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ABSTRACT

The purpose of this paper is to introduce discretisation methods of discontinuous Galerkin type for solving
second order elliptic PDEs on a structured, regular rectangular grid, while the problem is defined on a curved
boundary. The methods aim at high-order accuracy and the difficulty arises since the regular grid cannot
follow the curved boundary.

Starting with the Lagrange multiplier formulation for the boundary conditions, we derive variational forms
for the discretisation of 2-D elliptic problems with embedded Dirichlet boundary conditions. Within the
framework of structured, regular rectangular grids, we treat curved boundaries according to the principles that
underlie the discontinuous Galerkin method. Thus, the high-order DG-discretisation is adapted in the cells
with embedded boundaries. We give examples of approximation with tensor products of cubic polynomials.

As an illustration, we solve a convection dominated boundary value problem on a complex domain. Al-
though, of course, it is impossible to accurately represent a boundary layer with a complex structure by means
of a cubic polynomial, the boundary condition treatment appears quite effective in handling such complex

situations.

2000 Mathematics Subject Classification: 65N50; 65N99
Keywords and Phrases: DG discretisation, structured grid, irregular boundary, embedded boundary

Note: This work was carried out under project MAS2.1 “Computational Fluid Dynamics”.

1. INTRODUCTION

The purpose of this paper is to introduce methods of discontinuous Galerkin type for solving
second order elliptic PDEs on a structured, regular rectangular grid while the problem is
defined on a curved boundary. The methods aim at high-order accuracy and the difficulty
arises because the regular grid cannot follow the curved boundary.

Earlier, several techniques were proposed to handle boundary conditions on irregular, curvi-
linear boundaries. The most convenient certainly is the FEM, where elements near the bound-
ary are adapted to the shape of the boundary curve. Generally, this results in an unstructured
grid. This relatively straightforward technique can be applied up to arbitrarily high-order of
accuracy and delivers good results.
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In contrast, finite difference methods are usually applied on regular grids. Here, curved
boundaries are treated by locally adapted finite differences as, e.g., Shortley-Weller approxi-
mation [4, Sect.4.8]. Generally, such discretisations are not used for higher orders of accuracy.

A more recent technique for treatment of complex boundaries on orthogonal grids, in two
or three dimensions, is the Embedded Curved Boundary (ECB) method. Here —usually in
the context of the discretisation of conservation laws— piecewise linear segments are em-
bedded in the grid to represent the boundary. The method is also used, e.g., for solutions
across interfaces [7, 8]. In many cases the ECB method shows clear advantages compared to
the traditional stair-step method [10] but no higher-order accuracy than order two can be
expected.

Higher order may be obtained by Immersed Boundary Methods (IBM) [11, 12, 13, 16],
e.g., in pseudo-spectral codes [3], where the presence of a boundary within the computational
domain is simulated by specifying a body force term, without altering the computational grid.
This technique is very flexible as it allows for bodies and interfaces of almost arbitrary shape.
The method is quite popular in situations with interfaces and rather complex geometries
[9] and e.g., elastic boundaries [15]. Usually the method is applied so as to maintain second
order accuracy (first order near the boundaries). However, fourth order convergence rates are
reported in [2], where the same methodology is used with PDEs for thin flexible membranes
in an incompressible fluid domain.

In contrast with the above methods, we take the Lagrange multiplier formulation of the
boundary conditions as a starting point, in the same manner as used in [14] or in the derivation
of the discontinuous Galerkin discretisation. Within the framework of structured, regular
rectangular grids we introduce the treatment of curved boundaries in full agreement with
the principles that lead to the discontinuous Galerkin method. We apply high-order DG-
discretisation in the interior and adapt the method in the cells with embedded boundaries.
The order of approximation of the boundary condition corresponds with the accuracy of the
DG-method. In the present paper we give examples of approximation with tensor products
of cubic polynomials.

In [6] we explained why the treatment of this cubic polynomial case is the basis for higher-
order approximation. In DG discretisation, information exchange over the interior cell bound-
aries is restricted to function values and normal fluxes. At the endpoints of an interval, func-
tion values and fluxes are determined by four independent parameters, that correspond with
the four degrees of freedom in the cubic polynomial approximation on a cell. Higher-order
approximation can be achieved by additional bubble functions with vanishing values and
derivatives at the cell boundary. In the multi-dimensional case, on a structured rectangular
grid, the same principle holds with tensor-products for approximation.

For the treatment of the embedded boundary conditions, we give in Section 2 of this paper
an exposition of the weak forms used for the different discretisation alternatives. In Section
3 we start with simple experiments in one and two dimensions to see the differences between
the various methods. In section 4 we identify the discrete function spaces in which the
approximate solution is found. In the last section we solve a convection-dominated equation
on an irregular domain, partitioned into only two cells. We show how well, on this mesh, a
complex problem can be solved with a piecewise cubic approximation.
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2. WEAK FORMS FOR THE POISSON EQUATION
2.1 The Lagrange multiplier form for the embedded boundary problem
To apply DG-methods for structured rectangular grids on complicated domains, we are inter-
ested in solving an elliptic second order problem Lu = f on a fictitious open domain Q, which
is larger than the open domain §2 on which the elliptic BVP is originally defined. The solution
u on Q is determined by the Dirichlet boundary condition u = ug on 052, the boundary of
Q, and we want to discretize the problem on a fictitious domain Q O Q. For this purpose
we assume that the solution u on Q allows a sufficiently smooth extension, u, defined on (AZ,
solving Lu = f. Of course, this excludes certain types of singularities near the boundary.
For sake of simplicity, in this initial treatment we assume Q to be the unit cube and we
consider the Poisson equation with an embedded Dirichlet boundary condition as follows: let
Q be the open unit cube, with boundary 89 which consists of two non-overlapping open
sub-domains, € and Q, such that

0=0uUQ, and QnQ=9, (2.1)

where Q is the fictitious part of the domain Q. We now consider the boundary value problem
consisting of the Poisson equation defined on the whole of {2 and Dirichlet boundary conditions
on 0L, the boundary of 2:

Lu=—-Au=f on Q, and u=uy on I'p=0Q, (2.2)

under the assumption that the solution u on (2, has a sufficiently smooth continuation to ?2,
satisfying the Poisson equation on the whole of €.

o0

Figure 1: The domain of interest, ) and the fictitious part, SNI, make the domain Q = QU €.

To arrive at the corresponding weak formulation of the Poisson equation with ‘embedded’
Dirichlet boundary condition, we multiply the left- and right-hand side of (2.2) with a suffi-
ciently smooth function v, and integrate over the domain (AZ, to get:
find u € H'(£2) such that

(Vu, Vo)g — (n- Vu,v) 8 = (f,0)g Yo € HY(Q), (2.3)

under the constraint that u = ug on 9.

By the Lagrange multiplier theorem, the following formulation is equivalent to (2.3): find
u € HY(Q) and 5 € H/2(9Q) such that

(Vau, Vo)g — (n- Vu,v) 5 + (B, 0) o = (f,0)g Vo € HY(Q), (2.4)
(¢, u) g = (4, u0) a0 Vg € HY2(09).
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We call this the Lagrange multiplier form of the embedded boundary problem. We see that,
if u satisfies the Poisson equation (2.2) and the embedded Dirichlet boundary condition, the
Lagrange multiplier p in (2.4) vanishes.

2.2 The weak form for boundaries along gridlines
In the classical case that = (), we can combine the boundary terms in (2.4), in order to
obtain

(Vu, Vo)g — (p,v) 55 = (f,0)g Yo € H'(Q),
<Q7 U>BQ = <Q7 u0>aQ vq S H_l/Q(aQ)v

Withp:n~Vu—ﬁon6(2:6Q R
This leads to a hybrid form of (2.2) with Dirichlet BCs: find v € H'(Q) and p € H~1/2(8Q)
such that

(Vu, Vv)ﬁ — <p,v)8§2 — (g, u)yq = (f, v)f2 — (g u0)pq YV E Hl(ﬁ), qge H_l/Q(aQ). (2.5)

When u satisfies (2.2) we have p = n- Vu, the normal flux at the boundary Q. Substituting
this value for p, and replacing similarly the weighting function ¢ by ¢ = —on - Vv, with
o =1or o0 = —1, leads to the weak form used in DG-methods (viz., Baumann’s and the
symmetric DG-method respectively). Other DG-methods (viz., IPG, NIPG) are obtained by
taking ¢ = —on - Vv — pv with parameters o and p. Thus, our DG weak form reads: find
u € HY(Q) such that

(Vu, Vo)g—(n - Vu,v) 5 + 0 (n- Vo, u)yq = (2.6)
= (f,v)g + 0 (n- Vo,up)sq Yu e H'(Q).
2.8 The hybrid and the DG-form for the embedded boundary problem
Not only the Lagrange multiplier form (2.4) can be used for the embedded boundary problem,

we can also apply (2.5) or (2.6). In the case Q # ) the form (2.5) reads: find u € H'(Q) and
p € H-1/2(89Q) such that

(V'LL, V’U)Q - <pvv>aﬁ - <Q7u>8Q = (f7v)ﬁ - <Q7u0>8ﬂ ) (27)
Vo € HY(Q),q € HY?(69).
which we call the hybrid form of the interior boundary problem. In the case Q # (), equation
(2.6) is written: find u € H1(£2) such that
(Vu, Vu)g—(n - Vu,v) g5 + 0 (n- Vo, u)yq = (2.8)
= (f,v)g + 0 (n- Vo,ug)yq Yo e HY(Q),
which we call the DG-form (the Baumann-Oden weak form if o = 1 or the symmetric form

if 0 = —1) of the interior boundary problem. Notice that this symmetric weak form is not
symmetric anymore if ) # Q.
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3. NUMERICAL EXPERIMENTS IN ONE AND TWO DIMENSIONS

3.1 Numerical experiments on one-dimensional problems

To see the difference in practice, we first study the three weak forms (2.4), (2.7) and (2.8) for
a simple one-dimensional problem. On the unit interval Q= (0,1) we consider the Poisson
equation with homogeneous Dirichlet boundary conditions:

d2u

T3 = f, on €, with u(d) =0, u(1)=0, (3.1)

where d € [0,1) and = (d, 1). To discretize this problem we take for test and trial spaces
the (p + 1)-dimensional space Sj,(Q) = PP(QQ) ¢ HY(Q), i.e., the space of polynomials of
degree < p. We write for the approximate solution

up = Z cidi(z), ¢i(z) € Sp(Q).

0<i<p

Further, we provide the boundary spaces Q, () C H_1/2(8A(AZ) and Q(09) C H~/2(99),
with the trace of polynomials on the boundary, hence Q4(9Q) = {¢o(z) = (1 — )|z—(0,1);

P1(x) = 2|y—0,1))} and Qp(99Q) = {to(z) = L=t ,— 1), Y1(2) = F=4|,—@ 1)}, d € [0,1).
Then we write for the approximation of the Lagrange multiplier:

ph = Z a; Vi ()| z=0,d,1-

0<i<1

Because of the 1-D character of this example, boundary values are parameterized by only
two values for both 92 and 9. Given the approximating spaces, the three forms (2.4), (2.7)
and (2.8) become: R R

(i) In case of the Lagrange multiplier formulation: find uy, € Si(£2), pj, € Qn(0N) such that

/01 upvpde — [uj,(1)vn(1) — up (0)on(0)] + (B (D)va(1) — Bu(d)vn(d)] (3.2)
+ [an(Dun(1) — gr(d)un(d)] = /Olvhfdw, Yon € Sh(Q), an € Qn(99).
(i) in case of the hybrid form: find uy € Sp(Q), pr € Qu(IN) such that
[ e~ 0 (1) = 20 0)] = an (1)1~ an () (3.3
_ /01 onfde,  Yon € Su@), an € Qn(090).
(iii) whereas the DG-formulation reduces to: find uy, € S;(Q) such that

1
/O upvpdr = [up (1)on(1) = uj, (0)or(0)] + o [, (1)un(1) — v, (d)un(d)] (3-4)

= fol vp fdx, Yoy, € Sh(ﬁ).
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Figure 2: The solution u(z) = —%xg + %m — % computed with the hybrid-, Lagrange- and

Symmetric-Baumann- method, o = £1.

As a first experiment we check if the three discrete forms (3.2), (3.3) and (3.4) can solve

~

for the exact solution, when we choose f(z) = z in (3.1) and d = 1/2, and if we take Sj,(Q2) =
P3(€2). The result is shown in Figure 2. It appears that all three formulations compute the
exact solution. The computed Lagrange-multipliers for the hybrid- and Lagrange-formulation

are shown in Table 1. We see that, in case of the hybrid-formulation, the Lagrange multipliers
correspond with the fluxes at the boundaries, i.e., p;(0) = 2%(0) and pp,(1) = Z—Z(l), whereas

n
for the Lagrange-formulation, the Lagrange multipliers vanish.

Lagrange method (3.2) | pxp(d) =0 pr(l) =0
hybrid method (3.3) | pn(0) = —=5/25 | pp(1) = —7/24

Table 1: The values of the Lagrange multipliers of hybrid- and Lagrange- method for the
solution as in Figure 2.

Next we check if we can solve (2.2) for an arbitrary location d € [0,1) of the interior
Dirichlet boundary condition. Now we see that the dependencies on d and o differ for the
three methods. In case of the symmetric-/Baumann-Oden method we have to solve a full
(p+1) x (p+ 1) linear system Ly 4 up, = fp, where the matrix depends on both the method
parameter ¢ and the interior boundary location d.

In contrast, if we consider the coefficients of the linear system arising from the hybrid- and
the Lagrange method we observe the following block-partitioning:

A B
Lduh=<c 0 >Uh:fha

where, for the Lagrange method, A = fol upvpdr — [uy (1,0)v,(1,0)] is the (p+ 1) x (p+ 1)
leading submatrix, and B = [p,(d, 1)vn(d,1)] and C = [g(d, 1)un(d,1)] have respectively
dimensions (p+ 1) x 2 and 2 x (p + 1). The dependency on d is reflected in the elements of
B and C.
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On the other hand, in case of the hybrid-method, we have a (p+1) x (p+1) leading submatrix
A fol uyvpdr. Now the (p+ 1) x 2 submatrix B = [py,(0,1)v,(0,1)] is independent of d.
The dependency on d is only reflected in the 2 x (p + 1) matrix C 2 [qn(d, 1)up(d, 1)].

So we check if there are locations d € [0,1) in which any of the three methods may
become singular. The results are shown in Table 2. We see that both the Lagrange- and the
symmetric-/Baumann-method have interior boundary locations where the methods become
singular. The number of points where a singularity appears increases with the polynomial
degree. The hybrid-method, however, shows no singular points. This motivates us to continue
mainly with the hybrid method for the two-dimensional numerical experiments.

The Lagrange method

1/3 -
2/5—1/10v/6 | 2/5+1/10v/6 —
0.08858795951 | 0.4094668644 | 0.7876594618

STSRS
I
=~ W N

The symmetric- / Baumann-method
p=2 - -

=3 2/5 -
p=43/T—1/1V2 | 3/T+1/TV/2

Table 2: Values of d for which the discrete system becomes singular. The discretisations are

~

made for S, (Q2) = PP(0,1), p =2,3,4.

3.2 Numerical experiments for the hybrid-method on two-dimensional problems

Having studied the one-dimensional discretisation for the various weak formulations with
an embedded Dirichlet boundary condition, we now consider the two-dimensional Poisson
equation on the unit square Q as in (2.2) with an embedded Dirichlet boundary condition on
a line parallel to a diagonal. For this line we use the following parametrisation (See Figure 3

):

{ o(s)=1—d/V2ts, .o { |s] < d/V2 if0<d<1/v2, (3.5)

y(s) =1—d/v2— s, s| <1—d/vV2 if1/vV2<d< V2.

Approximation with piecewise quadratics. To discretize the hybrid formulation, we first in-
troduce the quadratic polynomial basis on the unit interval

P2([0,1]) = Span{1 —¢t, t, t(1 —t)}. (3.6)
We provide the test and trial function spaces with the 9 dimensional subspace Sh(ﬁ) =
P2X2(Q)) = P%(z) ® P%(y) C HY(Q), i.e., the tensor product set of polynomials of degree
< 2 in the two coordinate directions. Since we know that the Lagrange multiplier of the
hybrid-method corresponds with the flux p = n - Vu on the boundary 8@, we choose to
discretize the Lagrange multiplier as pp, = nat. (2, y)| 50 + nyy (2, Y) |55, with ¢ € PQXQ(Q)

which defines the polynomial subspace Qh(aﬁ) C H‘1/2(8§) and also Q,(0Q) ¢ H=1/2(09)
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\d< //
d,
/7
/7

Figure 3: The domain €2 and its parametrisation

by prloa = ngts(x

Y)|aq + nythy(z,y)aq. Then the discrete formulation of the hybrid form
is:  find uy € Sh(Q),

pn € Qr(09) such that

~

<Vuh7 V'Uh>sh(§) - (Pm Uh>Qh(3ﬁ): <f7 Uh>5h(ﬁ) ) Vo, € Sh(Q)7 (37)
(an:un) g, 00 =(q,u0)g,00)> V4 € Qn(0%Y),

where the approximations are given by (9 degrees of freedom describe the polynomial in the
interior)

~

uh(xay) = Z Cid)i(xay)’ sz € Sh(ﬁ)v (i’,y) € Q7 (38)

0<i<8

and (notice that 8 degrees of freedom describe the quadratic polynomials at the 4 boundaries)

pu(z,y) = Z a; [nz@bx,i(xvy”aﬁ + ny@by,i(xay)bﬁ] ) (3.9)
0<i<7

Yuilogs Yuilos € Qr(0Q),  (z,y) € 0.

The result is a 17 x 17 linear system depending on the diagonal distance of the embedded
Dirichlet boundary to the origin. It is obvious that all methods will become ill-conditioned
for values of d close to /2, when the region € vanishes. In order to see how the singularity
develops for the hybrid method (2.7), we plot the 17 singular values as function of the di-
agonal distance d. The result is shown in Figure 4. We see that, as in the one-dimensional
experiment, also for this experiment, there are no values of d for which the discretisation
matrix becomes singular. Furthermore the method is not ill-conditioned for values of d even
larger than one.

Approzimation with piecewise cubics. Next we want to study the stability of a higher order
discretisation of the hybrid method (2.7), for the same two-dimensional model problem. For
that we consider on the unit interval the cubic polynomial basis

P3([0,1]) = {1 —t, t, t(1—t)%,t*(1 1) }, (3.10)

~

and we choose for the test- and trial function spaces the 16-dimensional subspace Sp,(2) =
P3>3(Q) = P3(z) ® P3(y) ¢ HY(Q), ie., the tensor product polynomials of degree less
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th@n four in the two coordinate directions. We choose the polynomial subspaces Qh((‘)ﬁ) =
~92(8,(Q)) € H1/2(8Q) and Qp(09) = v92(S,(Q)) € H~1/2(89). The choice of the basis
functions in Q5 (99) will be explained in the next section, where we study the general case
with a curved boundary.

As explained in Section 4, using (3.7) and (3.8) we obtain a 28 x 28 system depending
on the diagonal distance d of the interior Dirichlet boundary to the origin. For this hybrid
discretisation, the 28 singular values as function of d are shown in Figure 5. Generally, we
observe the same behavior as for the quadratic polynomials.

.le2 4

1e—05 =
1e-06 +§
1le-07 3
1e—08 =
1e-09 4
le—10 =
le—11 3
le—12 A
le—-13 =
le-14 4
le—15 =
le-16 §

Figure 4: Singular values o;, 1 < i < 17 as function of the diagonal distance 0 < d < /2 for
the third order discretisation of the hybrid method.

le—25 1
le—26 =
le—27 =
le-28 1
1e—29 1
1e—-30 1
le—31 4
le—32 H

Figure 5: Singular values o;, 1 < ¢ < 28 as function of the diagonal distance 0 < d < V2 for
the fourth order discretisation of the hybrid method.

4. WEAK FORMS FOR EMBEDDED BOUNDARY CONDITIONS

4.1 The boundary condition on a curved embedded boundary

In this section we study the stability and the accuracy of a fourth order hybrid discretisation
of the Poisson equation on the unit square, with a part of the circular boundary embedded.
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So, we solve the equation
~Au=f on Q, with w=wup on I'p = 01, (4.1)

on the unit square from which a circle sector has been removed: i.e., Q the unit square and
Ting € 092, with Q C €, is the circular curve

Tine = {(z,9) | 2* + 9> =R*< 1, >0, y >0}, (4.2)
and the fictitious part is
Q:{(x,y)]w>0,y>0,x2+y2<R2}. (4.3)

The corresponding discrete hybrid formulation reads: find u € S’h(ﬁ), Xhn € Qh(ﬁ) such
that

(Vun, Ver)g = (120016 wn) = (£ vn)g v € Su(@),  (44)
(1 (an): 76 (un) ) g = (1 (@n) 10) gy Yan € Qn(Q),

where S,(Q) ¢ H'(Q) and Qh( ) € H'() are proper finite dimensional polynomial sub-
spaces, and fygz, fy? and 70 , ’y? are the usual trace operators on 92 and o0 respectively. To
provide these subspaces with a basis, we choose cubic polynomials and consider the following
polynomial basis on the unit interval:

¢1:1_t7 ¢2:(1_t)2t7
pa=1t,  d3=(1-1t)t* (4.5)

We recognize that ¢1(t) and ¢4(t) are associated with function values at ¢t = 0, 1 respectively,
while ¢2(t) and ¢3(t) can be associated with corrections for the derivatives at ¢ = 0, 1. These
facts help us to understand the structure behind the different polynomial subspaces that are
constructed below.

First we choose for the test and trial funAction spaces the 16-dimensional subspace, i.e.,
Sh(Q) = P¥3(Q) = P3(x) ® P3(y) € HY(Q), the usual tensor product of polynomials of
degree less than four in the two coordinate directions. Hence, on the unit square O we get
the approximation uy, € Sh((AZ),

up =y cigdiy)e;(). (4.6)

1<i,j<4

Next we consider the usual trace operators, fy; HI(Q) — H1/2(8§2) and fy Hl(ﬁ) —
HY?(0%) apphed to the boundary of Q and respectively, and similarly 7§ : H 1(@) —
H1/2(8Q) and 42 : HY(Q) — H1/2(8Q) the traces for the normal derivatives. We see
that the approximating space of tensor product CublCS Sh(Q) CH 1(?2), is a 16-dimensional
subspace. The trace of this space on 8(2 the space 7 (Sh(Q)), however, is 12-dimensional,
because the trace consists of independent cubics on the four edges, related by four continuity
conditions at the vertices. By the choice of the polynomial basis (4.5), in S;(Q) a basis for
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'ygz(Sh( )) can readily be found as a subset of the tensor product of basis functions (4.5), by
splitting S;(€2) in two linearly independent subspaces:

Sh(€) = Qn(Q) ® Kn(Q) ,
with
I?h(ﬁ) = ker(vp )ﬂ Sh(Q ) = Span( oi(z)pi(y) | 4,5 =2,3 ) , (4.7)

and

Qn(Q) = Span (61(2)é;(y), da(2)9;(y), Gi(2)d1(y), di(x)daly); 0,5 =1,2.3,4). (4.8)
For the approximating space for A§(H(Q)) we take

Q1(00) = 1§(Sh(Q)) = 1(@Qn(Q)) € HYV*(69).
Similarly we introduce the approximation space for the traces on 9§ as

Q5(09) = 1§ (Qn(@)) ¢ H/?(09).

On the other hand, for the approximation of the trace of the normal derivatives we split the
space S, (2) as

Sh(Q) = Qn(Q) @ Kp(Q)

Z
Bl
I
.
@
=
=
=
=
Bl
I

Span ( i(z)v;(y) | i,5=1,4 )  with oy = o+ (—)*(d3—pa),

Qh(ﬁ) = Span (¢2(x)¢](y)v ¢3($)¢](y)v ¢z(x)¢2(y)v ¢1($)¢3(y), ivj = 1727374) .

We see that Qh(ﬁ) is 12-dimensional and K, h(ﬁ) is 4-dimensional. The normal derivatives
on the four edges of ) are all approximated by cubic polynomials that are related by the
condition that at the vertices %(agyh) = ay(%“gc"‘). So we find the approximating space for

the normal derivatives at the boundary of Q, viz.,
Qn(99) =1 (Sn(2)) = 11 Qu() € H/*(09)
and at the boundary of Q) as
Qn(09) =1 ( Qu(Q)) ¢ H'/2(09).

Considering the Lagrange multiplier function p € H~Y/2(09) in (2.7), we know that, if
u satisfies Poisson’s equation (4.1) and also the Dirichlet boundary condition, the Lagrange
multiplier p on Q) represents the normal flux n- Vu at the the boundary 8@, ie,p=n-Vu.
So, in the discrete hybrid formulation (4.4), we write for the Lagrange multiplier p, = n-Vyy
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on 99, where n is the unit outward normal vector and yj, € Qh(ﬁ) is the master flux function
given by

Xh = Z ai,jqﬁi(a?)(;bj(y), with Qi = 0, 7,5=1,4. (49)
1<i,j<4

So we recognize the discrete hybrid formulation (4.4): find uy € Sh(ﬁ), Xh € Qh(ﬁ) such
that

~

(Vun, Von)g = (10 38 @n)) o = (F.on)g Vop € Sy(@),  (410)
(7 (an) 26 () og = (17 (a1), 10) g Var € Qn(@),

as a (16 + 12) x (16 + 12) linear system. To study the stability of this hybrid formulation
we plot the singular values of the discrete 28 x 28 system as function of the circle radius,
0 < R < v/2. The result is shown in Figure 6. In this figure we see 28 singular values as
a function of the circle radius, R. The discrete formulation is sufficiently stable up to circle
radii of R ~ 1.1. In that case more than 80% of the total domain {) consists of the fictitious
domain €. A reason for the cusps in the figure near R = 0.4 and R = 0.9 is unknown.

Next, we check how the cubic approximation will solve for the exact solution by taking
in (4.1) the right-hand side and the boundary conditions such that the solution is given by
u = 23 +1y>+zy. The solution and the error for two possible domains (R = 2/5 and R = 4/5)
are shown in the Figures 7 and 8. We see that the hybrid formulation finds the exact solution
on the domain 2, except for rounding errors which correspond with the condition of the linear
system.

To check the approximation behavior of the method we repeat the experiment for the
solution u(z,y) = €**¥ in (4.1). The solution and the error for both domains (R = 2/5 and
R = 4/5) are shown in the Figures 9 and 10.

1e—05 3
1e—06 3
1e—-07 3
1e—-08 3
1e—-09 3
le—10 =
le—11 =
le—12 =
le—-13 §
le-14
1le-15 3
1le—16 3
le—-17 3
le—18 3
le—19 3
le—20 =
le—21 =

Figure 6: The singular values as function of the embedded circle bow radius for the fourth
order hybrid discretisation. On the fictitious part of the domain the solution and the error
are set equal to zero.
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Solution on domain of interest Error on domain of interest

o o

Figure 7: The solution u = x3 + y3 + xy and the error on the domain Q of the fourth order
hybrid discretisation (R = 2/5).

Solution on domain of interest Error on domain of interest

le—-08

5e-09 7,

—5e—09
—le-08

—1.5e-08

Figure 8: The solution u = 22 + 3> + zy and the error on the domain € of the fourth order
hybrid discretisation (R = 4/5).

4.2 The combination of the hybrid and the discontinuous Galerkin formulation
In the previous sections we have seen that the hybrid form is stable on a cell with an embedded
Dirichlet boundary condition, whereas the discontinuous Galerkin method is not always sta-
ble. On the other hand the discontinuous Galerkin method is cheaper, because the Lagrange
multiplier has been eliminated and hence less degrees of freedom are involved. So, to cut
down on computational costs, if we consider a large regular rectangular grid on which locally
there exist cells with embedded Dirichlet boundary conditions, it is natural to treat these
cells with the hybrid method for stability, while the ‘normal’ rectangular cells are treated
with a DG-Galerkin discretisation.

To study such a method, we consider two adjacent rectangular cells ﬁl and SAZQ, where
only Q1 has an embedded Dirichlet boundary condition. The cells have a common interface
I'1,2. Because cell ﬁl has an embedded boundary condition, we treat this cell with a hybrid
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Figure 9: The solution u = e*™¥ and the error on the domain € of the fourth order hybrid
discretisation (R = 2/5).
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Figure 10: The solution u = e**¥ and the error on the domain Q of the fourth order hybrid
discretisation (R = 4/5).

discretisation. Cell ﬁz is discretized by DG discretisation. So, on cell Q1 we have

| Vuy, - Vuydx — / (m1,2 - Vxn)vpds — /A (n-Vxp)vpds (4.11)
N T2 O \TI'1 2

- / (n1,2 - Vap)upds — / (n- Vap)upds
2 0Q1\TI'1 2

= [ fvhda:—/ n - Vqpuods,
Ql agl\rl,Z

where n is the unit normal on the interface I'1 » pointing from cell ﬁl towards cell ﬁg. On the



4. Weak forms for embedded boundary conditions 15

other hand, on cell Q, we consider (for simplicity) the symmetric DG discretisation. Hence

Vuy, - Vupdr — /

(n- Vup)vp ds — / (n- Vup)vp ds (4.12)
I'i2

Qo 3?22\F1,2

—/ (n - Vop)up ds —/ (n- Vop)up ds
a1

8@2\F1,2

:/A fvdm—/A (n- Vop)ug ds,
Qo OQ2\I'1 2

Now we have to couple the two cells at the interface I' 2. Therefore, we have to satisfy the
locality, consistency and conservation conditions as discussed in [1]. To meet these conditions
we define average fluxes across the interface by

<Vuh> = E(Vxh’aﬁl + Vuh‘agz) and <V1}h> = §(th|8§1 + V?)h|ag2), (4.13)
and jumps by
[un] = unlyg, M2 + unlyg, n2,1- (4.14)

Then combining (4.11) and (4.12), together with the flux and jump relations, we arrive at
the form

/ﬁlUﬁQ Vuy, - Vopdx _/1“1,2 <€Jh> - o] ds — /Fl’2 <%l> - up) ds (4.15)

—/A (n- Vxp)onds —/A (n - Vup)vpds
891\1—‘172 BQZ\FI,Z

—/ (n - Vap)upds —/A (n - Vup)upds
891\1—‘172 BQZ\FI,Z

:/A _ Jondz _/ (n - Van)uods —/A (n - Vop)uods.
Q1UQ5 OQ\I'1 2 002\TI'1 2

This weak form can immediately be used for discretisation as described above. The solution
and the error of such a combined discretisation with cubic polynomials is shown in Figure
11.

4.8 An embedded boundary for the convection equation
Having studied the discretisation of the Poisson equation, we now consider the convection
equation with an interior Dirichlet boundary condition

b-Vu=fin @, u = ug on Iy, (4.16)

where b is a constant vector denoting the direction of the convection and 0y, is the inflow
boundary of € such that the boundary of Q is 9 = 0, U 0Quyut. The inflow and outflow
boundaries are defined by b-n < 0 on 9, and b-n > 0 on 9Qqys, respectively. Considering
the boundary of the whole domain 8@, we split also this boundary in an upwind and downwind
boundary such that o0 = Gﬁin U (%Alout. Then, according to the Lagrange multiplier theorem
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Solution on domain of interest Error on domain of interest

Figure 11: The approximate solution v = = +y of Ay = 0, and the error on the domain
Q1 U Qs for a fourth order combined hybrid-symmetric DG discretisation with embedded
circle segment Dirichlet boundary condition (R = 3/4).

we arrive for the boundary value problem at the following weak formulation:
find u € H'(Q) and x € HY/?(9Q,) such that

—/Vv~buda:+/ n'bxvds—i-/ n'buvds—k/ n-bquds (4.17)
ﬁ 8@1;; 6§0ut 8glin

= /A fo dzx +/ n-b qug ds, Yo e H'(Q), Vg € H/*(0),
Q O0Q%n

in which we assume that u on the fictitious domain  satisfies the differential equation and
is the continuation of the solution u on the domain 2. Figure 12 shows the solution and the
error if (4.17) is used as the starting point for a discretisation with cubic polynomials, as
discussed above.

Solution on domain of interest Error on domain of interest

Figure 12: The approximate solution u = 1 of the convection equation b - Vu = 0 and the
error on the domain 2 for a fourth order hybrid discretisation with embedded circle segment
Dirichlet boundary condition (R = 8/10).



4. Weak forms for embedded boundary conditions 17

4.4 Two adjacent cells with a common interior embedded boundary condition
In this section we study a finite element discretisation of the convection diffusion equation

—eAu+b-Vu=0, (4.18)

discretized on two adjacent cells € and Qy, with vertices (—1,0), (0,0),(0,1),(—1,1) and
(0,0),(1,0),(1,1),(0,1) respectively. The embedded Dirichlet boundary condition is given
on the half circle 2 4+ y? = R?, 0 < y < 1, so that the domain of interest is given by

Q= (@ U)\ {(,y) | a2+ = R2}.

We first consider the diffusion part of the equation. Then, the weak hybrid formulation of
the problem reads: find v € H'(Q,) and p € H=/2(9Q U T'jy¢) such that:

(Vu, Vo), — (b 0)ge — (b= o)), — (@ woq — (.0~ [ul)y,, (4.19)
= (f> U)ﬁh - <q7 u0>8§2 ) V’U € Hl(ﬁh)v q € H_l/Q(aQ U Fint)7
where H 1(52@\) is the broken Sobolev space on ﬁl U ﬁg and the common interface is given by

Ting = Q1 N Q9, and n is the normal vector. The interface I'iy, not including the fictitious
part, is defined by Ty = Q1 N Q2. Recognizing in pla, o a normal flux on the common

interface Tint, we define the trace operators, ?? CHY Q)N CYQ) — HY2(0Q U Tiy) and
cH 1(9) N Cl(Q) H~12(0Q UTyy). In order to approximate the normal derivatives

on GSAZ U Fmt we proceed as in Section 4.1 and introduce the polynomial subspace Sh(Q) C
HI(Q) N CI(Q). We split this space as:

S(Q) = Qu(Q) ® Kn(Q),
with
K4(©Q) = ker(7) 1 53,().

Then the discrete version of (4.19) reads: find wj, € S,(Qs) and x5 € Qn(€) such that

(Vun, Von)g, — <5?(Xh)770(vh)>8§ - <7§(Xh)v [Uh]>fim (4.20)
— (), 0(un) ) o0 — (31 (an), [un])p,
=(f,vn)g, — (31 (qn), 10) o, You € Sp(), an € Qr(Q).

(Notice the polynomial spaces used!) For the polynomial space Sh(ﬁh) we can take the
usual space of piecewise cubic polynomials in each coordinate direction on the partitioning
Ql U QQ On the other hand, it is not trivial to find a cubic polynomial space for Qh( ) C
HY() n CY(Q). As we do not want to make our discretisation unnecessary complicated
and expensive, we eliminate the extra degrees of freedom for x; by identifying them with
Vuy,. Similarly, identifying ¢, and oV on 02 U Ty we arrive at a discontinuous Galerkin
discretisation.
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As our first interest is an efficient fourth order discretisation, we expect it to be highly
improbable that instability will occur in the discrete operator, because the one-dimensional
experiment shows only a single pole. Nevertheless, the use of DG discretisation forces us to
monitor for possible singularities. Now the DG version of (4.20) is: find uj, € Sp(Qy) such
that

(Vup, Vvh)ﬁh — (Vun, vp) g — ((Vug) , [vh]>1:im + 0 (Vop, up)pq + (4.21)
o ((Von), [uW])r,,, = (fron)g, +0 (Vo) u0)aq, Vv € Su(Qn),

with the usual choices for the normal flux functions.
Next we consider the convection part of (4.18). So, on the domain 2 we consider the
equation

b-Vu=f, u = ug on Oiy. (4.22)

For simplicity we set b = (1,0). Then the embedded boundary is an outflow boundary for
Ql, whereas for Qg it is an inflow boundary. Hence, we can neglect this embedded boundary
in Ql, whereas in cell Qg we must introduce a Lagrange multiplier in order to satisfy the
upwind boundary condition on the circle bow. Hence, we arrive at the following weak form
for the convection part: find u, x € H'(Q,) = H ({4 U Q)

/ Vv - bud:H—/ (n - bu)vds + /A (n-by)vds + /A (n - bu)vds
an out 8Q2 in 892,0ut

+ /mﬂmt (n-bq)uds — /F (n-bg)u"ds (4.23)

int

:/Afvdx —/A (n-buo)vds—i—/ (n - bq)ugds
Q 891’111 1_‘D
Vo,q € H'(9),

where u™ = ulpo, = ulr,,. If we want to eliminate in (4.23) the extra degrees of freedom,
we set x = v and ¢ = v.

Linear combination of (4.21) and (4.23) gives a discretisation of the convection diffusion
equation

~Au+b-Vu=f inQ, u=1wuy on Of. (4.24)
The Figures 13 and 14 show the solution and the error of a discretisation of (4.24) by means

of (4.21) and (4.23) with tensor-product cubics as approximation and test spaces.

5. A SINGULARLY PERTURBED PDE ON ONLY TWO CELLS WITH A HALF CIRCLE EXCLUDED
In this section we are interested to solve the following convection diffusion problem. (see
Figure 15) More details about this problem can be found in [5]

—eAu+tup,=fonQ={(z,y)| —1<z<1, 0<y<1}, (5.1)
u=20 ondl={(z,y)|z=-1,0<y<l; —1l<z<ly=1},
u=1 onFD:{( \x2+y2:R2,y>O;R<1}, (5.2)

y)
n-cVu=0 only={(z,0)| R<|z|]<1}U{(L,y) | 0<y<1}.
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Solution on domain of interest Error on domain of interest

Figure 13: The approximate solution u = 3 +y3 + 2y of —Au +u, = f and the error on the
domain 2 = Q1 U Qs for a fourth order symmetric-DG discretisation with embedded circle
Dirichlet boundary condition (R = 3/4).

Let Q; and Qy be two unit cells with respectively vertices (—1,0),(0,0),(0,1),(—1,1) and
(0,0), (1,0), (1,1), (0, 1) so that © = Q;UQ;. For this problem we want to study the symmetric
and the Baumann-Oden DG-method.

First we study the diffusion part of (5.1) and replace the homogeneous Neumann boundary
condition on I'y = { (z,y) | # =0, 0 <y < 1} with the homogeneous Dirichlet boundary
condition, in order to obtain a problem symmetric around x = 0. Now the corresponding
hybrid formulation (2.7) for (5.1) reads: find u € H(Q),) and p € H~Y/2(0Q UT4y) such that

(VU, vv)@ - <p7v>a§ - <Q7u>8QUFD - <p7 n- [UDf‘int - <q7 n- [u]>Fint = (53)
- (fa U) - <Q7UO>BQUFD ) Vo € Hl(ﬁh)v qc H_1/2(8ﬁ U 1—\int)-

Here H 1(§Alh) is the broken Sobolev space on (Ah U QQ and the jump operator is given by
[v] = D1U|8§1 + n221|8§2. Further, I’y = 021 N Oy is the interior wall on which the true
golutiog is continuous. However, continuity is not required outside €2 and hence not on all of
Ding = Tine N Q. R

To arrive at the DG-discretisation of (5.3) we take for the test and trial space, S, (92) C
H! (ﬁh), the tensor product of polynomials of degree p < 4 in each of the coordinate directions
and we write for the approximation

Up = Z Z Ce,i,j (z)ez ¢e,]( ) (54)

0<e<2 0<i,j<4

In practice we construct a basis from (4.5).

Next, for the DG discretisation, we eliminate the extra equations and degrees of freedom
for the Lagrange multiplier using the fact that p represents the normal flux of u at 99 and at
the internal wall Tins. So replacing p by n- Vuy on 0 and by (n- Vup) on Ting and replacing
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Figure 14: The approximate solution v = e*™¥ of —Au + u, = f and the error on the
domain Q1 U for a fourth order symmetric-DG discretisation with embedded circle Dirichlet
boundary condition (R = 3/4).
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Figure 15: The domain for problem (5.1-5.2).

similarly ¢ by —on - Vv, the DG discretisation of (5.3) reads: find uy € Sh(ﬁ) such that

(Vup, Vop)g — (0 Vup, vp) gg + 0 (- Vup, un)gour, = ((Vun) s [v])g. (5.5)
+o (Vo) [ul)p, = (f,on) + 0 (0 Vo, udaour, » Yo € Su().
Figure 16 shows the solution of the symmetric (¢ = —1) and Baumann-Oden (o = 1) discreti-

sation. We see that both solutions are symmetric indeed, because of the symmetric structure
of the problem. On the other hand we recognize the instable behavior of the symmetric DG
method, which is of poor quality compared with the solution of the Baumann-Oden method.

We continue by considering both methods for the diffusion part of the equation and bound-
ary conditions as in (5.2). Then the discrete formulation is also given by (5.5), except that
the Dirichlet boundary condition at {(1,y) | 0 < y < 1} is replaced by the homogeneous Neu-
mann boundary condition n - Vu = 0. The corresponding solutions of the symmetric and
Baumann-Oden method are shown in Figure 17. Now the solutions are not symmetric.
Again, the solution of the symmetric DG-method is poor compared to the solution of the
Baumann-Oden DG method.

Finally, we take the convection part of (5.1). The Lagrange weak formulation of the
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convection term for the cell Qg reads: find u € H'(Qy) and € H'/?(9Q;y) such that

—(Vu-b,u)g, —i—% vn-buds+(pn-b,v)y, =0,Vve H'(9y), (5.6)

B
(qn-b,u) = (qn-b,ug), Vg € H/?(8Q,),

with b = (1,0) and up = 1 on the embedded circle, I'p N0y, while ug = v~ on the common
interior boundary, I'jyt N 04y, with v~ the upwind value of u obtained from €.

As for the diffusion term, we can rewrite (5.6) in a hybrid formulation, where the Lagrange
multiplier is computed on (%Alin, the inflow edge of the domain Qs. Thus, we obtain: find
u e H'(Q) and p € HY2(00,) such that

—(Vv'bau)@—i-]g@ vn-buds+ (pn-b,v)ys =0, Vo € HY(Sy), (5.7)
2

(qn-b,u)yo. = (qgn-b,ug)yq. Vg e HY?(0Qy,).

Next, the second term in (5.7) is split in an integration part over the inflow and a part over
the outflow edge of 9y so that we can combine the integration of u and p over the inflow
wall 9Qy,. This yields: find u € H'(Qy) and p € H'/2(9Q;,) such that

—(Vu-bu)g, +((P+u) n-b,v)yg +(un-bu),s +(qn-bu)yg (5.8)

ut

= (- bug)yg , Y€ H (D), Vg€ HV*(0My).
Writing p = p + u, this is simplified to: find u € Hl(ﬁg) and p € Hl/Q(aﬁm) such that

—(Vu-bu)g, +(pn-b,v)yg +(un-bv),g +{m-bu)y, (5.9)
= (g -b,ug)yg , Vv H (D), Vg€ H/*(0My).
To eliminate the Lagrange multiplier p, we recognize this function as the value of u at the

boundary 8§in. The corresponding equations are eliminated by taking ¢ = ov on Oy,
yielding the DG-formulation of the convection term: find u € H*({)2) such that

—(Vu-b,u)g, + %A vn-buds+o(vn-b, (u—u’)), (5.10)
Q0 e

+o(vn-b,u)yp, =o(vn-buyr,, Vo € HY(Qy).

In cell ; the embedded boundary is an outflow bounda}"\y and, hence, for the convection part
gives no boundary condition. Therefore, we may treat {2; as a normal convection DG-cell.
The discretisation of problem (5.1) is obtained by combining (5.5), (5.8), and (5.10): find

~

up, € Sp(€2) such that
(eVup, Vop)g — (0 eVup, vp) g5 + o (0 eVop, un)sour, — ((EVuR) [thﬁm (5.11)

+o ((eVup, [un]))r, . — (Von - byup)g + (vpn - b, uh>a§1 T ?{A vpn - buy, ds
’ 0

Qo

+o <vhn - b, (uh - uf_z)>l“mt + o (vpn - b, Uh>rDm8§22

=0 (n-eVop, L) + o (upn-b, D)p 50, Yop, € Sp(Q).
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Figure 18 shows the solutions of the fourth order discretisation of (5.11) for R = 3/10, for
the different values of e = 1, 0.1, 0.02, 0.01. We see that in all cases the solution is stable.
For values of ¢ = O(1) we see clearly the approximation of the boundary condition uy = 1
on the circle bow, while for small values of £, when the true solution shows a thin boundary
layer, typical effects of the weak boundary requirement show up. Figure 19 shows the solution
for e = 1/50. Although it seems that the solution is not capable to catch the boundary layer
in © at the upwind side of the circle, we clearly see a boundary layer arise in the fictitious
part of the domain if we consider the total Q. Clearly, the cubics are not able to represent
the thin circular boundary layer. Notice in particular, at © = 0, y < R, the discontinuity in
the fictitious part 2. For small values of ¢ << 1 the boundary layer disappears.

Solution on domain of interest Solution on domain of interest

B
s
P
=)

symmetric DG Baumann-Oden DG

Figure 16: The approximate solution uy of Au = 0 on the domain 2 with symmetric boundary
conditions and fourth order discretisations with embedded circle Dirichlet boundary condition
(R = 3/10).

6. CONCLUSION

In this paper we propose a technique for the treatment of second-order elliptic PDEs with
complex Dirichlet boundary conditions in combination with discontinuous Galerkin discreti-
sation. The aim is to maintain a structured, regular rectangular grid while solving problems
with irregular curved boundary conditions.

The complex domain on which the solution is sought, is covered by a fictitious domain with
the structured, regular rectangular grid. An embedded boundary is the transition between
the domain of interest and the fictitious part of the computational domain.

We present and compare several weak forms for the diffusion part of the equation: the
Lagrange multiplier form, the hybrid form and the DG-form. The hybrid form shows sta-
bility for an arbitrary location of the embedded boundary, whereas for the other forms the
discretisation may become instable for particular locations of the Dirichlet BC. The problem
is studied, first for a single cell and then for a couple of adjacent cells, either sharing or not
sharing the embedded boundary. We also describe the treatment of a convection part in the
equation.

As an example, we solve a singularly perturbed boundary value problem on a complex do-
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Solution on domain of interest Solution on domain of interest

symmetric DG Baumann-Oden DG

Figure 17: The approximate solution uy of Au = 0 on the domain Q with the boundary
conditions (5.2) for a fourth-order symmetric and Baumann-Oden discontinuous Galerkin
discretisation. The embedded circle Dirichlet boundary condition is located at R = 3/10.

main by means of a fourth-order DG-discretisation on only two cells. Although —as expected—
it appears to be impossible to accurately represent sharp boundary layers with a complex
structure by means of a few cubic polynomials, the boundary condition treatment is quite
effective in handling such complex situations.
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Solution on domain of interest Solution on domain of interest

o -1

Solution on domain of interest Solution on domain of interest

Figure 18: The approximate solution up of —eAu + u, = 0, on the domain exterior of the
circle for a fourth order Baumann-Oden DG discretisation with Dirichlet boundary condition
up = 1 on the circle, (R = 3/10).
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