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|
Magnetoencephalography (MEG)
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Generation of MEG signals

MEG signals are generated by synchronized currents (>=2 1cm?) in the apical dendrites

of cortical pyramidal neurons.
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The relation between the cortical current density and the generated magnetic fields is

described by Maxwell’s equations (Biot-Savard).
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Forward and inverse modeling of MEG signals

The mapping from the cortical current density to the generated magnetic fields is ob-
tained by numerically solving Maxwell’s equations for a volume-conductor model of
the head — leadfield matrix L € R"*? (n < p).

MEG forward model (time-frequency domain): Y (f) = LX(f) + E(f)
X (f) € CP** cortical current density (*brain activity”)

Y (f) € C"** sensor data

E(f) € C™** sensor noise

Two popular linear reconstruction methods:

Ridge regression: X* = argmin ||Y — LX||% + M|AX]|%
Xecrxk
Adaptive filter: X} = w;Y with w; = argmin w'Yyw subject to w'L; = 1
weCn
Yy = YYT sensor covariance matrix
w'Syw = V(X}) output power
w'L; = w'(Le;) = 1 unit-gain constraint
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Example: Spontaneous alpha (~ 10 Hz) oscillations'
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Functional brain connectivity

Refers to any statistical relationship between signals x and y recorded from different
cortical locations.
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One of the many measures is coherence: p = (zv7) = {azay )
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Spontaneous hemodynamic activity” is organized into distributed correlated patterns
(resting-state networks).

Do resting-state networks have an electrophysiological origin? This question can (po-
tentially) be answered with MEG.

2 As measured with functional MRI.
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Assessing functional connectivity with MEG

Reconstructed signals X* are low-dimensional projections of the true signals X:
Y =LX - X" =LY = L)LX = RX

LF € RP*™ inverse operator

R = L*L € RP*P resolution operator with rank < n < p.

— spurious interactions: ¥* = RYRT, in particular: ¥ =T — ¥* = RR™.

However: R is real-valued, hence if 3 is real-valued, then so is ¥*. This can be ex-
ploited by only considering Im(X*).

Most currently used connectivity measures are variations on this.

One of these is the imaginary phase-locking factor <Im<zy*>> = (sin (¢a — ¢y)).
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Detecting resting-state networks with MEG

Using one of these measures (orthogonalized amplitude correlation) resting-state net-
works were observed using MEG?.
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SHipp et al. 2012.
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Bias reduction

Main drawback of existing measures is that instantaneous interactions (X real-valued)
cannot be detected.

To mitigate this, exploit the relation Vec(%*) = (R® R)Vec(X).* Write ¥ = X427,
Vee(X*) = (R R)Vec(ET) + (R® R)Vec(Re(X7)) 4+ (R® R)Vec(Im(X7))i.
The three vectors are contained in:

So = span{r; ® r;} (leakage subspace)

S1 =span{r; ® r; + r; ® r;} (instantaneous interaction subspace)
Sz = span{r; ® r; —r; ® r;} (lagged interaction subspace)

Approach: Construct a series of operators m; on C?* that project Vec(X™) onto the
orthogonal complement of the first j left singular vectors of [r; @ r;].

4Ossadtchi et al. (2018) and Hindriks (2020).
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Toy model (cortical segment)

Intra-cortical potentials generated by a current source (Poisson’s equation):
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Effect of bias reduction
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