approximate inverse of Ah. Decomposing Ah as

Ah = L + D + U, (4.2)

into a strictly block-lower, a block-diagonal and a strictly block-upper matrix, the differ-
ent relaxation methods are uniquely described either by Bh or by the amplification matrix
MREL

h = Ih − BhAh. These operators are shown in Table 3. Because Ah is a block Toeplitz
operator, also the amplification matrix Mh is block Toeplitz. Notice, that the meaning of the
block decomposition (4.2) is different for the stencils (2.7) and (2.8). The stencils correspond-
ing with the decomposition (4.2) are given in Table 4. As we emphasized in [7], the difference
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Bh MREL
h

JOR αD−1 D−1((1 − α)D − α(L + U))
DGSL α(D + L)−1 (D + L)−1((1 − α)(D + L) − αU)
DGSU α(D + U)−1 (D + U)−1((1 − α)(D + U) − αL)

α > 0 is a damping parameter

Table 3: The relaxation methods.

cell-wise point-wise

1
h

� − 1
2

1−σ
2

− hµ
0 1

2
σ

�
L 1

h

�
1
2
σ −1−σ

2

0 − 1
2

�

1
h

�
1+σ

2
+ hµ −1−σ

2−1−σ
2

1+σ
2

+ hµ

�
D 1

h

�
1+σ

2
+ hµ 1−σ

2
− hµ

1−σ
2

− hµ 1+σ
2

+ hµ

�

1
h

�
1
2
σ 0

1−σ
2

− hµ − 1
2

�
U 1

h

� − 1
2

0
−1−σ

2
1
2
σ

�

Table 4: The stencils in the diagonal decomposition

between cell-wise and point-wise decomposition is that the eigenvectors eh,ω(mh)v of the cell-
wise stencil correspond with 2-valued grid functions associated with the cell interiors (in fact
independently of the basis chosen), whereas for the point-wise stencil they correspond with
the 2-valued grid function associated with the nodal points between the cells. This makes the
point-wise stencil better suited for a multi-grid algorithm. Using (3.1) we find the Fourier
transform of the basic Toeplitz operators: L̂(ω) = Le−iωh, D̂(ω) = D, Û(ω) = U eiωh.
This yields the Fourier transform for the amplification operators for JOR, DGS and SGS:

M̂REL
JOR = D̂−1

(
(1 − α ) D̂ − α

(
L̂ + Û

))
, (4.3)

M̂REL
DGSL

=
(
D̂ + L̂

)−1 (
(1 − α )

(
D̂ + L̂

)
− α Û

)
, (4.4)

M̂REL
DGSU

=
(
D̂ + Û

)−1 (
(1 − α )

(
D̂ + Û

)
− α L̂

)
, (4.5)

M̂REL
SGS = M̂REL

DGSL
M̂REL

DGSU
. (4.6)

By (3.3) we find the eigenvalues of MREL
h by computing the eigenvalues of M̂REL

h (ω) for ω ∈
Th. The eigenvalues corresponding with the high frequencies (|ω| > π/2h), that determine

the smoothing properties of the relaxation, are found as M̂REL
h (ω) for ω ∈ Th \ T2h. The

spectra for the three different smoothers, applied on the DG method of Baumann (σ = 1,
µ = 0), the symmetric DG-method (σ = −1, µ = 0) and the IP DG-method (σ = −1,
µ = ν/h) are shown in the Figures 2–4 respectively.

The IP DG-method is stable for penalty parameters µ = ν/h, ν ≥ 1, which is reflected in
the fact that the only undamped mode is the constant (eigen) function.
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Figure 2: Eigenvalue spectra of M̂REL
JOR(ω).

In the Figures 2-4 we see that the Baumann and the symmetric DG method (both with
µ = 0) show their instability by not damping the highest frequencies |ω| ≈ π/h. The high
frequencies appear to be handled similarly as the low frequencies. We see that the IP-DG
methods allow smoothing by the various relaxation methods, and that (the case µ = 1/h
excluded) the point-wise relaxations are better than the cell-wise relaxations (high frequencies
are better damped).

In Table 5 we summarize the damping of the high-frequencies and we show the correspond-
ing optimal damping factors, α, and smoothing factors for the damped relaxation methods
in point-wise setting. We conclude that the pointwise block-relaxation methods are excellent
smoothers. This brings us to focus more on their behavior in a multigrid algorithm in the
next section.
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sf= maxω |λ(ω)| JOR DGS SDGS
π/2h ≤ |ω| ≤ π/h cell point cell point cell point

Baumann − 1.0 1.0 1.0 1.0 1.0
symmetric DG − 1.0 1.0 1.0 1.0 1.0

IP µ = 1/h 1.0 1.0 0.447 0.447 0.200 0.200
IP µ = 5/h 1.0 1.0 0.659 0.447 0.647 0.200

IP point-wise α sf α sf α sf
µ = 2/h 0.667 0.333 1.0 0.447 1.0 0.200
µ = 5/h 0.667 0.333 1.0 0.447 1.0 0.200

sf = maxπ/2h≤|ω|≤π/h |λ(ω)|
Table 5: Smoothing factors for the undamped (top) and the damped (bottom) relaxation
methods. The damped relaxations are shown only for their point-wise ordered versions. and
the damping factor is shown.
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DGS(ω), without damping (α = 1) relative to unit circle.
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4.2 The two-level analysis
Now we study the two-level operator for the IP DG-method with three choices of µ, viz.
µ = 1/h, µ = 2/h and µ = 5/h, and we will compute optimal damping parameters for
the smoothers JOR, DGS and SGS in combination with the coarse-grid correction, for the
different choices of the parameter µ. The amplification operator of the two-level algorithm
for the error is given by

MTLA
h =

(
MREL

h

)ν2
MCGC

h

(
MREL

h

)ν1

=
(
MREL

h

)ν2
(
I − PhHL−1

H RHhLh

) (
MREL

h

)ν1
,

where ν1 and ν2 are the number of pre- (post-) relaxation sweeps respectively. MCGC
h is

the amplification operator of the coarse grid correction. The amplification operator for the
residue is

M
TLA
h = (MREL

h )ν2 M
CGC
h (MREL

h )ν1

=
(
LhMREL

h L−1
h

)ν2
LhMCGC

h L−1
h

(
LhMREL

h L−1
h

)ν1
.

It follows from [7] that the Fourier transform of the the coarse grid correction MCGC
h is

�MCGC
h (ω) =

� �Ih − �PhH
�L−1

H
�RHh

�Lh

�
(ω) =

�
1 0
0 1

	
−
 �Ph(ω)�Ph(ω + π/h)

�
(�LH(ω))−1

� �Rh(ω) �Rh(ω + π/h)

�
 �Lh(ω) 0

0 �Lh(ω + π/h)

�
.

For our piecewise linear basis φi,e, the interpolation PhH : SH → Sh so that (PhHuH)(x) =
uH(x) for all x ∈ R \ Zh, is given by the stencil (for pointwise ordering):

PhH �

[
0 1

2
1 0 1

2
0

0 1
2

0 1 1
2

0

]
.

Because the DG discretization is of Galerkin type with equal test and trial space, the restric-
tion of the residue, RHh, is the adjoint of the prolongation, RHh = (PhH)T . For the different
penalty parameters µ and different smoothers JOR, DGS and SGS, the eigenvalue spectra
of the two-level operator for the IP DG-method are computed from (3.3) and shown in the
Figures 5–7.

We see that none of the methods converge for µ = 1/h. However, for µ = 2/h or µ = 2/h
all pointwise relaxations are excellent smoothers and we see fast convergence for the two-level
algorithm.

Having found the spectra and having computed the largest and smallest real eigenvalue
λmin and λmax we can determine the optimal damping parameter and the corresponding
convergence rate for the damped relaxation method. The parameter, minimizing the spectral
radius ρ(MCGC

h MREL
h ) is given by:

αopt =
2

2 − (λmin + λmax)
,

Seeing that the case ν = 1 will not show h-independent convergence, we show in the Tables
6 and 7 the damping parameters and the convergence rates for the cases ν = 2 and ν = 5.



4. Smoothing analysis and convergence of the two-level algorithm 15

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

λ

θ
−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

λ

θ
−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

λ

θ

IP-DG µ = 1/h IP-DG µ = 2/h IP-DG µ = 5/h

Figure 5: Eigenvalue spectra of FT(MCGC
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JOR )(ω) = FT(MCGC
h M

REL
JOR)(ω), without

damping (α = 1).
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Figure 6: Eigenvalue spectra of FT(MCGC
h MREL

DGS )(ω) = FT(MCGC
h M

REL
DGS)(ω), without

damping (α = 1).

In order not only to know the asymptotic convergence rate but also the guaranteed converge
behavior after one of two iteration sweeps, we also compute the spectral norms

∥∥MTLA
h

∥∥,∥∥∥MTLA
h

∥∥∥, ∥∥∥∥(MTLA
h

)2
∥∥∥∥. The results are shown in the Tables 8 – 10. We see that the two-

level algorithm (and hence the multi-level algorithm) converges with a rate of about 0.2 –
0.4 per iteration step and that reduction of the error and the residual is guaranteed, starting
from the 2nd iteration step.
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Figure 7: Eigenvalue spectra of two-level iteration with symmetric block-GS relaxation:
FT(MREL

DGSU
MCGC

h MREL
DGSL

)(ω) = FT(MREL
DGSU

M
CGC
h M

REL
DGSL

)(ω), without damping (α = 1).

αopt IP-DG µ = 2/h IP-DG µ = 5/h

MCGC
h MREL

JOR 0.692 0.669
MCGC

h MREL
DGS 0.897 0.928

Table 6: Damping parameters for the two-level operators (ρ(MCGC
h MREL

h ) =
ρ(MREL

h M
CGC
h )).

5. Numerical results

In this section we check by numerical experiments the spectral radii of the two-level operators
with damped Jacobi-, MCGC

h MREL
JOR , Gauss-Seidel-, MCGC

h MREL
DGS , and symmetric Gauss-

Seidel relaxation, MREL
DGSU

MCGC
h MREL

DGSL
, for the IP-DG method with the penalty parameters

µ = 2/h and µ = 5/h. For that purpose we consider an inhomogeneous Poisson equation,

−uxx =
ex/ε

ε2(ε1/ε − 1)
, with u(0) = 0, u(1) = 0, ε = 1/64,

which has a sharp boundary layer type solution. For the discrete system we use the linear
basis polynomials and we set the meshwidth to h = 2−6. Our initial approximation is the
grid-function u0

h = u0
h,PRE = sin(1/2πj). We apply a pre-relaxation sweep

ui+1
h,PRE = ui

h,PRE + Bh

(
fh − Lhui

h,PRE

)
,

ρ(MCGC
h MREL

h ) IP-DG µ = 2/h IP-DG µ = 5/h

MCGC
h MREL

JOR 0.385 0.339
MCGC

h MREL
DGS 0.217 0.238

MREL
DGSU

MCGC
h MREL

DGSL
0.156 0.180

Table 7: Spectral radii ρ(MCGC
h MREL

h ) = ρ(MREL
h M

CGC
h ) for damping parameters in Table

6.
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MCGC
h MREL

JOR MCGC
h MREL

DGS MREL
DGSU

MCGC
h MREL

DGSL

IP-DG (µ = 2/h) 0.543 0.392 0.207
IP-DG (µ = 5/h) 0.478 0.417 0.250

Table 8: The spectral norm (σmax) after 1 iteration for the error with optimal damping.

M
CGC
h M

REL
JOR M

CGC
h M

REL
DGS M

REL
DGSU

M
CGC
h M

REL
DGSL

IP-DG (µ = 2/h) 1.071 1.019 0.340
IP-DG (µ = 5/h) 1.056 1.028 0.343

Table 9: The spectral norm (σmax) after 1 iteration for the residue with optimal damping.

with Bh the approximate inverse of Lh as given in Table 3, and the coarse grid correction

u0
h,POST = uν1

h,PRE + PhHL−1
H RHh(fh − Lhuν1

h,PRE).

In case of symmetric damped Gauss-Seidel we apply an additional post relaxation sweep

ui+1
h,POST = ui

h,POST + BT
h (fh − Lhui

h,POST).

To be consistent with the Fourier analysis we measure the residue in the 2-norm

‖dh‖2 = ‖fh − Lhuh‖2 =

 64∑
e=1

2∑
j=1

d2
he,j

 1
2

,

The convergence of the residue is shown in Figure 8. The convergence factors as observed,
are given in Table 11.

Both for µ = 2/h and for µ = 5/h we see convergence, starting from the first iteration
sweep. Furthermore, for the IP-DG method with µ = 5/h the observed convergence factors
correspond very well with spectral radii shown in Table 7. Only for the IP-DG method with
µ = 2/h the spectral radii of the Fourier analysis seem too optimistic compared with the
convergence factors in Table 11. This is clearly caused by a boundary effect (as can be seen
if we study the slowest converging component, which is exponentially growing towards the
boundary). This is related to the fact that, as µ approaches 1/h, the two-level algorithm
becomes singular. This singularity effect disappears for larger values of ν = hµ.

M
CGC
h M

REL
JOR M

CGC
h M

REL
DGS M

REL
DGSU

M
CGC
h M

REL
DGSL

IP-DG (µ = 2/h) 0.411 0.200 0.030
IP-DG (µ = 5/h) 0.357 0.244 0.035

Table 10: The spectral norm (σmax) after 2 iterations for the residue with optimal damping.
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Figure 8: log(||dh||2) as function of iterations for the two-level iteration operator on the error

ρ(MCGC
h MREL

h ) IP-DG µ = 2/h IP-DG µ = 5/h

MCGC
h MREL

JOR 0.48 0.34
MCGC

h MREL
DGS 0.24 0.23

MREL
DGSU

MCGC
h MREL

DGSL
0.17 0.18

Table 11: Numerically obtained convergence factors corresponding with ρ(MCGC
h MREL

h ) =
ρ(MREL

h M
CGC
h ) for damping parameters as in Table 6.

6. Conclusion

In an earlier paper we have shown that multigrid iteration can be quite efficient for the solution
of elliptic equations that are discretized by higher-order discontinuous Galerkin discretization,
provided that a block (Jacobi or Gauss-Seidel) relaxation is used, based on a pointwise
(instead of a cell-wise) ordering.

In this paper we have studied the solution of the discrete equations for the discontinuous
Galerkin method with piecewise linear test- and trial functions. It is well-known [1, 10] that
in this case the DG method requires an interior penalty (IP) parameter µ > 1 in order to
guarantee that the discrete equations are stable.

We show that in this case, again, a multigrid method can be used to solve the corresponding
discrete equations if block relaxation is used, based on the pointwise ordering. If a suitable
IP parameter µ > 1 is chosen, the block Jacobi or (symmetric) block Gauss-Seidel relaxation
have a good smoothing property.

Using Fourier analysis, in this paper, for feasible µ-values, we compute optimal damping
parameters for the relaxation methods and the corresponding two-level convergence rates. In
view of the hierarchical structure of the DG multigrid-algorithm proposed in [7], the present
results can be used to justify the local use of -also- a low order discretization in the hierarchical
scale of methods in the neighborhood of singularities, or in order to accelerate the solution
of the higher-order discretization.
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