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ABSTRACT

We study numerical approximations for a class of singularly perturbed problems of convection-diffusion type with a moving

interior layer. In a domain (a segment) with a moving interface between two subdomains, we consider an initial boundary

value problem for a singularly perturbed parabolic convection-diffusion equation. Convection fluxes on the subdomains

are directed towards the interface. The solution of this problem has a moving transition layer in the neighbourhood of the

interface. Unlike problems with a stationary layer, the solution exhibits singular behaviour also with respect to the time

variable. Well-known upwind finite difference schemes for such problems do not converge ε-uniformly in the uniform norm,

even under the condition N−1 + N−1

0
≈ ε, where ε is the perturbation parameter and N and N0 denote the number

of mesh points with respect to x and t. In the case of rectangular meshes which are (a priori or a posteriori ) locally

refined in the transition layer, there are no schemes that convergence uniformly in ε even under the very restrictive
condition N−2 + N−2

0
≈ ε. However, the condition for convergence can be essentially weakened if we take the

geometry of the layer into account, i.e., if we introduce a new coordinate system which captures the interface. For the

problem in such a coordinate system, one can use either an a priori , or an a posteriori adaptive mesh technique.

Here we construct a scheme on a posteriori adaptive meshes (based on the gradient of the solution), whose solution

converges ‘almost ε-uniformly’, viz., under the condition N−1 = o(εν), where ν > 0 is an arbitrary number from the

half-open interval (0, 1].
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1. Introduction

In this paper we study a problem with discontinuous coefficients. In particular, we consider the case
of a parabolic problem where the convection coefficient is discontinuous and has opposite signs at both
sides of an interface. Such boundary value problems for singularly perturbed equations with partial
derivatives arise (see, e.g., [9, 10] and the bibliography therein), when heat/mass transfer processes
in composite materials with small heatconduction/diffusion in the case of stationary interfaces are
studied. The terms with the highest derivatives in those equations are multiplied by a small parameter
ε that gives rise to boundary and transition layers in the solution. Because coefficients in the equations
(and source terms) are discontinuous, the derivatives of the solution have discontinuities at the interface
even for fixed values of the parameter ε. Note that the errors of standard numerical methods, developed
for regular boundary value problems, essentially depend on the value of the parameter ε. For example,
the solution of a finite difference scheme, in the case of a problem with a stationary interface, converges
when the stepsize in the space mesh is much smaller than ε (see remarks to theorems 3.1, 3.2 in
section 3). Because of the restrictive convergence condition for the classical finite difference schemes,
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the interest arises to construct special schemes for which the errors in the solution depend weakly on
the parameter ε. In particular, we are interested in methods where the error behaviour is independent
of ε (we say, that the numerical methods converge ε-uniformly).

In the case of nonstationary interfaces, moving transition layers appear. Unlike problems with
stationary singularities, in the case of moving transition layers, the solution exhibits singular behaviour
also with respect to the time variable (see, e.g., estimates (9.5) in section 9). The considerably
complicated character of arising singularities (as compared to problems with stationary singularities;
for which numerical methods are treated, e.g., in [2, 6, 7, 11]) forces us to use a more complicated
discrete construction.

The use of a technique developed to improve the accuracy of the solutions in the case of regular
boundary value problems (e.g., the technique of a priori/a posteriori adaptive meshes; see [1, 4, 7]
and the bibliography therein), turns out to be ineffective in the case of singularly perturbed problems
(see [12] and the statement of theorem 4.1 in section 4). Therefore, the quest for conditions which are
necessary (and for specific discrete methods also sufficient) for the ε-uniform convergence of numerical
methods, for problems with moving transition layers is relevant.

In this paper we consider discrete approximations of an initial boundary value problem for the
singularly perturbed parabolic convection-diffusion equation in a domain with a moving interface
between two subdomains when convective fluxes on the subdomains are directed towards the interface.
The solution of this problem has a singularity near the transition layer that moves in time.

We study finite difference schemes based on classical discrete approximations of the problem. When
rectangular uniform meshes are used, the order of magnitude of the error is not smaller than the exact
solution when ε = O(N−1 + N−1

0 ), where N , N0 denote the number of nodes in the space and time
variables respectively. Finite difference schemes are considered on meshes that are locally refined in
a neighbourhood of the moving interface. It turns out that in the class of finite difference schemes on
rectangular meshes locally condensing in x and t in a neighbourhood of the trajectory of the moving
interface, there do not exist ε-uniformly convergent schemes even under the condition ε ≈ N−2 +N−2

0 .
However, if a new coordinate system is introduced, for which the interface becomes a meshline, then
one can construct a scheme, whose solution converges ‘almost’ ε-uniformly, i.e., it converges under
the condition N−1 = O(εν), where ν > 0 is an arbitrary small number. For the problem in the new
coordinate system, it is possible to use either a priori or a posteriori mesh refinement techniques to
obtain almost ε-uniformly accurate result. As a posteriori adaptive technique we use adaptive mesh
refinement on the base of the gradient of the solution.

The approach can be used to construct effective numerical methods for representative classes of
boundary value problems with the dominant convection with known, moving transition layers.

About the contents. Problem formulation, and the aim of the research are given in Section 2.
Classical schemes and auxiliary problems related to the construction of schemes convergent ε-uniformly
and almost ε-uniformly are considered in the Sections 3 and 4. Schemes on a posteriori adaptive meshes
are constructed and studied in the Sections 5–8 (in Sections 5–7 for a problems with stationary and
in Section 8 with moving interface boundaries). A priori estimates are given in Section 9.

The technique for the construction of the a posteriori adaptive meshes, based on the solution
gradient, is used in [3] to construct almost ε-uniformly convergent schemes for an initial boundary
value problem for a parabolic convection-diffusion equation with “standard” singularity (a “stationary”
boundary layer). In [12] for an initial value problem for a parabolic reaction-diffusion equation, a
special scheme is considered on meshes that are a priori refined in the transition layer caused by a
moving point source. For the construction of the scheme, special coordinates are used, for which the
location of the point source is fixed.

2. Problem formulation. Aim of research
1. In a bounded domain with a moving interface between two subdomains we consider an initial
boundary value problem for a singularly perturbed parabolic convection-diffusion equation.

Let the domain G with the boundary S = G\G, where G = D×(0, T ], D = (−d, d), be decomposed
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into non-overlapping subdomains

G = G
1
∪ G

2
, G1 ∩ G2 = ∅, (2.1)

in each of which we consider an equation

L ru(x, t) ≡

{
εa r(x, t)

∂2

∂x2
+ (−1) rb r(x, t)

∂

∂x
− c r(x, t) − p r(x, t)

∂

∂t

}
u(x, t) = f r(x, t),

(x, t) ∈ G r, r = 1, 2, (2.2a)

where

G1 = {(x, t) : x < β(t), t ∈ (0, T ]}, G2 = {(x, t) : x > β(t), t ∈ (0, T ]}. (2.3)

The curve γ = {(x, t) : x = β(t), |β(t)| < d, t ∈ (0, T ]}, i.e. the interface between the subdomains,
is given by a sufficiently smooth function. On the set S the function u(x, t) takes the prescribed values

u(x, t) = ϕ(x, t), (x, t) ∈ S, (2.2b)

and, on the interface γ, it obeys the conjugation condition, i.e. the solution and the diffusion flux be
continuous

[u(x, t)] = 0, lu(x, t) ≡ ε

[
a(x, t)

∂

∂x
u(x, t)

]
= 0, (x, t) ∈ γ. (2.2c)

In (2.2a) a r(x, t), . . . , f r(x, t), (x, t) ∈ G
r
, r = 1, 2 and ϕ(x, t), (x, t) ∈ S are sufficiently smooth

functions on G
r

and S0, S
L
, respectively, ϕ(x, t) ∈ C(S), and also 1

a0 ≤ a r(x, t) ≤ a0, b0 ≤ b r(x, t) ≤ b0, p0 ≤ p r(x, t) ≤ p0, (2.4)

0 ≤ c r(x, t) ≤ c0, (x, t) ∈ G
r
, a0, b0, p0 > 0;

−β0 ≤ β(t) ≤ β0, |β
′

(t)| ≤ β1, t ∈ [0, T ], β0, β0 < d, β1 < b0 (p0)−1;

|f r(x, t)| ≤ M, (x, t) ∈ G
r
, |ϕ(x, t)| ≤ M, (x, t) ∈ S; r = 1, 2;

S = S0 ∪ SL, SL and S0 are the lateral and lower parts of the boundary S, S0 = S0; let β(0) = 0; ε
is a parameter taking arbitrary values from the half-open interval (0, 1]. The symbol [v(x, t)] denotes
the jump of the function v(x, t) when passing through γ from the set G1 into the set G2:

[v(x∗, t)] = lim
x→x∗+0

v(x, t) − lim
x→x∗

−0
v(x, t),

[
a(x∗, t)

∂

∂x
v(x∗, t)

]
= lim

x→x∗+0
a2(x, t)

∂

∂x
v(x, t) − lim

x→x∗
−0

a1(x, t)
∂

∂x
v(x, t), (x∗, t) ∈ γ.

For the equation (2.2a) we also use the following notation 2

L(2.2a)u(x, t) ≡

{
εa(x, t)

∂2

∂x2
+ b(x, t)

∂

∂x
− c(x, t) − p(x, t)

∂

∂t

}
u(x, t) = f(x, t), (x, t) ∈ G(∗),

where G(∗) = G \ γ, b(x, t) = b2(x, t), (x, t) ∈ G
2
, b(x, t) = −b1(x, t), (x, t) ∈ G

1
, the functions a(x, t),

c(x, t), p(x, t), f(x, t) are defined by the relation v(x, t) = v r(x, t), (x, t) ∈ G
r
, r = 1, 2.

For simplicity, we assume that the compatibility conditions are fulfilled on the sets Sc = S0 ∩ S
L

and γ0 = {(β(0), 0)} to ensure sufficient smoothness of the solution of the problem on each of the
subsets G

r
(for fixed values of the parameter ε); we suppose S r = G

r
\ G r, r = 1, 2.

1 Here and below M, Mi (or m) denote sufficiently large (small) positive constants which do not depend on ε and on
the discretization parameters.

2 Throughout the paper, the notation L(j.k) (M(j.k), Gh(j.k)) means that these operators (constants, grids) are intro-
duced in equation (j.k).
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As ε → 0, in a neighbourhood of the set γ there appears a transition layer decreasing exponentially
away (in the x-direction) from the set γ (the typical ”width” of the layer is of order ε). Hence, in the
case of the moving interface, the transition layer decreases exponentially away from γ for a fixed value
of x. Under the condition

β(t) = const , t ∈ [0, T ] (2.5)

(the steady interface) the t-derivatives of the singular part of the solution to the problem are bounded
on G ε-uniformly (see estimates (9.4), (9.5) from Section 9).

The solution of the reduced problem is a function which is sufficiently smooth on each of the sets
G

r
and has a discontinuity of the first kind on γ.

Note that a boundary layer does not appear in the neighbourhood of the lateral boundary SL

(because of the condition imposed on the coefficient b(x, t) so that the convection flow is directed to
the interface γ). In the case of the condition β1 < b0(p

0)−1 (see (2.4)) the interface γ between the
subdomains G r is noncharacteristic (the characteristics of the reduced equation are not tangent to
the set γ).

For definiteness, we consider that the functions a(x, t), . . . , f(x, t) on the set γ are equal to the
half-sum of the values (mean value) of their limits from the sets G1 and G2.

2. The errors in the solutions of finite difference schemes based on classical difference approximations
to problem (2.2), (2.1) depend on the parameter ε and become small only for those values of ε that
essentially exceed the ”effective” mesh steps with respect to x and t. So, by virtue of estimates (3.7),
(3.13) (see Section 3), classical difference schemes (3.4), (3.3) and (3.11), (3.10), (3.3) converge under
the condition

ε >> N−1 + N−1
0 , (2.6)

where N , N0 denote the number of mesh points with respect to x and t, respectively. If this condition
fails, the solutions of the difference schemes do not generally converge to the solution of problem (2.2),
(2.1).

By this argument, we are interested in constructing special difference schemes whose errors do not
depend on the value of the parameter ε. In particular, it is of interest to develop such schemes that
converge under a weaker condition than condition (2.6), which is the convergence condition for the
discrete problems (3.4), (3.3) and (3.11), (3.10), (3.3).

Definition. Let z(x, t), (x, t) ∈ Gh be a solution of some difference scheme. This scheme converges
uniformly with respect to the parameter ε (or ε-uniformly), if the function z(x, t) satisfies the estimate:

|u(x, t) − z(x, t)| ≤ M µ (N−1, N−1
0 ), (x, t) ∈ Gh,

where µ(N−1, N−1
0 ) tends to zero for N, N0 → ∞ uniformly with respect to the parameter. We

say that the solution of the scheme converges almost ε-uniformly, if for any arbitrarily small number
ν > 0 there exists a function µ(ε−νN−1, ε−νN−1

0 ) such that the following estimate holds for the mesh
function z(x, t):

|u(x, t) − z(x, t)| ≤ M µ (ε−νN−1, ε−νN−1
0 ), (x, t) ∈ Gh. (2.7)

where µ(N−1, N−1
0 ) → 0 for N,N0 → ∞ uniformly with respect to the parameter ε. If estimate (2.7)

is satisfied, then we say that the scheme converges almost ε-uniformly with the defect ν. (If estimate
(2.7) is satisfied for ν = 0, then the convergence is ε-uniform.)

The aim of the research. The defect of schemes (3.4), (3.3) and (3.11), (3.10), (3.3) is equal
to 1. Thus, in the case of problem (2.2), (2.1) we arrive at the following question of theoretical (and
practical) interest: how to construct schemes whose defect is less than 1, and in particular, how to
construct almost ε-uniformly convergent schemes.
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3. Classical difference schemes
Let us give classical difference schemes for problem (2.2), (2.1) and show estimates for their solutions.

1. We give a difference scheme for problem (2.2), (2.1) considering the problem in a week formulation
and not focusing the conjugation condition (2.2c) in the approximation of the problem.

On the set G we introduce the rectangular mesh

Gh = ω1 × ω0, (3.1)

where ω1 and ω0 are meshes on the segments D and [0, T ], respectively; ω1 and ω0 are meshes with any
distribution of the nodes satisfying only the condition h ≤ MN−1, ht ≤ MN−1

0 , where h = maxi hi,

hi = xi+1 − xi, xi, xi+1 ∈ ω1, ht = maxj hj
t , hj

t = tj+1 − tj , tj, tj+1 ∈ ω0. Here N + 1 and N0 + 1 are
the number of nodes in the meshes ω1 and ω0, respectively. It is of great interest to consider meshes
that are uniform with respect to x

Gh = Gh(3.1), (3.2)

where ω1 is a uniform mesh; such meshes for b(x, t) ≡ 0 allow us to obtain the second order of the
approximation with respect to x for sufficiently smooth solutions. Also it is interesting to consider
difference schemes on the simplest meshes which are uniform with respect to both x and t:

Gh = Gh(3.1), (3.3)

where both ω1 and ω0 are uniform meshes.
We approximate problem (2.2), (2.1) by the implicit finite difference scheme [8]

Λz(x, t) ≡
{
εa(x, t)δxx̂ + b+(x, t)δx + b−(x, t)δx − c(x, t)−

− p(x, t)δt} z(x, t) = f(x, t), (x, t) ∈ Gh, (3.4a)

z(x, t) = ϕ(x, t), (x, t) ∈ Sh.

Here Gh = G ∩ Gh, Sh = S ∩ Gh; δxx̂z(x, t), δxz(x, t), δxz(x, t), δtz(x, t) are the second and first
difference derivatives; δxx̂z(x, t) = 2(hi + hi−1)−1{δx − δx}z(x, t), x = xi, hi−1 and hi are the left and
right ”arms” of the three-point stencil (for the operator δxx̂) on Gh with center at the node (xi, t) ∈ Gh;

b+(x, t) = 2−1(b(x, t) + |b(x, t)|), b−(x, t) = 2−1(b(x, t) − |b(x, t)|).

For the difference scheme (3.4), (3.1) the maximum principle is valid.
By using the majorant function technique, we find the estimate

|z(x, t)| ≤ M, (x, t) ∈ Gh. (3.5)

Taking into account the a priori estimates for the solution of the initial boundary value problem, we
find the following estimate in the case of mesh (3.1):

|u(x, t) − z(x, t)| ≤ Mε−2[N−1 + N−1
0 ], (x, t) ∈ Gh. (3.6)

For the mesh (3.3) we have

|u(x, t) − z(x, t)| ≤ Mε−1[N−1 + N−1
0 ], (x, t) ∈ Gh. (3.7)

We summarize this in the following.

Theorem 3.1 Let the components of the solution of initial boundary value problem (2.2), (2.1) in
the representation (9.1) satisfy the a priori estimates (9.4), (9.5). Then the solution of the differ-
ence scheme (3.4), (3.1) converges for fixed values of the parameter ε. For the discrete solutions the
estimates (3.5), (3.6), (3.7) are valid.
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Remark 3.1 In the case of condition (2.5) for scheme (3.4), (3.3) we have the estimate

|u(x, t) − z(x, t)| ≤ M [ε−1N−1 + N−1
0 ], (x, t) ∈ Gh.

The condition

ε−1 = o(N) (3.8)

is necessary and sufficient for the convergence of the scheme.

2. We now consider a difference scheme for problem (2.2), (2.1) based on ”direct” approximation of
the conjugation condition (2.2c), i.e. the interface condition. For this we need meshes which contain
nodes on the set γ at each time level t = tj of this difference scheme which is an alternative to scheme
(3.4), (3.1). Let us construct such meshes.

For the construction of these meshes we use the regular mesh (3.1) (or (3.2), (3.3)) as the basic
mesh; we construct the mesh G

∗

h = G
∗

h(Gh(3.1)). Let

G∗

h = {(xi, tj) : (xi, tj) ∈ Gh, xi 6= β(t), t ∈ [tj−1, tj ], tj−1, tj ∈ ω0}. (3.9)

On the time level t = tn we construct the sets G1n
h , G2n

h : Grn
h = G∗

h ∩ {t = tn}, tn ∈ ω0, r = 1, 2. The
corresponding nodes (xi, tj−1) generate the sets S1n

0h and S2n
0h , which are the lower mesh boundaries for

sets G1n
h , G2n

h . The nodes (xi, tj) from SL form the set SnL
h . We assume S1n

h = γn
h ∪S1n

0h ∪{SnL
h ∩G

1
},

S2n
h = γn

h ∪ S2n
0h ∪ {SnL

h ∩ G
2
}, G

1n
h = G1n

h ∪ S1n
h , G

2n
h = G2n

h ∪ S2n
h , where γn

h = {(β(tn), tn)}. We

introduce the sets G
∗n
h = G

1n
h ∪ G

2n
h , S∗n

h = G
∗n
h \ G∗n

h , G∗n
h = G

(∗)n
h ∪ γn

h , G
(∗)n
h = G1n

h ∪ G2n
h ;

G
∗n
h = G∗n

h ∪ S∗n
h . The mesh G

∗

h is defined by the relation

G
∗

h =

N0⋃

n=1

G
∗n
h . (3.10)

We approximate problem (2.2), (2.1) by the difference scheme

Λz(x, t) = f(x, t), (x, t) ∈ G
(∗)n
h , (3.11a)

lhz(x, t) ≡ ε{a2(x, t)δxz(x, t) − a1(x, t)δxz(x, t)} = 0, (x, t) ∈ γn
h , (3.11b)

z(x, t) =

{
ẑn−1(x, t), (x, t) ∈ S∗n

h \ S

ϕ(x, t), (x, t) ∈ S∗n
h ∩ S

}
; (x, t) ∈ G

∗n
h , n = 1, . . . , N0. (3.11c)

Here zn(x, t) = z(x, t) for (x, t) ∈ G
∗n
h , t = tn, ẑn(x, t), (x, t) ∈ G, t = tn ∈ ω0 is the linear interpolant

constructed from the values of zn(x, t), (x, t) ∈ G
∗n
h , t = tn. The function

z(x, t) =

{
zn(x, t), (x, t) ∈ G

∗n
h , t = tn,

ẑn−1(x, t), (x, t) ∈ G
∗n
h , t = tn−1;

(x, t) ∈ G
∗n
h , n = 1, . . . , N0, (x, t) ∈ G

∗

h

will be called the solution of difference scheme (3.11), (3.10).
For the difference scheme (3.11), (3.10) the maximum principle is valid.
Taking into account the a priori estimates for the solutions of the differential problem we establish

the estimates similar to (3.6), (3.7)

|u(x, t) − z(x, t)| ≤ Mε−2
[
N−1 + N−1

0

]
, (x, t) ∈ G

∗

h, Gh = Gh(3.1); (3.12)

|u(x, t) − z(x, t)| ≤ Mε−1
[
N−1 + N−1

0

]
, (x, t) ∈ G

∗

h, Gh = Gh(3.3). (3.13)
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Theorem 3.2 Let the condition of theorem 3.1 be fulfilled. Then the solution of the difference scheme
(3.11), (3.10) converges to the solution of the problem (2.2), (2.1) for fixed values of the parameter ε.
For the discrete solutions the estimates (3.12), (3.13) are valid.

Definition. Let the function z(x, t), (x, t) ∈ Gh be the solution of some difference scheme. An
estimate of the following form

|u(x, t) − z(x, t)| ≤ M
[
ε−ν1

1N−ν1 + ε−ν1
0 N−ν0

0

]
, (x, t) ∈ Gh,

where νi, ν1
i ≥ 0, is said to be unimprovable with respect to the values of N , N0, ε if the estimate

|u(x, t) − z(x, t)| ≤ M
[
ε−α1

1N−α1 + ε−α1
0N−α0

0

]
, (x, t) ∈ Gh,

in general, fails under the conditions αi ≥ νi, α1
i ≤ ν1

i and also α1 + α0 −α1
1 −α1

0 > ν1 + ν0 − ν1
1 − ν1

0 .

Remark 3.2 In the case of condition (2.5) for the solutions of difference scheme (3.11), (3.10), (3.3)
we have the unimprovable estimate

|u(x, t) − z(x, t)| ≤ M
[
ε−1N−1 + N−1

0

]
, (x, t) ∈ Gh;

the scheme converges under the unimprovable condition (3.8).

3. For problem (2.2), (2.1) we discuss the conditions under which the solution of difference scheme
(3.4) converges for N,N0 → ∞ and ε → 0, where ε → 0 for N,N0 → ∞.

It follows from estimates (3.6) and (3.7) that scheme (3.4), (3.1) converges under the condition
N−1, N−1

0 << ε2, and scheme (3.4), (3.3) converges under the condition N−1, N−1
0 << ε, i.e. for

ε−1 = o(N), ε−1 = o(N0). (3.14)

The estimate (3.7) (as well as estimate (3.13)) is unimprovable with respect to the values of N,N0, ε.
The defect of schemes (3.4), (3.1) and (3.4), (3.3) (schemes (3.11), (3.10), (3.1) and (3.11), (3.10),
(3.3)), according to estimates (3.6) and (3.7) (to estimates (3.12) and (3.13)), is not less than 2
and 1, respectively. It follows from the unimprovability of estimate (3.7) (estimate (3.13)) that the
unimprovable defect of scheme (3.4), (3.3) (scheme (3.11), (3.10), (3.3)) is equal to 1, moreover, the
unimprovable defect of scheme (3.4), (3.1) (scheme (3.11), (3.10), (3.1)) is not less than 1.

Thus, the estimates of the discrete solutions essentially depend on the value of the parameter ε; if
condition (3.14) fails then schemes (3.4) and (3.11), (3.10), generally speaking, do not converge.

Theorem 3.3 Let the hypothesis of theorem 3.1 be fulfilled. In the case of schemes (3.4), (3.3) and
(3.11), (3.10), (3.3) (schemes (3.4), (3.1) and (3.11), (3.10), (3.1)) the condition (3.14) is necessary
and sufficient (is necessary) for the convergence of the discrete solutions to the solution of problem
(2.2), (2.1) for N,N0 → ∞ and ε → 0; the defect of schemes (3.4), (3.3) and (3.11), (3.10), (3.3)
(schemes (3.4), (3.1) and (3.11), (3.10), (3.1)) is equal to 1 (not less than 1). The estimates (3.7) and
(3.13) are unimprovable with respect to the values of N,N0, ε.

Remark 3.3 Taking into account the above considerations of classical difference schemes, in the case
of problem (2.2), (2.1) one comes to the problem of construction of special schemes which converge
under a weaker condition than the condition (3.14) (i.e. schemes whose defect is less than 1), in
particular, ε-uniformly convergent schemes.

Remark 3.4 We construct a triangulation of the domain G on the basis of the mesh Gh(3.1); tri-
angular elements obtained by dividing elementary quadrangles in halves by a diagonal have vertices
at the nodes from Gh; see, e.g., [5]. In the case of difference scheme (3.4), (3.3) the function z(x, t),
(x, t) ∈ G, i.e. the linear interpolant of z(x, t) on triangular elements, satisfies the error estimate

|u(x, t) − z(x, t)| ≤ Mε−1
[
N−1 + N−1

0

]
, (x, t) ∈ G, (3.15)

which is unimprovable with respect to the values of N,N0, ε. A similar estimate is valid for scheme
(3.11), (3.10), (3.3); the triangulation of the domain G is performed on the basis of the mesh G

∗

h.
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4. On the construction of ε-uniformly convergent schemes on locally condensing
meshes

Note that the singularity in the solution of problem (2.2), (2.1) exponentially decreases away from
the set γ (see estimates (9.4), (9.5)). The singular component for |x− β(t)| ≥ σ does not exceed Mδ,
where δ is a sufficiently small number, when σ = m−1

1 ε ln δ−1, m1 = m1(9.4). The local truncation
error of a classical scheme on the solution of the problem is great, but only in this neighbourhood,
which is sufficiently narrow for small values of the parameter ε.

1. Bearing in mind the possible use of schemes on sufficiently arbitrary locally condensing meshes
for solving the problem (2.2), (2.1), it would be convenient to measure an ”amount” of computational
work in order to evaluate the efficiency of difference schemes. The amount of computational work
(denoted by P ) is defined by the number of the mesh points at which it is necessary to find the
solution of the discrete problem. The ”quality” of the solution to the difference scheme is defined by
the distance, in the maximum norm, between the solution of the problem and the interpolant which is
constructed from the solution of the difference scheme. In the case of schemes (3.4), (3.3) and (3.11),
(3.10), (3.3) and optimal meshes (with respect to the order of convergence of the scheme), we have
the following relation for such meshes

N ∼ N0,

and the unimprovable error estimate (with respect to P and ε)

|u(x, t) − z(x, t)| ≤ Mε−1P−1/2, (x, t) ∈ G. (4.1)

Definition. We say that the scheme converges with defect ν for P → ∞, if there exists a func-
tion µ(P−1), µ(P−1) → 0 for P → ∞ ε-uniformly such that the following estimate holds for the
interpolated mesh function z(x, t):

|u(x, t) − z(x, t)| ≤ Mµ(ε−νP−1/2), (x, t) ∈ G; ν > 0.

Thus, for difference schemes (3.4), (3.3) and (3.11), (3.10), (3.3) the unimprovable convergence
defect (for P → ∞) is equal to 1.

2. To construct schemes with improved convergence defect, it is very attractively to use a technique
based on locally condensing rectangular meshes. So, in the case of regular boundary value problems
whose solutions have singularities, the improvement of accuracy of a discrete solution can be achieved
by means of a priori and/or a posteriori local refinement of a rectangular mesh in those subdomains
where errors of the discrete solution are larger (see, e.g., [1, 4, 15]).

For problem (2.2), (2.1) it is required to redistribute the given number of nodes P in the domain so
that to weaken the condition

P−1/2 = o(ε), (4.2)

i.e. the condition of convergence of schemes (3.4), (3.3) and (3.11), (3.10), (3.3).
Note that the derivatives (∂k1+k0/∂xk1∂tk0)u(x, t) in an Mε-neighbourhood of the set γ are of the

order ε−(k1+k0) if the interface boundary γ between subdomains is moving at a rate distinct from zero
in some time interval (let β

′

(t) = m, t ∈ [0, t0]). The derivatives are ε-uniformly bounded outside a
sufficiently large (compared to ε) neighbourhood of the set γ.

The similar behaviour of derivatives of the solution is observed in the case of a problem with the
moving concentrated source [12]. In papers [12, 13], it is shown that, in a class of schemes on adaptive
meshes based on meshes which are rectangular in an Mε-neighbourhood of the moving source, there
are no schemes with the convergence defect (for P → ∞) less than 2−1.

In the case of problem (2.2), (2.1), by considering lower errors for solutions of equations
(3.4a), (3.11a) on “piecewise-uniform” meshes (i.e., meshes which are uniform in the nearest Mε-
neighbourhood of the boundary γ for t ∈ [0, t0], as well as outside some larger neighbourhood), we
verify, similarly to the constructions from [12], that there are no meshes on which the solution of the
discrete problem converges under the condition

P−1 ≥ ε. (4.3)
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Thus, in the case of schemes (3.4) and (3.11), (3.10) there are no meshes in the given class of meshes
on which the schemes converge with defect not exceeding 2−1.

Theorem 4.1 For the problem (2.2), (2.1), in a class of schemes constructed on the basis of ap-
proximations (3.4a) and (3.11a) (the classical difference approximations of the initial boundary value
problem) on locally condensing meshes that are uniform in an Mε-neighbourhood of the set γ, there
are no schemes convergent under the condition (4.3).

Remark 4.1 The direct use of adaptive mesh refinement techniques with no taking account of
orientation of the transition layer is not sufficiently effective to solve numerically problems from this
class of singularly perturbed problems with a moving transition layer. In order to construct schemes
on adaptive meshes with the convergence defect less than 2−1, it is necessary to use meshes condensing
(in the transition layer) along a normal to the interface boundary γ.

Remark 4.2 To construct special schemes for problem (2.2), (2.1) we introduce new variables (con-
nected with the moving interface boundary γ) in which the interface boundary is already stationary.
For the problem in these new variables it is possible to construct a difference scheme on rectangular
meshes (in particular, a scheme on adaptive meshes) and then to return to the old variables. It is
convenient to use the variables ξ, t, ξ = ξ(9.2)(x, t) as new variables.

5. Grid approximations on locally refined meshes.
Problem (2.2), (2.1), (2.5)

We now give an algorithm for constructing a locally refined (in the transition layer) mesh. On domains
which are subjected to the refinement, this algorithm uses uniform meshes in space and time (the time
mesh is not refined).

1. At first, we describe a formal iterative algorithm which we use for construction of difference
schemes in order to find a numerical solution of problem (2.2), (2.1), (2.5). Suppose that a function
u1(x, t) is founded on the set G, i.e. the approximation to the solution of the boundary value problem,
moreover,

|u(x, t) − u1(x, t)| ≤ Mδ, (x, t) ∈ G, x /∈ (d1, d
1). (5.1a)

where δ > 0 is an arbitrary small number, the constant M does not depend on δ; d1, d1 ∈ D. By
u(2)(x, t), (x, t) ∈ G(2), where G(2) = D(2) × (0, T ], D(2) = (d1, d

1), we denote the solution of the
problem

L(2.2) u(2)(x, t) = f(x, t), (x, t) ∈ G(2),
(5.1b)

u(2)(x, t) =

{
u1(x, t), (x, t) ∈ S(2) \ S,

ϕ(x, t), (x, t) ∈ S(2)

⋂
S.

Here S(2) = G(2) \ G(2). Let ũi
2(x, t), (x, t) ∈ G(2) be an approximation of the solution u(2)(x, t),

moreover, ∣∣u(2)(x, t) − ũi
2(x, t)

∣∣ ≤ M δ, (x, t) ∈ G(2), x 6∈ (d2, d
2).

Assume

u2(x, t) =

{
ũi

2(x, t), (x, t) ∈ G(2),

u1(x, t), (x, t) ∈ G \ G(2).

Then we have: |u(x, t) − u2(x, t)| ≤ Mδ, (x, t) ∈ G, x 6∈ (d2, d
2).

Let the function uk−1(x, t), (x, t) ∈ G have been constructed for k ≥ 3, and this function has a
convenient representation in order to compute it for x 6∈ (dk−1, d

k−1), dk−1, dk−1 ∈ D, and also

|u(x, t) − uk−1(x, t)| ≤ Mδ, (x, t) ∈ G, x 6∈ (dk−1, d
k−1). (5.1c)
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Here M = M(k). The function u(k)(x, t), (x, t) ∈ G(k), where G(k) = D(k) × (0, T ], D(k) =

(dk−1, d
k−1), denotes the solution of the problem

L(2.2) u(k)(x, t) = f(x, t), (x, t) ∈ G(k),
(5.1d)

u(k)(x, t) =

{
uk−1(x, t), (x, t) ∈ S(k) \ S,

ϕ(x, t), (x, t) ∈ S(k)

⋂
S,

where S(k) = G(k) \ G(k). Let ũi
k(x, t), (x, t) ∈ G(k) be the approximation of the function u(k)(x, t),

and ∣∣u(k)(x, t) − ũi
k(x, t)

∣∣ ≤ Mδ, (x, t) ∈ G(k), x /∈ (dk, d
k).

Assume

uk(x, t) =

{
ũi

k(x, t), (x, t) ∈ G(k),

uk−1(x, t), (x, t) ∈ G \ G(k).

The function uk(x, t), (x, t) ∈ G satisfies the estimate:

|u(x, t) − uk(x, t)| ≤ Mδ, (x, t) ∈ G, x 6∈ (dk, d
k).

If for some value of k = K0 it occurs that |u(k)(x, t) − ũi
k(x, t)| ≤ Mδ, (x, t) ∈ G(k) for all x ∈ D(k),

then for k ≥ K0 + 1 we consider that the sets G(k) are empty, and further the functions u(k)(x, t) are

not computed. For example, for k ≥ K0 we have uk(x, t) = uK0(x, t), (x, t) ∈ G.
For k = K, where K is a given fixed number, K ≥ 1, we assume

uK(x, t) = uK(x, t), (x, t) ∈ G. (5.1e)

The functions uK(x, t) and uk(x, t), k = 1, ...,K, (x, t) ∈ G denote the solution and the components
of the solution to iterative process (5.1).

The functions uK(x, t) have suitable representations for computing them on the subdomains, which
are extending as K grows. The functions uk(x, t) and uK(x, t) satisfy the estimates

|u(x, t) − uK(x, t)| ≤ M δ, (x, t) ∈ G, x /∈ (dK , dK), (5.2)

|u(x, t) − uk(x, t)| ≤ M δ, (x, t) ∈ G, x 6∈ (dk, d
k), k = 1, ...,K.

Lemma 5.1 The functions uK(x, t) and uk(x, t), (x, t) ∈ G, k = 1, ...,K, i.e. the solution of the
iterative process (5.1) and its components, satisfy the estimate (5.2).

2. We now give a grid construction which approximate the iterative process (5.1). On the set G we
introduce the coarse (primary) mesh

G1h = ω1 × ω0, (5.3a)

where ω1 and ω0 are uniform meshes, ω0 = ω0(3.3); the step-size in the mesh ω1 is equal to h1 =

2dN−1. We denote by z1(x, t), (x, t) ∈ G1h, where G1h = G1h(5.3) = Gh(3.3), the solution of problem
(3.4), (5.3a).

Let the values d1, d
1 ∈ ω1 be founded in some a way so that for x 6∈ (d1, d

1) the discrete solution
z1(x, t), (x, t) ∈ G1h well approximates the solution of problem (2.2), (2.1), (2.5). If it occurs that
d1 − d1 > 0, then we define the subdomain on which the mesh will be refined:

G(2) = G(2)(d1, d
1), G(2) = D(2) × (0, T ], D(2) = (d1, d

1). (5.3b)

On the subdomain G(2) we introduce the mesh G(2)h = ω(2)×ω0, where ω(2) is a uniform mesh with

the number of nodes N + 1. On the set G(2)h we find the solution z(2)(x, t) of the discrete problem

Λ(3.4)z(2)(x, t) = f(x, t), (x, t) ∈ G(2)h,

z(2)(x, t) =

{
z1(x, t), (x, t) ∈ S(2)h \ S,

ϕ(x, t), (x, t) ∈ S(2)h

⋂
S,
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where G(2)h = G(2)

⋂
G(2)h, S(2)h = S(2)

⋂
G(2)h, S(2) = G(2) \ G(2). The mesh set G2h and the

function z2(x, t), (x, t) ∈ G2h are defined by the relations:

G2h = G(2)h

⋃ {
G1h \ G(2)

}
, z2(x, t) =

{
z(2)(x, t), (x, t) ∈ G(2)h,

z1(x, t), (x, t) ∈ G1h \ G(2).

Let the mesh set Gk−1,h and the mesh function zk−1(x, t) on this set have been constructed for
k ≥ 3. Let also dk−1, dk−1 ∈ ωk−1 be founded so that for x 6∈ (dk−1, d

k−1) the discrete solution
zk−1(x, t), (x, t) ∈ Gk−1,h well approximates the solution of problem (2.2), (2.1), (2.5). Here ωk−1 is
a mesh which generates the mesh Gk−1,h: Gk−1,h = ωk−1 × ω0; Nk + 1 is the number of nodes in the
mesh ωk, k ≥ 1; N1 = N . If it occurs that dk−1 − dk−1 > 0, then we define the domain

G(k) = G(k)(dk−1, d
k−1), G(k) = D(k) × (0, T ], D(k) = (dk−1, d

k−1). (5.3c)

On the set G(k) we introduce the mesh

G(k)h = ω(k) × ω0, (5.3d)

where ω(k) is a uniform mesh with the number of nodes N + 1; h(k) is the step-size of the mesh ω(k).

Let z(k)(x, t), (x, t) ∈ G(k)h be the solution of the discrete problem

Λ(3.4)z(k)(x, t) = f(x, t), (x, t) ∈ G(k)h,
(5.3e)

z(k)(x, t) =

{
zk−1(x, t), (x, t) ∈ S(k)h \ S,

ϕ(x, t), (x, t) ∈ S(k)h

⋂
S.

Assume Gkh = G(k)h

⋃
{Gk−1,h \ G(k)},

zk(x, t) =

{
z(k)(x, t), (x, t) ∈ G(k)h,

zk−1(x, t), (x, t) ∈ Gk−1,h \ G(k).

If for some value k = K0 it occurs that the discrete solution zk(x, t), (x, t) ∈ Gkh well approximates
on Gkh the solution of the differential problem, then for k ≥ K0 + 1 we consider that the sets G(k) are
empty and further the functions z(k)(x, t) are not computed.

For example, for k ≥ K0 we have zk(x, t) = zK0(x, t), Gkh = GK0h.
The computations are stopped also in the case when for some value k = K0 the condition dk −dk ≥

dk−1 − dk−1 holds, which means that the solution cannot be further improved. For k ≥ K0 + 1 the
function z(k)(x, t) is not computed; for k ≥ K0 we assume zk(x, t) = zK0(x, t), Gkh = GK0h.

For k = K, where K is a given fixed number, K ≥ 1, we suppose that

G
K
h = GKh ≡ Gh, zK(x, t) = zK(x, t) ≡ z(x, t). (5.3f)

We call the function z(5.3f)(x, t), (x, t) ∈ Gh(5.3f), the solution of scheme (3.4), (5.3), and the

functions zk(x, t), (x, t) ∈ Gkh, k = 1, ...,K, the components of the solution to the difference scheme.
The above algorithm (we call it A(5.3) ) allows us to construct meshes condensing in transition layers.

The value NK + 1, i.e. the number of nodes in the mesh ωK = ωK used for the construction of the
function zK(x, t), does not exceed the value N(K) = K(N + 1).

In schemes (3.4), (5.3), when solving the intermediate problems (5.3e), it does not require the
interpolation in order to define values of the functions z(k)(x, t) on the boundary S(k)h.

3. The meshes Gkh, k = 1, ...,K, generated by the algorithm A(5.3), are defined by the rule to choice

the values dk, dk, k=1, 2, ...,K, and also by the values of K and N, N0.
Thus, the algorithm A(5.3) defines a class of difference schemes, i.e. the class of schemes (3.4),

(5.3). In this class of schemes, the boundary of the subdomain, in which the refinement of the mesh
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is derived, pass through nodes of more rough refined mesh. Note that the smallest stepsize in the
mesh ωK = ωK is not less than the value dN−K . In the meshes generated by the algorithm A(5.3),
the values dk are defined on the base of intermediate results obtained in the computing process; such
meshes Gkh are a posteriori condensing meshes.

For schemes from the class (3.4), (5.3) the maximum principle is valid. Note that in this class there
are no schemes whose solutions converge ε-uniformly to the solution of (2.2), (2.1), (2.5).

6. Adaptive scheme based on the estimate of the solution gradient
To construct a posteriori condensing meshes we use indicators (auxiliary functionals from solutions of
intermediate problems), which help us to define boundaries of the mesh domain which is subjected to
a refinement. We show a construction of the indicator based on an estimate for the gradient of the
solution.

1. We define a width of the boundary layer for problem (2.2), (2.1). Let the following estimate holds
for the component U(x, t) from the representation (9.1):

∣∣∣∣
∂

∂x
U(x, t)

∣∣∣∣ ≤ M1, (x, t) ∈ G. (6.1a)

Suppose that the values of the parameter ε are sufficiently small, ε ≤ ε0. We say that σL
0 = σL

0 (ε,M0)
and σ R

0 = σ R
0 (ε,M0), where M0 is an arbitrary large number, M0 > M1, are the left and right

boundaries of the transition layer in a neighbourhood of the interface boundary γ, if σL
0 and σ R

0 are
respectively the maximum and minimum values of σL and σ R for which we have the estimate

∣∣∣∣
∂

∂x
u(x, t)

∣∣∣∣ ≤ M0, (x, t) ∈ G, x 6∈ (σL, σ R); (6.1b)

we call the value σ0 = σ R
0 − σL

0 the width of the layer.
We consider such a boundary value problem as a model example:

ε u′′(x) + b(x)u′(x) = 1, x ∈ Ω = (−1, 1), u(−1) = 1, u(1) = 0, (6.2)

where b(x) = 1, x ∈ Ω
2
, b(x) = −1, x ∈ Ω

1
. The solution of problem (6.2) can be decomposed into

its regular U(x) and singular V (x) components: u(x) = U(x) + V (x), x ∈ Ω
r
, r = 1, 2; the transition

layer appears in a neighbourhood of the point x = 0.
In the case of problem (6.2) the width of the layer σ0(6.1) has an asymptotic behavior

σ0 ≈ ε ln ε−1 for ε = o(1).

The following estimate also holds:

σ0 ≤ Mε ln(ε−1M−1
0 ), ε ∈ (0, ε0], ε0 = ε0(M0), ε0 ≤ mM−1

0 ,

where M0, m are any constants satisfying the conditions M0 > 1, m < 1, M > 1.
2. We define the width of the transition layer for difference scheme (3.4), (3.1). We denote by

zv(x, t), (x, t) ∈ G
r
h the solution of the difference problem

Λ(3.4)z(x, t) = L(2.2) v(x, t), (x, t) ∈ G r
h ,

z(x, t) = v(x, t), (x, t) ∈ S r
h , r = 1, 2,

where v(x, t) is any sufficiently smooth function, v ∈ C2,1(Gr)∩C(G). The solution of problem (3.4),
(3.1) can be represented as a sum of functions

z(x, t) = zU (x, t) + V h(x, t), (x, t) ∈ G
r
h , r = 1, 2, (6.3)
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where zU (x, t), (x, t) ∈ G
r
h is a discrete function which approximates the component U(x, t) from the

representation (9.1). Let the component zU (x, t) satisfies the following estimate

| δx zU (x, t) | ≤ M1, (x, t) ∈ G
r
h, r = 1, 2; x 6= 0, d. (6.4a)

We say that σL
0 = σL

0 (M0) = σL
0 (M0;D, ε,Gh), σ R

0 = σ R
0 (M0) = σ R

0 (M0;D, ε,Gh) are the left and
right boundaries of the discrete transition layer in a neighbourhood of the interface boundary γ, if
σL

0 and σ R
0 are respectively the maximum and minimum values of σL and σ R, for which we have the

estimate

|δxz(x, t)|, |δxz(x, t)| ≤ M0, (x, t) ∈ Gh, x 6= (σL, σ R); (6.4b)

here ε ∈ (0, ε0], M0 and ε0 are sufficiently large and small constants, M0 > M1, ε0 = ε0(M0), we call
the value σ0 = σ R

0 − σL
0 the width of the layer. Thus, the functions σ0(M0), σL

0 (M0), σ R
0 (M0) are

constructed.
In the case of the difference scheme

ε δxx̂ z(x) + b+(x)δxz(x) + b−(x)δxz(x) = 1, x ∈ Ωh, z(−1) = 1, z(1) = 0,

which approximates problem (6.2), for the width of the boundary layer on uniform (with the step-size
h) meshes we have the asymptotic

σ0 ≈

{
ε ln ε−1, h ≤ Mε,

h ln−1(1 + ε−1h) lnh−1, h ≥ mε; ε, h = o(1).

The following estimate is valid:

σ0 ≤ M
[
ε ln ε−1 + h lnh−1

]
, ε ∈ (0, ε0], h ≤ h0,

where ε0, h0 are sufficiently small values, ε0 = ε0(M0), h0 = h0(M0).
3. In order that the formal mesh construction (3.4), (5.3) is constructive, it is required to give values

K and dk, dk, k = 1, 2, . . . ,K.
Let K ≥ 1. We define the values dk(5.3), dk

(5.3). Assume

d1 = σL
1 , d1 = σ R

1 , (6.5a)

where σ
(L,R)
1 = σ

(L,R)
0(6.4)

(M0;D, ε,Gh), D = D(2.1), Gh = Gh(3.3), M0 is a sufficiently large number. Let

the values of dk−1, dk−1 have been founded. Further we find the values of σ
(L,R)
k :

σ
(L,R)
k = σ

(L,R)
0

(
kM0; D(k), ε,G(k)h

)
, k ≥ 2, (6.5b)

where σ
(L,R)
0(6.5)(M ;D, ε,Gh) = σ

(L,R)
0(6.4)(M ;D, ε,Gh), M = k M0, D(k) = D(k)(5.3), G(k)h = G(k)h(5.3). If

the relation σk ≤ m0 σk−1 is valid, where σk = σ R
k − σL

k , then we suppose

dk = σL
k , dk = σ R

k ; (6.5c)

here m0 is a sufficiently small number. If for some value of k = k0 it occurs that σk0 > m0 σk0−1, then
we assume dk = dk0 dk = dk0 for k ≥ k0.

The difference scheme (3.4), (5.3), (6.5) is the scheme on the adaptive meshes which are constructed
on the basis of the estimate for the gradient of the discrete solutions obtained in the process of
intermediate computations. The mesh refinement is realized only in a neighbourhood of the transition
layer; the diameter of such a neighbourhood (the width of the transition layer) becomes narrow when
the value of k grows.
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7. Analysis of scheme (3.4), (5.3), (6.5)
1. We now give some estimates for the solution of difference scheme (3.4), (3.3). We denote by W (x)
and zW (x) the solutions of the problems

ΛW (x) ≡

{
ε a(1)

d2

dx2
+ b(1)signx

d

dx

}
u(x) = 0, x ∈ D, x 6= 0,

W (0) = 1, W (x) = 0, x ∈ Γ ;

Λ z(x) ≡
{
εa(1)δxx̂ + (b(1)signx)+δx + (b(1)signx)−δx

}
z(x) = 0, x ∈ Dh, x 6= 0,

z(0) = 1, z(x) = 0, x ∈ Γh,

where Dh = ω1(3.3), a(1) = maxG a(x, t), b(1) = minG |b(x, t)|.
1.1. The function zW (x) satisfies the estimate

zW (x) ≤ q−r1h−1
, x ∈ Dh, (7.1a)

where q = 1 + a−1
(1) b(1) ε−1 h, r1 = r(x, β(t = 0)) = |x|, r(x, x∗) is the distance between the points x

and x∗. Thus, we have the estimate

zW (x) ≤

{
M exp(−mε−1r1), h ≤ M ε

M (εh−1)mh−1r1 , h > M ε

}
, x ∈ Dh. (7.1b)

The function zW (x) is the majorant for the component zV (x, t), which corresponds to V (x, t) from
the representation (9.1)

|zV (x, t)| ≤ M zW (x), (x, t) ∈ G
r
h , r = 1, 2. (7.2)

1.2. The solution of difference scheme (3.4), (3.3) satisfies the estimate

|u(x, t) − z(x, t)| ≤ M
[
(ε + N−1)−1 N−1 + N−1

0

]
, (7.3a)

|u(x, t) − z(x, t)| ≤ M
[
zW (x) + N−1 + N−1

0

]
, (x, t) ∈ Gh. (7.3b)

It follows from estimates (7.2), (7.3) that, under condition (3.8), the scheme converges on Gh, and
also the scheme converges ε-uniformly outside the σ0-neighbourhood of the set γ:

|u(x, t) − z(x, t)| ≤ M
[
N−1/2 + N−1

0

]
, (x, t) ∈ Gh, (7.4a)

for r(x, γ) ≥ σ0, where σ0 = σ0(6.4)(M0;D, ε,Gh)

σ0 ≤ M
[
ε ln ε−1 + N−1 lnN

]
. (7.4b)

The neighbourhood, out of which estimate (7.4a) holds, becomes narrow for ε → 0, N → ∞.

Theorem 7.1 Let the solution of the boundary value problem (2.2), (2.1) satisfies the condition (2.5)
and the estimates of theorem 9.1. Then the solution of the difference scheme (3.4), (3.3) converges on
G to the solution of the boundary value problem under the condition (3.8), and also ε-uniformly (with
the rate O(N−1/2 + N−1

0 ) ) outside the σ0-neighbourhood of the set γ. The discrete solution satisfies
the estimates (7.2)–(7.4).

2. Let us consider the difference scheme (3.4), (5.3), (6.5).
For the component z1(x, t) = z(x, t) of the solution to this scheme estimate (7.3) is valid. Taking

into account estimate (7.1), for the function zW (x) we find the following estimate for the value of σ1,
i.e. the width of the transition layer:

σ1 ≤ M
[
ε ln ε−1 + N−1 lnN

]
, ε ∈ (0, ε0], h ≤ h0.
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The value h2, i.e. the step-size of the mesh ω(2), satisfies the estimate

h2 ≤ M N−1
[
ε ln ε−1 + N−1 lnN

]
.

Taking into consideration estimate (7.3b), we estimate u(x, t)− z1(x, t) on the boundary on the set
G(2)h, and also u(x, t) − z(2)(x, t) on the whole set G(2)h. For u(x, t) − z2(x, t) we have the estimate

|u(x, t) − z2(x, t)| ≤ M
[
N−1/2 + ε−1N−2 lnN + N−1

0

]
, (x, t) ∈ G2h,

and outside the σ2-neighbourhood of the set γ we have

|u(x, t) − z2(x, t)| ≤ M
[
N−1/2 + N−1

0

]
, (x, t) ∈ G2h, r(x, γ) ≥ σ2.

The value σ2 satisfies the estimate

σ2 ≤ M N−1 lnN.

In a similar way we find the estimates

|u(x, t) − zk(x, t)| ≤ M
[
N−1/2 + ε−1N−k lnk−1 N + N−1

0

]
, (x, t) ∈ Gkh;

|u(x, t) − zk(x, t)| ≤ M
[
N−1/2 + N−1

0

]
, (x, t) ∈ Gkh, r(x, γ) ≥ σk;

σk ≤

{
M [ε ln ε−1 + N−1 lnN ], k = 1

MN−k+1 lnk−1 N, k ≥ 2

}
, k = 1, 2, . . . ,K; (7.5)

|u(x, t) − z(x, t)| ≤ M
[
N−1/2 + ε−1N−K lnK−1 N + N−1

0

]
, (x, t) ∈ Gh;

|u(x, t) − z(x, t)| ≤ M
[
N−1/2 + N−1

0

]
, (x, t) ∈ Gh, r(x, γ) ≥ σK ;

σK ≤

{
M [ε ln ε−1 + N−1 lnN ], K = 1

MN−K+1 lnK−1 N, K ≥ 2

}
; (7.6)

where z(x, t) = z(5.3e)(x, t), Gh = Gh(5.3e).
The functions z(x, t) and zk(x, t) for N, N0 → ∞ converge (to the solution of boundary value

problem (2.2), (2.1)) ε-uniformly outside the σK- and σk-neighbourhoods of the set γ, and also on the
sets Gkh and Gh for sufficiently small (but not too small) values of the parameter ε, namely, under
the condition

ε ≥ ε0(N), ε−1
0 (N) = o(NK ln−K+1 N); (7.7)

ε ≥ εk(N), ε−1
k (N) = o(Nk ln−k+1 N), k = 1, 2, . . . ,K.

Thus, difference scheme (3.4), (5.3), (6.5), i.e. the scheme on the adaptive meshes, converges almost
ε-uniformly. In order to ensure the convergence defect for the function z(x, t) not exceeding the values
of ν(2.7), it is required to choose the value K satisfying the condition

K > K(ν), K(ν) = ν −1. (7.8)

Theorem 7.2 Let the hypothesis of theorem 7.1 be fulfilled. Then the functions z(x, t), (x, t) ∈ Gh

and zk(x, t), (x, t) ∈ Gkh, k = 1, . . . ,K, i.e. the solution of the difference scheme (3.4), (5.3), (6.5)
and its components, converge on G to the solution of the boundary value problem (2.2), (2.1) under
the condition (7.7), and also ε-uniformly (with the rate O(N−1/2 + N−1

0 )) outside the σK- and σk-
neighbourhoods of the set γ; the solution of scheme (3.4), (5.3), (6.5), (7.8) converges to the solution
of the boundary value problem almost ε-uniformly with the defect ν. For the discrete solutions the
estimates (7.5), (7.6) are valid.
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Remark 7.1 For the interpolant z(x, t), (x, t) ∈ G (linear on triangular elements) constructed from
the function z(x, t), (x, t) ∈ Gh, we have the estimate similar to estimate (7.6):

|u(x, t) − z(x, t)| ≤ M
[
N−1/2 + ε−1N−K lnK−1 N + N−1

0

]
, (x, t) ∈ G;

|u(x, t) − z(x, t)| ≤ M
[
N−1/2 + N−1

0

]
, (x, t) ∈ G, r(x, γ) ≥ σK ;

σK ≤

{
M [ε ln ε−1 + N−1 lnN ], K = 1

MN−K+1 lnK−1 N, K ≥ 2

}
. (7.9)

8. Special scheme for problem (2.2), (2.1)

In the case of problem (2.2), (2.1) with the moving interface boundary γ we pass to the system of new
coordinates ξ, t. Further, for problem (9.2), (9.3) we construct a classical scheme, not focusing the
conjugation condition in the approximation.

1. On the set G̃ we construct meshes. At first, we introduce the basic mesh

G̃B
h = ω̃1 × ω0, (8.1)

where ω̃1 is a mesh on the axis ξ, ω0 = ω0(3.1); the mesh ω̃1 is a mesh with any distribution of the
nodes satisfying only the condition

hξ ≤ MN−1,

where hξ = maxi hi
ξ, hi

ξ = ξi+1−ξi, ξi, ξi+1 ∈ ω̃1, N +1 is the maximal number of nodes on an interval
of unit length on the axis ξ. As a basic grid, we use the following mesh which is uniform with respect
to ξ, t:

G̃B
h , where ω̃1, ω0 are uniform meshes. (8.2)

The interior nodes are defined by the relation G̃h = G̃∩ G̃B
h ; the boundary nodes are generated by an

intersection of the lines t = tj ∈ ω0 with the lateral boundary S̃L and the lines ξ = ξi ∈ ω̃ with the

lower part of the boundary S̃0; S̃h = S̃0h ∪ S̃L
h . On the set G̃ we introduce the mesh

G̃h = G̃h ∪ S̃h; G̃h = G̃h(G̃B
h ). (8.3)

Problem (9.2), (9.3) is approximated by the implicit difference scheme

Λ̃Z(ξ, t) ≡
{
εã(ξ, t)δ

ξ ξ̂
+ B+(ξ, t)δξ + B−(ξ, t)δξ − c̃(ξ, t) − p̃(ξ, t)δt

}
z̃(ξ, t) = f̃(ξ, t),

(ξ, t) ∈ G̃h, (8.4)

Z(ξ, t) = ϕ̃(ξ, t), (ξ, t) ∈ S̃h.

The difference scheme (8.4), (8.3), (8.1) is monotone.
Using the algorithm A(5.3) for scheme (8.4), we construct the meshes

G̃kh, k = 1, 2, . . . ,K, G̃h, (8.5a)

where G̃1h = G̃h(8.3)(G̃
B
h(8.2)), G̃h = G̃Kh, and then we find the functions

Zk(ξ, t), (ξ, t) ∈ G̃kh, Z(x, t), (ξ, t) ∈ G̃h, (8.5b)

where Z(ξ, t) = ZK(ξ, t). The meshes are defined by the law of choice of the values

dk, d
k, k = 1, 2, . . . ,K, (8.5c)
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and also by the values of K and N , N0.
In the class of difference schemes (8.4), (8.5) the more precise discrete solution is produced on simple

domains, i.e. domains with stationary boundaries; the boundary of the domain, in which the mesh
refinement is realized, pass through nodes of the refine mesh.

For the schemes from class (8.4), (8.5) the maximum principle is valid.
The values

σL
k , σR

k , σk, k = 1, 2, . . . ,K, (8.6a)

which define the left and right boundaries of the transition layer and its width, are constructed similarly
to the values σL

k(6.5), σ
R
k(6.5), σk(6.5). The parameters dk, dk are defined similarly to the parameters

dk(6.5), dk
(6.5) as

dk = σL
k , dk = σ R

k , k = 1, 2, . . . ,K, (8.6b)

The difference scheme (8.4), (8.5), (8.6) is the scheme on the a posteriori adaptive meshes, which
are constructed on the basis of the gradient of the intermediate discrete solutions.

2. For the function Z1(ξ, t) = Z(8.4;8.3;8.2), i.e. the solution of difference scheme (8.4), (8.3), (8.2),
we have the estimates

|ũ(ξ, t) − Z1(ξ, t)| ≤ M
[
(ε + N−1)−1N−1 + N−1

0

]
,

|ũ(ξ, t) − Z1(ξ, t)| ≤ M
[
(ZW (ξ) + N−1 + N−1

0

]
, (ξ, t) ∈ G̃h.

Here ZW (ξ) is the solution of the problem

ΛZ(ξ) ≡
{
εa(1) δ

ξξ̂
+ (B(1)sign ξ)+δξ + (B(1)sign ξ)−δξ

}
Z(ξ) = 0, ξ ∈ D̃B

h , ξ 6= 0,

Z(0) = 1, Z(ξ) → 0 for |ξ| → ∞,

a(1) = maxG a(x, t), B(1) = min
G̃
|B(9.2)(ξ, t)|, D̃B

h is a uniform mesh on the axis ξ with the step-size

hξ = N−1. The function ZW (ξ) satisfies the estimate

ZW (ξ) ≤

{
M exp(−mε−1r2), hξ ≤ Mε

M(ε h−1
(ξ))

mh−1
ξ

r2
, hξ > Mε

}
, ξ ∈ D̃B

h ,

where r2 = r(ξ, ξ(β(0), 0)) = |ξ|.
With regard to the a priori estimates for the solution of problem (9.2), (9.3), for the solutions of

difference scheme (8.4), (8.5), (8.6) we establish the estimates

|ũ(ξ, t) − Zk(ξ, t)| ≤ M
[
N−1/2 + ε−1N−k lnk−1 N + N−1

0

]
, (ξ, t) ∈ G̃kh; (8.7)

|ũ(ξ, t) − Zk(ξ, t)| ≤ M
[
N−1/2 + N−1

0

]
, (ξ, t) ∈ G̃kh, r(ξ, γ̃) ≥ σk;

σk ≤

{
M

[
ε ln ε−1 + N−1 lnN

]
, k = 1

MN−k+1 lnk−1 N, k ≥ 2

}
, k = 1, . . . ,K;

|ũ(ξ, t) − Z(ξ, t)| ≤ M
[
N−1/2 + ε−1N−K lnK−1 N + N−1

0

]
, (ξ, t) ∈ G̃h; (8.8)

|ũ(ξ, t) − Z(ξ, t)| ≤ M
[
N−1/2 + N−1

0

]
, (ξ, t) ∈ G̃h; r(ξ, γ̃) ≥ σK ;

σK ≤

{
M

[
ε ln ε−1 + N−1 lnN

]
, K = 1

MN−K+1 lnK−1 N, K ≥ 2

}
,
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where Z(ξ, t) = Z(8.5)(ξ, t), G̃h = G̃h(8.5).
The function Z(x, t) for N,N0 → ∞ converges (to the solution of problem (9.2), (9.3)) ε-uniformly

outside the σK-neighbourhood of the set γ̃, and also on G̃ for the values of the parameter satisfying
the condition (N−K lnK−1 N << ε)

ε ≥ ε0(N), ε−1
0 (N) = o(NK ln−K+1 N). (8.9)

Thus, difference scheme (8.4), (8.5), (8.6) converges almost ε-uniformly for large K; in order to
ensure the convergence defect of the function Z(ξ, t) not exceeding the value of ν(2.7), it is required to
choose the value K satisfying the condition

K > K(ν), K(ν) = ν−1. (8.10)

Theorem 8.1 Let the hypothesis of theorem 7.1 be fulfilled. Then the solution of the difference scheme
(8.4), (8.5), (8.6) converges to the solution of problem (9.2), (9.3) under the condition (8.9); the solution
of this scheme under the condition (8.10) converges almost ε-uniformly. For the discrete solutions the
estimates (8.7), (8.8) are valid.

Remark 8.1 For the interpolant Z(ξ, t), (ξ, t) ∈ G̃ (linear on triangular elements) the following
estimate holds:

∣∣ũ(ξ, t) − Z(ξ, t)
∣∣ ≤ M

[
N−1/2 + ε−1N−K lnK−1 N + N−1

0

]
, (ξ, t) ∈ G̃.

In the variables x, t we have

|u(x, t) − Zx(x, t)| ≤ M
[
N−1/2 + ε−1N−K lnK−1 N + N−1

0

]
, (x, t) ∈

{
G̃h

}
x
;

∣∣u(x, t) − (Z)x(x, t)
∣∣ ≤ M

[
N−1/2 + ε−1N−K lnK−1 N + N−1

0

]
, (x, t) ∈ G,

where Zx(x, t) = Z(ξ(x, t), t), {G̃h}x is the mesh on G, which corresponds to the mesh G̃h on G̃.

Remark 8.2 For problem (9.2), (9.3), when we have almost ε-uniform convergent scheme on the
rectangular (in the variables ξ, t) a posteriori adaptive meshes, it is possible to rewrite the given
constructions in the variables x, t. In this case we pass to a difference scheme which approximates
problem (2.2), (2.1) on meshes generated by a family of (sufficiently smooth) curves adapted to the
interface boundary γ. Almost ε-uniform convergence of the constructed in this way schemes for
the approximation of problem (2.2), (2.1) is ensured by a posteriori condensation of the mesh in a
neighbourhood of the set γ.

9. A priori estimates

In this section we consider a priori estimates for the solution of problem (2.2), (2.1) used in our
constructions (see also [2, 6, 7, 11]).

On the set G
r

the solution can be decomposed into its regular and singular components

u(x, t) = U(x, t) + V (x, t), (x, t) ∈ G
r
, r = 1, 2, (9.1a)

which are defined below.
It is convenient to transform problem (2.2), (2.1) to the variables ξ = ξ(x, t) = x−β(t), t as follows

L̃ ũ(ξ, t) = f̃(ξ, t), (x, t) ∈ G̃(∗), (9.2)

[ũ(ξ, t)] = 0, l̃ ũ(ξ, t) = 0, (ξ, t) ∈ γ̃, ũ(ξ, t) = ϕ̃(ξ, t), (ξ, t) ∈ S̃.
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Here G̃0 = {G0}ξ = G0 is the image of the set G0 ⊆ G in the variables ξ, t, ξ = ξ(x, t);

γ̃ = {(ξ, t) : ξ = 0, t ∈ (0, T ]}, ṽ(ξ, t) = v(x(ξ, t), t) = v(ξ + β(t), t);

L̃(9.2) ≡ εã(ξ, t)
∂2

∂ξ2
+ B(ξ, t)

∂

∂ξ
− c̃(ξ, t) − p̃(ξ, t)

∂

∂t
, (ξ, t) ∈ G̃

r
,

l̃(9.2)ũ(ξ, t) ≡ ε
[
ã(ξ, t)

∂

∂ξ
ũ(ξ, t)

]
, (ξ, t) ∈ γ̃; B(ξ, t) = B r(ξ, t), (ξ, t) ∈ G̃

r
,

B1(ξ, t) = −b̃1(ξ, t) + β
′

(t)p̃1(ξ, t), B2(ξ, t) = b̃2(ξ, t) + β
′

(t)p̃2(ξ, t);

ã(ξ, t) = ãr(ξ, t), . . . , f̃(ξ, t) = f̃ r(ξ, t), (ξ, t) ∈ G̃
r
, r = 1, 2.

The domain

G̃ = G̃
1
∪ G̃

2
, G̃1 ∩ G̃2 6= ∅ (9.3)

is a domain, in general, with curvilinear lateral boundaries; the interface boundary γ̃ is immovable,
moreover, the distance between the lateral boundary S̃L and the set γ is not less than min[d−β0, d−β0].

The solution of problem (9.2) can be differentiated with respect to t on G̃ and with respect to ξ on

G̃
r

(see, e.g., [14]), and it is ε-uniformly bounded on G̃ together with its derivatives with respect to t
(under the suitable smoothness condition for the data of problem (2.2), (2.1)). We write the function

ũ(ξ, t) on the set G̃
r

as a sum of the functions

ũ(ξ, t) = Ũ(ξ, t) + Ṽ (ξ, t), (ξ, t) ∈ G̃
r
, r = 1, 2, (9.1b)

where Ũ(ξ, t) and Ṽ (ξ, t) are the regular and singular (interior layer) components of the solution.

The function Ũ(ξ, t) is the restriction onto G̃
r

of the function Ũ 0r(ξ, t), (ξ, t) ∈ G̃
0r

, which is the
(bounded) solution of the problem

L̃0rŨ0r(ξ, t) = f̃0r(ξ, t), (ξ, t) ∈ G̃ 0r,

Ũ0r(ξ, t) = ϕ̃0r, (ξ, t) ∈ S̃0r, r = 1, 2;

the set G̃
0r

is obtained by an extension of the set G̃
r

beyond the interface boundary γ̃, G̃01 = G̃1 ∪
{[0,∞)× (0, T ]}, G̃02 = G̃2 ∪ {(−∞, 0]× (0, T ]}; the operator L̃0r and the functions f̃0r(ξ, t), ϕ̃0r(ξ, t)

are continuations of the operator L̃(9.2) and of the functions f̃ r(ξ, t), ϕ̃(ξ, t) from the sets G̃
r

and

S̃ ∩ S̃0r onto the sets G̃
0r

and S̃
0r

, which preserve the smoothness and boundedness properties, i.e.

a0 ≤ ã0r(ξ, t) ≤ a0, B0 ≤ |B0r(ξ, t)| ≤ B0, . . . ,

|f̃0r(ξ, t)| ≤ M, (ξ, t) ∈ G̃
0r

, |ϕ̃0r(ξ, t)| ≤ M, (ξ, t) ∈ S̃ 0r.

The function Ṽ (ξ, t) is the solution of the problem

L̃ Ṽ (ξ, t) = 0, (ξ, t) ∈ G̃r,

Ṽ (ξ, t) = ũ(ξ, t) − Ũ(ξ, t), (ξ, t) ∈ S̃r, r = 1, 2.

For the functions Ũ(ξ, t), Ṽ (ξ, t) we obtain the estimates
∣∣∣∣

∂k1+k0

∂ξk1∂tk0
Ũ(ξ, t)

∣∣∣∣ ≤ M, (9.4)

∣∣∣∣
∂k1+k0

∂ξk1∂tk0
Ṽ (ξ, t)

∣∣∣∣ ≤ Mε−k1 exp(−m1ε
−1|ξ|),

(ξ, t) ∈ G̃
r
, k1 + 2k0 ≤ 4, r = 1, 2,
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where m1 ∈ (0,m0), m0 = minG[a(x, t)−1 |b(x, t)− p(x, t)(d/dt)β(t)|]. Returning to the variables x, t,
we find

∣∣∣∣
∂k1+k0

∂xk1∂tk0
U(x, t)

∣∣∣∣ ≤ M, (9.5)

∣∣∣∣
∂k1+k0

∂xk1∂tk0
V (x, t)

∣∣∣∣ ≤ Mε−k1−k0 exp(−m1ε
−1|x − β(t)|),

(x, t) ≤ G
r
, k1 + 2k0 ≤ 4, r = 1, 2, m1 = m1(9.4).

Theorem 9.1 Let a, b, c, p, f ∈ C4+α(G
r
), ϕ ∈ C4+α(S

L
)∩C4+α(S0), β ∈ C3+α/2([0, T ]), and also

u ∈ C4+α,2+α/2(G
r
), α > 0, r = 1, 2, and let the condition (2.4) holds. Then the components of the

solution to the problem (2.2), (2.1) from the representation (9.1) satisfy the estimates (9.4), (9.5).
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