Estimating the posterior
using prior sampling:
The case of rapid seismic source inference.
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Posterior sampling: the samples are drawn to explain
a certain set of observations.
--->new observation means new sampling

2 routes to posterior sampling: ﬂ

Prior sampling: independent of any set ot
observations and only relies on some prior
information.

---> samples can be recycled to solve similar problems
repeatedly



We use the concept of conjunction of information

(Tarantola, 2005), which is a generalization of Bayes’
theorem, to solve inference problems

Posterior = (Prior * Likelihood) / Evidence

(on.d.dolA, B,C) — 2mlA)e(d.do| B)O(m, d[C)

p(m)p(d)p(do)

m is a vector of model parameters
d=g(m) is a data prediction based on m
dy is some observation

A,B,C are some assumptions

Oommundsen

“Is this needed for a
Bayesian analysis?”
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(a) The fact that we have observed do enters the inference process in the form of prior information
described by the pdf p(d|do, B) (left hand panel). Theoretical predictions are represented by ©(m, d|C),
taking into account any assumptions about the relation between data and model parameters (middle
panel). The posterior pdf is given by the marginal pdf [} o(m,d|do, A, B,C)dd (right hand panel).
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(b) We assume that the observation dg is available only at a later time and is thus treated as an
unknown variable with prior distribution p(do) (left hand panel). The pdf A(m,do|B,C) carries the
combined assumptions on theoretical modelling and observational uncertainties (middle panel). The

posterior pdf is given by the conditional pdf o(m|do, A, B, C) (red solid line, right hand panel).




In practice, due to non-Gaussian distributions and the non-

linearity of g(m), we do not get closed form solutions
- sampling

Comparing posterior versus prior sampling
- different sample density!

Posterior samples Prior samples
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Figure 2. Two approaches to sampling the relationship shown in Fig. 1.
A set of posterior samples Dyost (left), whose density follows the distribu-
tion o'(m, d|do, 4, B, C) and a set of prior samples Do, (right) following
o(m,dg|4, B, C).

Solution obtained by marginalization versus conditioning.



We use neural networks as a regression
engine for EICTENRE] using the prior
samples

p(m|d)

N\

Probability
density

A neural network requires

*  Architecture

* Activity rule

« Training (we train on synthetic data)
* Assessment



A Toy Problem: locate a particle in c-dimensional space by knowing it’s distance
from the origin

g(m)=IIml |, (L-2 norm)
Prior on m is uniform in the c-dimensional cube [-1,1]¢

Measurement d, subject to Gaussian noise
Analytical solution for dy=0

Find o(m|dy) | i, i,
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Figure 3. Top row, left: posterior p(m|dy = 0.7) for the case n = 2. Middle and right: marginals p(m; |dy = 0.7) and p(m;|dy = 0.7), respectively. Bottom
row: the same, but for dy = 0.0. Darker colours correspond to higher probabilities.
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Advantages of prior sampling and NN regression:

» Computationally-expensive sampling performed separately from
‘solving the inverse problem’

» No need to consider burn-in, chain thinning, etc

» Samples can be reused in conjunction with many different observations

» A single set of simulations (samples) may be processed and used in a
variety of ways

Disadvantages:

» Only a few samples are “close’ to any given observation; the rest do not
provide useful information

» Reliant on assumption of smoothness

» Training more difficult

Inference is conservative:
» Posterior depends on sample density as well as likelihood and prior

Ideal if:
» The same inverse problem must be solved repeatedly
» Itis necessary to minimise the time between observation and result



An example of earthquake
early warning

- Fast and repeated
inversion of seismic
waveforms for earthquake
parameters



We use seismograms (records of ground displacement) to
infer the physics of earthquake sources
or the Earth’s internal structure

Seismogram = Source * Green’s function * Instrument
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Workflow

* Generate synthetic data (with exact physics)

* Define target (parameter of interest)

* Approximate posterior using a neural network

* Test network prediction

* Apply to real data
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Figure 5.3: Surface traces of known faults in the study region (taken from
http/ /earthquakes.usgs.gov/regional /qfaults/). The locations of 17 strong-motion instruments
of the SCSN and ANZA Regional Network are shown as red triangles, the epicentral location
of the 2008 M,, 5.4 Chino Hills event, located between the Whittier and Chino fault sections,
is shown as a blue star, where the beach-ball corresponds to a moment tensor point source
solution obtained by Hauksson et al. (2008).




Training data: earthquake locations
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Figure 5.4: Whittier and Chino fault geometry taken from the Community Fault Model (CFM)
for Southern California (Plesch et al., 2007) (blue and grey mesh), a planar representation of the

Whittier fault (green) and the locations of 150 pseudo-randomly distributed source locations
(grey balls).



Good structural model for training data
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Fig. 4. Horizontal cross sections of Vs tomographic model m,4 at depths of 2, 10, and 20 km. See fig. S1 for locations of major features; Garlock (G) and San
Andreas (SA) faults are labeled for reference.

Tape et al. 2009
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Figure C.2: Snapshots of the vertical component surface velocity field for the synthetic example
100000 cpu hours of Figure 5.7 with a source half-duration of 6 s. Points in time are with respect to origin time
and correspond to the endpoints of data windows of length 6 s, 15 s, 30 s and 45 s, respectively.
Note that first arrivals are not clearly visible due to their small amplitudes. The first P wave
arrival calculated using a 1-D average model is at 7.6 s after origin time at the closest receiver.




We use full waveforms for network training
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Figure 5.5: Prediction performance of network ensembles trained on the 9 source parameters
using 30s of data. Each dot corresponds to a noisy synthetic test set example, the position
of the posterior mode is plotted on the horizontal, the target value on the vertical axis. The
gray-scale indicates the relative information gain with respect to the prior distribution.




Results

Synthetic test
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Results
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Source physics versus

Seismogram = Source * Green’s function * Instrument
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(a) Example 1

Figure 6.8: Prediction of peak ground displacement at an arbitrary location within a regional
receiver network using data from five near-source receivers. Left column: The color scale
shows the posterior mode of the PGD prediction at any point on the map given the data at
the five stations marked by black crosses. The R = 10 receiver locations used for network
training are shown by filled circles, the fill-color corresponds to the true PGD (target value) at
that station. Middle column: Map of the uncertainty associated with the PGD predictions.
Right column: Three posterior pdfs evaluated at the three points marked by coloured squares
in the left and middle column. True PGD values (target values) are denoted by vertical lines.




Prior sampling together with neural networks are well
suited for certain geophysical inference problems:

* Train on synthetic data which contain all the
known physics

* All computational costs are for training

* Inference with real data is instantaneous

* Ideal for repeated inferences

* Quantitative assessment (pdfs)

* Conservative Bayesian answers

* Expert model can progressively be built-up

 Flexibility in parameter choices

A drawback is the size of the prior space, therefore
this is not usetul for all problems
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