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Hazard of volcanic ash:
An accurate forecast is important!
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Observations of volcanic ash activity



Emission observation: plume height 
LOTOS-EUROS

Ground-based observations
of plume height: Lidar, radar 

Ash columns of forecast
ash plume

Illustration of the 
vertical profile of 
emission

Predefined vertical distribution:
Umbrella-shaped,
Exponentially-distributed,
Poisson-distributed



Forecast of volcanic ash cloud

LOTOS-EUROS

Ash mass loading retrieved from satellite data;
Plume height from ground-based observations

Forecast before DA
Illustration of 
emission after 
DA

Forecast after DA

Satellite
Data
assimilation



Data Assimilation
Data assimilation combines information of observations and models and 
their errors to get a best estimate of atmospheric state (or other parameters)
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 The prior and likelihood are

   and

Posterior:  

Minimize the cost function J:
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Model   

Emissions

Transport
(advection, diffusion, radiation)

sedimentation
(wet/dry deposition)

Chemical reactions

Chemical Transport Model – LOTUS-EUROS
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Ill-conditioned problem
due to ‘spurious relationship’

Measurement uncertainty (error) vk

Satellite
Data
assimilation
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Assumption/observation: 
Horizontal transport is stronger
than vertical transport and diffusion.

Presenter
Presentation Notes
Trajectory-based 4D-Var? (S. Lu’s thesis)
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Given:

with Eq.(2) can be rewritten as

leading to the trajectory-based 4D-Var formulation:



Estimates of emissions in twin experiments

Testing the 
methodology:

Standard 4D-Var 
vs. 
Trajectory-based 
4D-Var

Deterministic 
model

Observations: 
synthetic ash 
column data 

6-hour 
assimilation 
window 

Testing some of the choices:

Trajectory-based 4D-Var

Stochastic model

Observations:
synthetic ash columns with 50% 
uncertainty
& plume height and mass eruption 
rate

E15 2010 eruption events as a case study: LOTOS-EUROS model, 
meteorological situation, synthetic observations

Satellite
Data
assimilation

Lu, S., Lin, H.X., Heemink, A.W., Fu, G., and Segers, A.J. (2016). Estimation of Volcanic 
Ash Emissions Using Trajectory-Based 4D-Var Data Assimilation. Monthly Weather 
Review 144, 575-589.

Settings and choices:

Length of assimilation
windows

Uncertainties of 
Observations

Schemes to integrate
 multi-observations



Dust storm emission inversion using multiple data sources

Example: Lotos-Euros/Dust over East AsiaDust storm models
(chemical transport model)

• Emissions;
• Transport;

advection, diffusion, radiation

• Sedimentations.
wet, dry deposition
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Problem 2






2.1. Data assimilation with Lotos-Euros: algorithm

Dust storm emission inversion using multiple data sources

Data assimilation: to find a solution that fits both the observation and priori.

Reduced-tangent-linearization 4DVar

Sensitivity-based parameter filters: To reduce the size of      timprove the computation efficiency 

reduced tangent linear model
Order of O(10^2)

full tangent linear model
Order of O(10^5)

Traditional 4 dimensional variational (4DVar) data assimilation:
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2.1 Data assimilation with Lotos-Euros: assimilating PM10  

Dust storm emission inversion using multiple data sources

observations

Posterior dust simulationPrior emission Prior dust simulation

Posterior emission
China MEP monitoring network:
• PM10, PM2.5, SO2, NOX, O3
• wide coverage 
• high accuracy
• hourly measured
• Over 1,500 sites

J.Jin et al., 2018, Spatially varying parameter estimation …, Atmospheric Environments

Data assimilation
(emission inversion)
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Presenter
Presentation Notes
Left to right, right to left, add emission figs. 



2.2 Machine learning based observation bias correction: bias/baseline

Dust storm emission inversion using multiple data sources

Dust storm

Regular aerosol

Existence of bias in PM10 concentration for its use in data assimilation

• PM10 observation is a sum of non-
dust and dust aerosols, thus
includes a bias when representing
the dust concentration.

• Issue: the data assimilation algorithm
cannot calculate whether the error is
caused by the model deficiency or
observation bias.

• Challenge: bias with strong spatial
and temporal variability

• Why not full aerosol model???

Dust arrival

What is the exact dust fraction in PM10 ?



J.Jin et al, Machine learning for observation 
bias correction with application to dust storm 
data assimilation. (ACP Discussion)

H.X.Lin, J.Jin et al. air quality forecast 
through integrated data assimilation and 
machine learning. ICCART, Prague, 2019.

2.2 Machine learning based observation bias correction: assimilation evaluation

Dust storm emission inversion using multiple data sources

• Assimilation of machine learning bias
corrected data gives the most accurate
posterior;

• Direct assimilation of PM10 causes
overestimation of dust simulations.
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Posteriors CTM bias correctionPosteriors no bias correction

Posteriors LSTM bias correction

Presenter
Presentation Notes
The video could be changed into the a figure, skip the RMSE



2.3 Emission detection using adjoint: no dust simulated in northeast China 

Dust storm emission inversion using multiple data sources

PM10 observations (independent)

Prior

Posterior (by assimilating AODs)

Prior

Assimilated AODs

• No dusts are simulated in prior or
posterior model;

• Other two dust outbreaks are also not
reproduced.

• Solution: to detect the (missing)
sensitive emissions for the dust
outbreak
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2.3 Emission detection using adjoint: theory 

Dust storm emission inversion using multiple data sources

• CTM Model:

• Linearized model operator: and

• Gradient of model response J to parameters:

(adjoint vs. finite difference):

• Sensitivity calculation

finite difference: accurate but intensive
forward model

backward model
adjoint method: efficient but …...
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2.3 Emission detection using adjoint: emission backtracking

Dust storm emission inversion using multiple data sources

Time series of emission sensitivities to a state X at 2017-May-03 19:00
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2017-May-03 18:00 2017-May-03 15:00 2017-May-03 12:00

2017-May-03 09:00 2017-May-03 06:00 2017-May-03 03:00

Presenter
Presentation Notes
Then we perform the adjoint backward modeling. These figs show colored emission areas at their time step are very sensitive to the dust outbreak that is observed. 



2.3 Emission detection using adjoint: guided emission reconstruction

Dust storm emission inversion using multiple data sources

J.Jin et.al., Source backtracking for dust storm emission inversion using an adjoint method. 
Atmospheric Chemistry and Physics, 2021

Prior emission Prior emission uncertainty Landcover over Horqin

Reconstructed prior New posterior
RMSE
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基于网格畸变数据同化的沙尘暴位置误差校正Dust storm emission inversion using multiple data sources

2.4 Machine Learning: error bias correction

Data assimilation & deep learning



Im
proved forecast after M

L bias correction



• Trajectory-based 4DVar is effective in estimating volcano
eruption plume shapes using satellite data

• The integration of machine learning and data assimilation results
in more accurate air quality forecast during dust storms.

• Inclusion of physical model knowledge further enhances the
learning process in (atmospheric) modeling.

• Integration ML and DA opens many new possibilities, such as
filling unmodelled prrocess in CTM with ML, using an ML
surrogate to replace computation intensive (sub)models, …

Data assimilation and machine learning for air quality 
forecasts
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Challenges

2021/12/1

• Explainable ML model
• Can DA sometimes converge to ‘truth’ (certainty)? Accurate 

Uncertainty quantification is the key.
• Computational cost
• …



Thank you!
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