

Understanding streamers using density models with mesh refinement

Gideon Wormeester – MAC3

CWI Scientific Meeting – 27-05-2011

Outline

- What are streamers?
- How do we model them?
- Some results and conclusions

What are streamers?

F

0

AC

O

What are streamers?

- .High electric field creates many electron-ion pairs.
- Electrons move into the channel, leaving a thin, positively charged layer.
- .Charged layer generates a high field just in front of it.

I mpact ionization

Modeling streamers

Approximate particles as continuous densities, obeying drift-diffusion-reaction equations:

$$\frac{\partial n_e}{\partial t} = \nabla \cdot (n_e \mu_e \mathbf{E}) + D_e \nabla^2 n_e + S_e$$
$$\frac{\partial n_i}{\partial t} = S_i$$

 $\epsilon_0 \nabla \cdot \nabla \phi = -q$

Modeling streamers

Results

Main streamer properties (velocity, diameter) are remarkably insensitive to large changes in gas composition (→ this implies strongly non-linear behavior, to be investigated further)

Some predictions made on streamer morphology (smoothness, branching) as a function of $N_2:O_2$ ratio, but stochastic nature requires a particle model to fully study this.

Both of these points are in agreement with experiments performed at Eindhoven University.

Streamer research in MAC3

At CWI

External collaborators

.Ute Ebert .Willem Hundsdorfer .Margreet Nool .Chao Li .Aram Markosyan .Christoph Koehn .Jannis Teunissen .Gideon Wormeester .Sasa Dujko (Belgrade) .Sander Nijdam (Eindhoven) .Alejandro Luque (Granada) .Sergey Pancheshnyi (Den Haag)

Thank you for your attention!

