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• Evaluate queries over the already stored data

• DB applications are everywhere!

• Continuous queries are waiting for the future data

• Applications where the databases are inefficient
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• Modern (stream) applications require both management of 
    stored and streaming data
 

• Nowadays stream systems are built from scratch

• Redesign operators and optimizations 

• Relational Databases are considered inefficient and too complex

Motivation
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DataCell

• We design the DataCell on top of an existing Database Kernel

• Exploit database techniques, query optimization and operators

• Provide full language functionalities (SQL’03)

• It is possible!
• We show that we can achieve high stream processing and scalable 
performance

• A plethora of new research issues arises
• real-time processing
• multi-query processing/scheduling
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• Trick the Database Kernel to consider a continuous queries as a normal
    one-time query.

• Scheduling the trigger conditions

• Wait to collect a few tuples and then evaluate the query

• Use the storage infrastructure to temporarily store the streaming data
 

      

The Basic Idea

• Once a tuple is seen, it is dropped
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Figure 4: Against a Stream Engine

ing over an extensible DBMS kernel and the potential of blending

ideas from both worlds.

Due to license restrictions we refrain from revealing the actual

system and we will refer to it as SystemX. In addition, we tested a

few open-source systems but we were not successful in installing

and using them, e.g., TelegraphCQ and Streams. These systems

were academic projects and are not supported anymore making it

very difficult to use them (in fact we are not aware of any stream

papers comparing against any of these open-source stream sys-

tems). For example, TelegraphCQ compiled on our contempo-

rary Fedora 12 system only after fixing some architecture-specific

code. However, we did not manage to analyze and fix the crashes

that occurred repeatedly when running continuous queries. Sys-

tem Streams seemed to work correctly but the functionalities of

getting the performance metrics did not work. The most impor-

tant issue though is that it does not support sliding windows with a

slide bigger than a single tuple. Nevertheless, we are confident that

comparison against a most up-to-date version of a state-of-the-art

commercial engine provides a more competitive benchmark.

In Appendix, we provide additional experimental analysis to study

the effects of various parameters, i.e., query and data characteris-

tics such as window size, window step, selectivity factors as well

as various optimization options. The performance metric used in

our experiments is response time, i.e., the time the system needs to

produce an answer, once the necessary tuples have arrived.

For this experiment, we use the following double stream query.

(Q1) SELECT max(s1.x1), avg(s2.x1)
FROM stream1 s1, stream2 s2
WHERE s1.x2 = s2.x2

The metric reported is the total time needed for the system to

consume a number of sliding windows and produce all results. Us-

ing a total of 100 windows and 64 basic windows per window, we

vary the window size between |W | = 103 and |W | = 105 tuples

with the respective step size growing from |w| = |W |/64 ∼
= 16 to

|w| = |W |/64 ∼
= 1600 tuples. Thus, in total, we feed the system

|W | + 100 ∗ |w| ∼
= 2600 tuples in the most lightweight case and

with |W |+100∗|w| ∼
= 260000 tuples in the most demanding case.

Here, we test the complete software stack of DataCell, i.e., data

is read from an input file in chunks. It is parsed and then it is passed

into the system for query processing. The input file is organized in

rows, i.e., a typical csv file. DataCell has to parse the file and load

the proper column/baskets for each batch. Similarly for SystemX.

For all systems, we made sure that there is no extra overhead due

to tuple delays, i.e., the system never starves waiting for tuples,

representing the best possible behavior.

Figure 4 shows the results. It is broken down into Figure 4(a) for

small windows, i.e., smaller than 104 tuples and into Figure 4(b)

for bigger windows. For very small window sizes, we observe

that plain MonetDB gives excellent results, even outperforming the

stream solutions in the smaller sizes. The amount of data to be

processed is so small that simply the overhead involved around the

incremental logic in a stream implementation becomes visible and

decreases performance. This holds for both DataCell and SystemX,

with the latter having a slight edge for the very small sizes.

Response times though are practically the same for all systems as

they are very small anyway. However, as the window and step size

grow, we observe a very different behavior. In Figure 4(b), we see

that plain MonetDB is losing ground to DataCell. This time, the

amount of data and thus computation needed becomes more and

more significant. The straight-forward implementation of stream

processing in a DBMS cannot exploit past computation leading to

large total costs. In addition, we see another trend; DataCell scales

nicely with the window size and now becomes the fastest system.

SystemX fails to keep up with DataCell and even plain Mon-

etDB. When going for large amounts of data and large windows,

batch processing as exploited in DataCell, gains a significant per-

formance gain over the typical one tuple at a time processing of

specialized engines. The main reason is that we amortize the con-

tinuous query processing costs over a large number of tuples as op-

posed to a single one. In addition, the incremental logic overhead

is moved up to the query plan as opposed to each single operator.

Modern trends in data warehousing and stream processing sup-

port this motivation [33] where continuous queries need to handle

huge amounts of data, e.g., in the order of Terabytes while the cur-

rent literature on stream processing studies only small amounts of

data, i.e., 10 or 100 tuples per window in which case tuple at a time

processing behaves indeed well. An interesting direction is hybrid

systems, i.e., provide both low-level incremental processing as cur-

rent stream engines and high level as we do here, and interchange

between different paradigms depending on the environment.
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Finally, the figure on the

right breaks down the Dat-

aCell costs seen in the pre-

vious figure into pure query

processing costs and load-

ing costs, i.e., the costs

spent in parsing and loading

the input file. We see that

query processing is the ma-

jor component while load-

ing represents only a minor

fraction of the total cost.

5. RELATED WORK

DataCell fundamentally differs from existing stream efforts [4,

5, 9, 10, 11, 17, 25], etc. by building on top of the storage and

execution engine of a DBMS kernel. It opens a very interesting path

towards exploiting and merging technologies from both worlds.

Compared to even earlier efforts on active databases, e.g., [29],

DataCell adds support for specialized stream functionalities, i.e.,

incremental processing. Efforts in active databases strongly resem-

ble the simplistic re-evaluation model we studied here as well.

Incremental processing in a DBMS has been studied in the con-

text of updating materialized views, e.g., [6, 19], but there the

scenario is very different given that it targets read-mostly environ-

ments whereas a stream scenario is by definition a write-only one.

Truviso Continuous Analytics system [15], a commercial prod-

uct of Truviso, is another recent example that follows the same

Against a specialized steam engine
SELECT max(s1.x1), avg(s2.x1) 
FROM stream1 s1, stream2 s2 
WHERE s1.x2 = s2.x2

|W | = 10^3 and |W | = 10^5 tuples

|w| = |W |/64 =∼ 16 to |w| = |W |/64 
=∼ 1600 tuples
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Thank you!
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The MonetDB/DataCell stack
SQL Query

Query parser

Query Optimizer

MAL

MAL Interpreter

Query Executor

SQL
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The MonetDB/DataCell stack
SQL Query

Query parser

Query Optimizer

MAL

MAL Interpreter

Query Executor

SQL

+  CQ

+  DC opt

Continuous Query Scheduler
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