Secure Authentication from a Weak Key, Without Leaking Information

Niek Bouman joint work with Serge Fehr

What if the machine is fake ?!

"Secure Identification"

Two parties, user and server, share a password W

- Honest server is protected against fake user
- Honest user is protected against fake server
- User and server protected against a "Man-in-the-Middle"

Secure Identification with Laser Light?

Why?
To avoid complexity-theory assumptions

Secure Identification with Laser Light?

Serge Fehr, Chris Schaffner et al. "Secure Identification and QKD in the Bounded
Quantum Storage Model" (CRYPTO 2007)

Motivation for our Work / Talk

- Identification scheme of DFSS'07 requires not only a shared password (e.g. pincode) but also an additional shared secret key
- Goal: Modify the scheme such that a shared password suffices

Identification Scheme DFSS'07

Message
Authentication

Message
 Authentication

Message Authentication

Eve

Alice
Bob

Message Authentication

Eve

Alice
Bob

Message Authentication

Eve

Alice
Bob

Secret Key X
Tag $=$ MAC (X, \boxtimes)

Message Authentication

Eve

Alice

Bob

Secret Key X
Secret Key X
Tag = MAC (X, \square)
Tag allows Bob to check whether Eve modified the message

Message Authentication

Eve

Alice
, Tag

Bob

Secret Key X
Secret Key X
Tag $=\mathrm{MAC}(X, \boxtimes)$
Tag allows Bob to check whether Eve modified the message

Where does X come from?

Eve
Alice

Where does X come from?

Problem Statement

Problem Statement

- Alice (user) and Bob (server) want to reuse the identification password W

Problem Statement

- Alice (user) and Bob (server) want to reuse the identification password W
- Authentication key X is derived from Z using W
=> statistical dependence between X and W

Problem Statement

- Alice (user) and Bob (server) want to reuse the identification password W
- Authentication key X is derived from Z using W => statistical dependence between X and W
- When X is used, information about it leaks to Eve
=> potential leakage about W as well

Problem Statement

- Alice (user) and Bob (server) want to reuse the identification password W
- Authentication key X is derived from Z using W => statistical dependence between X and W
- When X is used, information about it leaks to Eve
=> potential leakage about W as well

Problem:

Problem Statement

- Alice (user) and Bob (server) want to reuse the identification password W
- Authentication key X is derived from Z using W => statistical dependence between X and W
- When X is used, information about it leaks to Eve
=> potential leakage about W as well

Problem:

- W cannot be reused

Solution / Contribution

- Authentication Protocol with "W-Privacy": does (provably) not significantly leak information about W
- Overcomes the need for the additional key in the quantum identification scheme from DFSS'07

Solution / Contribution

- Authentication Protocol with "W-Privacy": does (provably) not significantly leak information about W
- Overcomes the need for the additional key in the quantum identification scheme from DFSS'07

