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Abstract

A handful of recent cryptographic proposals rely on the conjectured hardness of the following problem
in cyclotomic rings: given a basis of an ideal that is guaranteed to have a “rather short” generator, find such
a generator. In the past year, Bernstein and Campbell-Groves-Shepherd have sketched potential attacks
against this problem. Most notably, the latter authors claimed a quantum polynomial-time algorithm
(alternatively, replacing the quantum component with an algorithm of Biasse and Fieker would yield
a classical subexponential-time algorithm). A key claim of Campbell et al. is that one step of their
algorithm—namely, decoding the log-unit lattice of the ring to recover a short generator from an arbitrary
one—is efficient (whereas the standard approach takes exponential time). However, very few convincing
details were provided to substantiate this claim, and as a result it has met with some skepticism.

In this work, we remedy the situation by giving a rigorous theoretical and practical confirmation
that the log-unit lattice in indeed efficiently decodable, in cyclotomics of prime-power index. The proof
consists of two main technical contributions: the first is a geometrical analysis, using tools from analytic
number theory, of the canonical generators of the group of cyclotomic units. The second shows that for a
wide class of typical distributions of the short generator, a standard lattice-decoding algorithm can recover
it, given any generator.

1 Introduction

In recent years, lattices have emerged as an attractive foundation for cryptography. The most efficient (and
potentially practical) lattice-based cryptosystems are related to ideal lattices, which correspond to ideals in
certain families of rings, e.g., Z[X]/(X 2" 4 1). Representative works include [HPS98| Mic02, LMPROS|
Gen09, [LPR10].
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In recent years, several cryptographic constructions have relied directly on principal ideals that have
“relatively short” generators, which serve as secret keys These include a variant of Gentry’s original
fully homomorphic encryption scheme [[Gen09] due to Smart and Vercauteren [SV10], the closely related
Soliloquy encryption scheme [[CGS14], and candidate cryptographic multilinear maps [GGH13) ILSS14]].
Breaking these systems is no harder than solving the following problem, which we call the Short Generator
of a Principal Ideal Problem (SG-PIP): given some Z-basis of an ideal that is guaranteed to have a “short”
generator g, find a sufficiently short one (not necessarily g itself).

In the past year, warnings about SG-PIP in certain rings have been issued by Bernstein [Berl4al and
Campbell, Groves, and Shepherd [CGS14]], who sketched potential attacks. The basic structure of the attacks,
which appears to be folklore in computational number theory, consists of two main parts:

e First, given a Z-basis of the principal ideal, find some arbitrary (not necessarily short) generator of
the ideal. For this task, which is known as the Principal Ideal Problem (PIP), the state of the art is
an algorithm of Biasse and Fieker [BF14, Bial4l], whose runtime has only a subexponential gn?/ote
dependence on n, the degree of the ring (over Z). In addition, building on the recent work of Eisentrager
et al. [EHKS14], polynomial-time quantum algorithms for PIP have recently been described in two
independent works [[CGS14, [BS13]], the latter of which provides a fully rigorous treatment. (In this
work, we will not be further concerned with algorithms for PIP.)

e Second, transform the generator found in the previous phase into a short generator, thereby recovering
the secret key, or its functional equivalent. The standard approach casts this task as a closest vector
problem (CVP) on the Dirichlet “log-unit” lattice. In general, the fastest known algorithm for CVP
(even allowing quantum) runs in exponential 2°(™) time [MV10], or in less time but with much weaker
guarantees on the solution quality (e.g., [LLL82, [Bab85lSch87]). Note that it is not obvious a priori
whether this approach yields a sufficiently short generator; much depends on the geometry of the
log-unit lattice and the quality of the CVP solution.

Recently, a more refined view of the second phase has emerged, centered around the kinds of rings
and short generators typically suggested for cryptographic applications. In [Berl4al, Bernstein suggests
an approach that may yield slightly subexponential runtimes in cyclotomic rings of highly smooth index
(e.g.,m = 3-5-7-11). In addition, several researchers have noted that the CVP instances arising in the
second phase have some implicit structure. For example, [[CGS14, Ber14bl] observe that the existence of a
“rather short” generator (by choice of the secret key) implies that the target point is “somewhat close” to
the log-unit lattice; CVP with such a distance guarantee is more commonly known as bounded-distance
decoding (BDD). Previously, Garg, Gentry and Halevi [GGH13]] gave an improved variant of the Gentry-
Szydlo algorithm [GS02] which shows that in cyclotomic rings having power-of-two index, BDD on the
log-unit lattice is efficiently solvable to within sub-polynomial n~1°81°8™ distance. However, this threshold
is much too small to handle the BDD instances arising in cryptosystems.

Notably, the work of Campbell, Groves and Shepherd [[CGS14] contains a surprising claim: that in
cyclotomic rings having power-of-two index, the second phase described above is easy, simply by decoding
the log-unit lattice using an LLL-reduced basis. The stated reason is that the secret generator corresponds
to a vector that is short relative to the determinant of the log-unit lattice. However, no further details were
given in [[CGS14], and as a result the claim has met with some skepticism. A main concern is whether an
LLL-reduced basis is of high enough quality to enable efficient recovery of a sufficiently short generator.

'A principal ideal in a commutative ring R is of the form gR = {g -7 : r € R} for some g € R, called a generator of the ideal.



Contribution. In this work, we give a rigorous theoretical and practical confirmation of the above-described
claim from [[CGS14], for cyclotomics of prime-power index. Our central message is that by using a particular
easy-to-compute lattice basis—but not necessarily an arbitrary LLL-reduced one, which can have vastly
lower quality—the second phase succeeds with high probability for typical distributions of the secret short
generator.

In more detail, we provide two main technical contributions. First, we use standard tools from analytical
number theory, such as bounds on Dirichlet L-series, to elucidate the geometry of a canonical set of generators
for the group of cyclotomic units. (The cyclotomic units correspond either to the log-unit lattice itself, or
to a sublattice whose index is conjectured to be quite small, which is sufficient for our purposes.) Then we
show that for a wide class of typical distributions of the secret generator—e.g., Gaussian-like distributions—a
standard, efficient lattice-decoding algorithm recovers the secret short generator, given any generator of the
ideal. Somewhat counterintuitively, the variance of the distribution is essentially irrelevant, because it is
implicitly normalized by working with the log-unit lattice. Finally, to complement these results, we also give
concrete numerical data demonstrating that this part of the attack succeeds for practical choices of dimension.

Discussion. Combining our results with known algorithms for PIP (which are the bottleneck in the full
attack) [BF14} Bial4l|CGS14,BS15], one obtains quantum polynomial-time, or classical 2”2/3+E-time, key-
recovery algorithms for the cryptographic constructions of [SV10, GGH13,ICGS 14]E] An important open
problem is to obtain even faster (classical) PIP algorithms, perhaps also using the guarantee that a short
generator exists.

The overall attack is quite specialized to the specific combination of principal ideals having “rather short
generators, in cyclotomic number fields. In particular, it does not seem to apply to the approximate Shortest
Vector Problem (SVP) on arbitrary ideals. The conjectured hardness of approx-SVP is the foundation of the
ring-LWE problem [LPR10]], which in turn is the heart of many ideal-lattice-based cryptosystems. The attack
fails on approx-SVP because most ideals in cyclotomic rings are not principal, and moreover, most principal
ideals do not have short generators (as compared with their shortest nonzero elements). An interesting and
important question is whether these barriers can be overcome to attack SVP on arbitrary ideals, or ring-LWE.
In a complementary direction, another interesting question is whether the attack on SG-PIP can be extended
to other families of non-cyclotomic rings, such as those suggested in [Berl4a]. For this it may suffice to find
(by analysis, computation, or both) a suitably good basis of the log-unit lattice, or of a sublattice of not too
large index.
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2 Preliminaries

We denote column vectors by lower-case bold letters (e.g., x) and matrices by upper-case bold letters (e.g., X).
We often adopt the nonstandard, but very useful, convention of indexing rows and columns by particular
finite sets (not necessarily {1,...,n}), and identify a matrix with its indexed set of column vectors. The

ZStrictly speaking, these runtimes depend on number-theoretic conjectures regarding the class numbers h™ (m); see Section
for details.



canonical scalar product over R™ and over C" is denoted (-, -), and ||-|| denotes the Euclidean norm. For a
complex number z € C, Z denotes its complex conjugate, and |z| = v/z - Z denotes its magnitude.

2.1 Lattices and BDD

A lattice L is a discrete additive subgroup of R™ for some positive integer n. The minimum distance of L is
A1(£) := minyepy g0y || V]|, the length of a shortest nonzero lattice vector. Every lattice is generated as the
integer linear combinations of some (non-unique) R-linearly independent basis vectors B = {by, ..., by},
as L= L(B) := {Zle Z -bj}, where k < n is called the rank of the lattice.

Letting span denote the R-linear span of a set, the dual basis BY = {by,...,b)} C span(B) and dual
lattice £ = L£(B") are defined to satisfy (bY,b;/) = d; s for all j, j’, where the Kronecker delta d; ; = 1 if
j = j', and is 0 otherwise. In other words, B! - BV = (BY)! - B is the identity matrix.

In this work we deal with a computational problem on lattices called bounded-distance decoding (BDD):
given a lattice basis B C R™ of £ = £(B) and a target point t € span(L) with the guarantee that
minyez||v — t|| < r for some known r < A;(L£)/2, find the unique v € L closest to t (i.e., such that
||lv — t|| < 7). In fact, in our context B and r will be fixed in advance, and t is the only input that may vary.

A standard approach to solve BDD (and related problems) is the “round-off” algorithm of [Bab85]], which
simply returns B - | (BY)* - t], where the rounding function |c] := |c+ 3] € Z is applied to each coordinate
independently. (Notice that (BY)! - t is the coefficient vector of t with respect to basis B.) We recall the
following standard fact about this algorithm, and include a brief proof for completeness.

Claim 2.1. Let L C R" be a lattice with basis B, and lett = v + e € R" for some v € L, e € R". If

<ij, e) € [—%, %) for all j, then on input t and basis B, the round-off algorithm outputs v.

Proof. Because v = Bz for some integer vector z, we have (BY)! -t = z + (BY)" - e, so by hypothesis on
the (b;, e), we have | (BY)" - t] = z. The claim follows. O
2.2 Circulant Matrices

We recall some standard facts about circulant matrices for a finite abelian group (G, -), and their relationship
with the characters of the group. See, e.g., see [Lan02] for further details and proofs.

Definition 2.2 (Circulant matrix). For a vector a = (ag4)4c¢ indexed by G, the G-circulant matrix associ-
ated with a is the G-by-G matrix whose (4, j)th entry is a;;-1.

Note that the transpose of any G-circulant matrix (associated with (a4)gec) is also a G-circulant matrix
(associated with (a,-1)4ec).

Definition 2.3 (Character group). A character is a group homomorphism x: G — {u € C: [u| = 1}, i,
x(g-h) = x(g) - x(h) forall g,h € G. The character group (G, -) is the set of characters of G, with the
group operation being the usual multiplication of functions, i.e., (x - ¥)(g9) = x(g9) - ¥(9g).

A basic fact is that |G| = |G|. Notice that for a character x € G, we have x(g) = x(g9)~' = x(g7 ).

We identify x with the vector (x(g))gec- Then all characters x have Euclidean norm ||x|| = /|G|, because
oex) = xlg)-x(g) => _1=1G|.
geG g



Moreover, distinct characters , ¢ are orthogonal:

0wy = x(g)-elg) =D (x-v (g =0.
g

geG

Therefore, the complex G—by—é matrix
-1/2
Pg = G777 (x(9) e pee
is unitary, i.e., Pal = P, the conjugate transpose of Pg.

Lemma 2.4. A complex matrix A is G-circulant if and only the G’-by-é’ matrix P(_;1 - A - Pg is diagonal;
equivalently, the columns of Pq are the eigenvectors of A. If A is the G-circulant matrix associated
with a = (ag)geq, its eigenvalue corresponding to x € G is Ay = (a,X) = >_ e ag - X(9)-

It follows that every row and column of A has squared Euclidean norm

2 2 -1 2
lal* = |Pg - al? = |G]7"- > IA %
xe@

It also follows that A~! (when defined) is G-circulant, with eigenvalue )\;1 for eigenvector Y.

Proof. Suppose that A is G-circulant, and let x € G be a character of G. Then

(A-X)g = ag1-x(h) = (Z ak W) -x(9),

heG keG

where in the final equality we have substituted k = gh ! and used x(h) = x(k) - x(g9). S0 A - x = Ay - X-

For the other direction, it suffices by linearity to show that A, = Pg - D, - Pc_;l is G-circulant for
every x € G, where D, is the diagonal G—by—é matrix with 1 in its (x, x)th entry and zeros elsewhere.
Indeed, by definition of P and because P! = P, the (i, j)th entry of A, is simply |G|~ - x(i) - x(j) =
|G|™* - x(i71), which depends only on ij ! as required. O

2.3 Dirichlet Characters and L-Series

A Dirichlet character X is a character of Z; for some positive integer k. Note that if k|¢ then x induces a
character of Z; via the natural homomorphism Z; — Z;, so we can equivalently view  as being defined
modulo either k or £. The conductor f, of x is the smallest positive f such that x is induced by a Dirichlet
character modulo f. The character is said to be even if x(—1) = 1; note that the even Dirichlet characters
correspond with the characters of Z; /{£1}. We often implicitly extend x to a completely multiplicative
function from Z to C, by letting x(a) = 0 if gcd(a, k) > 1.

Definition 2.5 (Dirichlet L-Series). For a Dirichlet character x, the Dirichlet L-function L(-, x) is defined
as the formal series )
X
L(s,x) = Z s
k>1

For any Dirichlet character y, the series L(s, x) is absolutely convergent for all s € C with £(s) > 1. Itis
also known that L(1, x) converges and is nonzero for any nontrivial Dirichlet character (i.e., x # 1). We
have the following asymptotic bounds on its value.



Theorem 2.6. There exists a real constant C' > 0 such that, for any character x of conductor f > 1,

1
oy SOOI US) - where £(f) = Cn .
The above result can be traced back to Landau [Lan27], and improving the constant C' is an active field
of research [Loul5]. Additionally, under the Generalized Riemann Hypothesis, the above bound can be
improved to £(f) = C'Inln f (see [YXKI13]).

2.4 Cyclotomic Number Fields and the Log-Unit Lattice

Cyclotomic number fields. Let L be a field. An element ( € L is a root of unity if ("* = 1 for some
positive integer m. The order of a root of unity ¢ € L is the order of the finite multiplicative subgroup of L*
generated by (. A primitive mth root of unity in L is a root of unity ( € L of order m. Note thatif ( € L is
a primitive mth root of unity, then the polynomial X" — 1 € L[X] factors as H?jol(X — (%) over L[X].
Also note that the complete set of primitive mth roots in L consists of the powers ¢/ for j € Z,.

An algebraic number field K is a field of characteristic zero such that its dimension [K : Q] as a Q-vector
space (i.e., its degree) is finite. If {2 D K is an extension field such that €2 is algebraically closed over Q, then
there are exactly [K : Q] field embeddings of K into QEI An algebraic number field is Galois if the order
of its automorphism group equals its degree A number field K is cyclotomic if K = Q((¢) for some root
of unity ¢ € K. Its degree is p(m), where ¢(-) is the Euler totient function and m is the order of ¢, and its
ring of integers R is monogenic, i.e., R = Z[(]. We let U denote the cyclic (multiplicative) subgroup of mth
roots of unity, which is generated by (.

A cyclotomic number field is Galois. If K = Q(() is a cyclotomic number field with ( € K an mth
primitive root of unity then each automorphism is characterized by the assignment ¢ + ¢/ for some j € Z*,.
As a consequence, if L is an extension field of a cyclotomic field K, then K is situated uniquely in L. For
concreteness, we situate cyclotomic number fields in the complex numbers C. Let m be a positive integer
and define w = w,, = exp(2m/m) € C. Then w is a primitive mth root of unity and K = Q(w) is the mth
cyclotomic number field. The embeddings of K into the complex numbers (i.e., the automorphisms of K)
are denoted o for j € Z,, where o sends w to w’.

Logarithmic embedding. The embeddings o; of K, being complex, come in conjugate pairs, i.e., 0;(x) =
o_j(x). We will mainly be concerned with their magnitudes, so we identify the pairs by indexing over the
multiplicative quotient group G := Z, /{£1}. We then have the logarithmic embedding, defined as

Log: K — R#(M)/2
a (log\oi(a)\)ieG.
The logarithmic embedding defines a group homomorphism, mapping the multiplicative group K* to an
additive subgroup of R¥(™)/2_ The kernel of Log restricted to R* is {#£1} - U. The Dirichlet Unit Theorem
(see [Sam70, Chapter 4.4, Theorem 1]) implies that A = Log(R*), the image of the multiplicative unit group

of R under the logarithmic embedding, is a full-rank lattice in the linear subspace of R¥(")/2 orthogonal to
the all-1s vector 1. We refer to A as the log-unit lattice.

3 An embedding of a field L into a field L’ is a ring morphism t : L. — L’. Since L is a field 1 is injective. Note that a ring
morphism acting on a field L fixes the characteristic subfield (i.e., the intersection of all subfields, or equivalently the field of rational
integers Q if the characteristic is zero and the finite field I, if the characteristic is p > 0) of L pointwise.

* An automorphism of a field L is a ring isomorphism ¢ : L. — L. The automorphisms of L form a group with functional
composition as the group operation.



Cyclotomic units. Let A be the multiplicative subgroup of K* generated by +¢ and
zj = =1, j€Zpy\{0}.

Notice that z; = —(? - 2_j, so z; and z_; are equivalent modulo +U; in particular, Log(z;) = Log(z—;).
The group of cyclotomic units, denoted C, is defined by

C=ANR".

The z; given above are not necessarily units in R, and thus do not generate C'. However, a closely related
generating set, which we call the canonical generators, is given by the following lemma. Recall that
G = Z},/{%1}, and identify it with some canonical set of representatives in Z, .

Lemma 2.7 (Lemma 8.1 of [Was97]). Let m be a prime power, and define bj == z;/z1 = (¢ —1)/(¢ —1).
The group C' of cyclotomic units is generated by £( and b; for j € G\ {1}.

Notice that Log C is a sublattice of A. As shown below, the index of A over Log C is finite. In fact,
it is h*(m), the class number of the real subfield K+ = Q(¢ + (), defined as the index of the subgroup
of principal fractional ideals in the multiplicative group of all fractional ideals (in K ). The proof of this
theorem is left as Exercise 8.5 in [Was97/|]. For completeness, we sketch the solution in Appendix

Theorem 2.8. For a prime power m > 2, the index of the log-unit lattice A over Log C' is

[A: Log C] = h*(m).

Some facts and conjectures concerning 4. For our purposes, we need 2™ (m) not to be very big. For
all power-of-two m up to m = 256, and also for m = 512 under GRH, it is known that A" (m) = 1
(see [Mill14al]). Whether h T (m) = 1 for all power-of-two m is known as Weber’s class number problem, and
is presented in the literature as a reasonable conjecture.

In the case of odd primes, it also appears that AT is quite small. Computations of Schoof [Sch03]] and
Miller [Mil14b] show that 4t (p) < 11 for all primes p < 241. For powers of odd primes it has been
conjectured (with support of the Cohen-Lenstra heuristic) that, for all but finitely many pairs (p, ¢) where p
is a prime, At (p*1) = ht(p’) [BPRO4]. A direct consequence is that 2T (p?) is bounded for a fixed p and
increasing /.

3 Geometry of the Canonical Generators

Throughout this section, let the cyclotomic index m be a prime power. Our goal here is to show that the
canonical generators of the cyclotomic units, under the logarithmic embedding, are geometrically well-suited
for bounded-distance decoding.

Recalling that G = Z7, /{£1} is identified with some set of canonical representatives in Z, and that
Log(bj) = Log(b—;), define

bj = Log(bj), j € G\ {1},

to be the log-embeddings of the canonical generators b; = (¢/ — 1)/(¢ — 1) defined in Lemma By
Lemma[2.7| these b; form a basis of the sublattice Log C, which by Theorem [2.8|has index 2™ (m) in A.

In order to apply the round-off algorithm and Claim with this basis, we bound the norms |[b || of the
dual basis vectors. The remainder of this section is dedicated to proving the following theorem.



Theorem 3.1. Let m = p* for a prime p, and let {b]v}jeG\{l} denote the basis dual to {b;} ;. (13- Then
all ||b} || are equal, and

HbﬂvH2 < 2k[|G|7 - £(m)? = O(m ™" -log®m) .

To prove the theorem we start by relating the basis vectors b; to a certain G-circulant matrix. Recalling
that z; = (7 — 1 is the numerator of b;, define z; := Log(z;) = b; + z;. Collect these vectors into a square
G-by-G matrix Z whose jth column is z;-1, and notice that its (4, j)th entry log|w®” ~' — 1| is determined
by ij~! € G alone, so Z is the G-circulant matrix associated with z;. For each eigenvector y € G of Z, let

Ay := (z1, x) denote the corresponding eigenvalue.

Lemma 3.2. Forall j € G\ {1} we have

By =161" 3 I (1)

xeG\{1}

Proof. Let z) denote the vectors dual to the zj, i.e., the columns of Z~t. (As shown below in the proof of
Theorem , 7! is indeed well defined because all eigenvalues )\X of Z are nonzero.)

We first claim that bY is simply the projection of z} orthogonal to 1, i.e., bY = z/ — |G I~ (z/,1)- 1.
Indeed, these vectors are all in span(bj/) s, the space orthogonal to 1, and moreover, for all j,j" € G \ {1}
they satisfy

(@) G "" - (&).1) - 1by) = (2 by) = (8 — 1) = b5 — 0.

Now, ) )
-1 2
o511 = 2] I” = &1 - (2], 1)°
Recall by Lemma that Z~* is the G-circulant matrix associated with z}, which has eigenvalue Ay =
(zY,x) for eigenvector x € . By the remarks following Lemma Hz;/H2 =G|t eré\)\x\fz. The
lemma follows by noting that (z},1) = (z{,1) = AL O

We now provide an upper bound on the right-hand side of Equation (T)). Our proof is similar to the proof
that the cyclotomic units have finite index in the full group of units [Was97, Theorem 8.2].

Theorem 3.3 ([Was97, Lemma 4.8 and Theorem 4.9]). Let x be an even Dirichlet character of conductor
f>1, andlet wy = exp(2ry/—1/f) € C. Then

=V LX)l

> x(a) -log1 — wi|

*
aEZf

For completeness, we briefly explain how the finite sum on the left hand side gives rise to an L-series,
and refer to [Was97] for the details. Using the Taylor expansion

log|l —z| = —Zxk/k‘,

k>1

one gets a sum over finitely many a and infinitely many k of terms x(a) - wjﬁk /k. For a fixed k, the sum
over a can easily be rewritten as 7() - x(k)/k, where 7(x) is a Gauss sum (see [Was97, Lemma 4.7]), which
makes the Dirichlet L-function apparent.



Corollary 3.4. Suppose f > 1 divides a prime power m. For any even Dirichlet character of conductor f,

> X(@ - loglt — | = VT 12011

a€Z},

Proof. Let ¢: Z7, — 7} be the map given by reduction modulo f. We have

> x(@) logll —wi| = > x(a) Y logll —wp)|

a€Zs, a€Z} beZ?,
p(b)=a

= > x(a) log

aEZ}

=) x(a) - log|

*
aEZf

I -

bEZY,
#(b)=a

where in the last equality we have used the identity [];., (1—w}Y) =1—Y"andw}, = wy withn = m/f.
The claim follows by applying Theorem [3.3] O

We are now ready to complete the proof of the main theorem.

Proof of Theorem[3.1} Recall that the characters x € G correspond to the even characters of Z;,, because
x(£1) = 1. Also recall that by Lemmal[2.4] the eigenvalues are

- 1 -
A= (z,x) = Y _x(a) log[l —wi| =5 > x(Fa) log|l —wp|.
acG a€Z¥,

where the second equality holds because |1 — w,.*| = |1 — w%|. Therefore, using Corollary and
Theorem [2.6] we have

1
|AX|::2\/fX"I(17X)’>.2Z£ﬁa QZ()
Hence, by Lemma[3.2]

2 _ - _ _
YF =167 ST NP <G m)t Y £ < 2k(G)T dm)?
x€G\{1} xeG\{l}
where the last inequality follows from Claim [3.5]below. O

Claim 3.5. Let m = p* for a prime p. Then, for G = 7.}, /{£1},
k
-1
x€G\{1}

Proof. Notice that there are at most f Dirichlet characters of conductor f, at most half of which are even

(when f > 1), so
k
pto 1
> XS Y
xeG\{1} =1



4 Algorithmic Implications

The following is our main algorithmic result, showing that under mild restrictions on the distribution of the
short generator, we can recover it from any generator that differs from it by a unit in C'.

Theorem 4.1. Let D be a distribution over Q(() with the property that for any unit vectors vy, . . . , Vip(m)—1

that are orthogonal to the all-1 vector, the probability that |(Log(g),v;)| < em!/? log_?)/2 m holds for all ©
is at least some o« > 0, where g is chosen from D and c is a universal constant. There is an efficient algorithm
that given ¢’ = g - u, where g is chosen from D and u € C'is a cyclotomic unit, outputs an element of the
form +(7 g with probability at least c.

Proof. The algorithm applies the roundoff algorithm from Claim2.1]to Log(g’) = Log(g) + Log(u). By the
assumption on D and Theorem [3.1] with probability at least « the output is Log(u) € Log(C'). We next find
integer coefficients a; such that Log(u) = 3 a;b;, and compute v/ = [] b?j. Since Log(u’) = Log(u) it
follows that u’ must be of the form 4-¢/u for some sign and some j. Therefore, ¢ /v’ is the desired element.[]

In the next section we show that the condition on D in the theorem is satisfied by several natural
distributions.

One possible concern with the above algorithm is that it expects as input g - u for a cyclotomic unit u € C,
whereas the first phase of the attack described in the introduction, i.e., a PIP algorithm, is only guaranteed to
output g - u for an arbitrary unit w € R*. There are several reasons why this should not be an issue. First,
as mentioned in Section [2} in some cases, e.g., for power-of-2 cyclotomic, it is conjectured that C' = R*.
More generally, the index of C' in R*, which we recall is hT, the class number of the totally real subfield,
is often small. In such a case, if we have a list of coset representatives of C in R*, we can enumerate over
all of them and use the algorithm above to recover g, increasing the running time only by a factor of ™. In
order to obtain such a list of representatives, we can use an algorithm for computing the unit group, either
classical [BF14] or quantum [EHKS14]. These algorithms are no slower than the known PIP algorithms and
moreover, need only be applied once for a given cyclotomic field (as opposed to once for each public key).
Alternatively, by running the PIP algorithm multiple times on a basis of a principal ideal with a known short
generator chosen using the secret key generation algorithm, we can recover a list of representatives for all the
cosets that show up as output of the PIP algorithm with non-negligible probability; we can then enumerate
over that list.

5 Tail Bounds

In this section we show that the condition on D in Theorem[4.1]is satisfied by two natural distributions: the
continuous Gaussian and a wide enough discrete Gaussian (over any lattice). This section is independent
of the other sections in this paper, and we avoid the use of notation from algebraic number theory. Instead,
we identify elements of K with vectors in R?(™) by taking the real and the imaginary part of their w(m)/2
complex embeddings, i.e., a is mapped to (%(c;(a)), S(0;j(a))) - The results in this section should be
easy to extend to other distributions.

We start with Lemma5.2] a tail bound on the sum of subexponential random variables. The proof is based
on a standard Bernstein argument, and follows the proof in [Ver12] apart from some minor modifications for
convenience.
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Definition 5.1. For «, 5 > 0, we say that a random variable X is («, 3)-subexponential if
E[cosh(aX)] < 3,

where recall that cosh(z) := (e 4+ e7%)/2.

Lemma 5.2 (Tail bound). Ler X1, ..., X, be independent centered (i.e., expectation zero) (v, 3)-subexponential
random variables. Then, for any a = (a1, ...,a,) € R™ and every t > 0,
2,2
a“t at
Pr[ a; X; zt} §2exp<—min< , )) .
2w 86lall3" 2[lall

Proof. By scaling, we can assume without loss of generality that o = 1. Next, we use the inequality
e —x —1< (% — 6z —1) + (€7 4§z — 1) = 2(cosh(dz) — 1) < 20%(cosh(z) — 1)

which holds forall —1 < § < 1and all x € R, where the second inequality follows from the Taylor expansion.
By applying this inequality to a (1, 3)-subexponential centered random variable X, and taking expectations
we see that forall —1 < ¢ < 1,

E[exp(6X)] < 1+ 262 E[cosh(X) — 1]
< 1+20%(8—1) < exp(26%8) . ()

Using Markov’s inequality, we can bound the upper tail probability for any A > 0 as
Pr [Z a; X; > t} =Pr [exp ()\ Z aiXi) > exp()\t)}
<exp(—=At)-E [exp </\ Z aiXZ-)]

= exp(—At) - HE[GXP()\aiXi)]
< exp(—At +28)\?|a|3),

where in the second inequality we used (2)) and assumed that \||a||, < 1. Taking A = min(¢/(43||a/|3),1/||alls)

this bound becomes at most )
. t t
exp| — min , .
< <8B|!a||§ 2Ha\oo>>

We complete the proof by applying the same argument with —a. 0

The next claim follows immediately from Definition

Claim 5.3. IfY is a non-negative random variable such that both E[Y] and E[Y ~1] are finite, then log Y is
a (1, B)-subexponential random variable for some 3 > 0.

The following is an immediate corollary of the tail bound. It shows that the condition in Theorem §.1]

holds with overwhelming probability for a continuous Gaussian distribution of any radius that is spherical in
the embedding basis. Notice that the parameter r plays no role in the conclusion of the statement.
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Lemma 54. Let X1,...,X,, X!,...,X], bei.id. N(0,r) variables for some r > 0, and let X; = (X2 +
X;Q)l/ 2. Then, for any unit vectors a® ... al® e R" that are orthogonal to the all-1 vector, and every
t > C for some universal constant C,

Pr {EI],

Za log(X;)

Proof. By union bound, it suffices to prove the lemma for the case £/ = 1, and we let a = a(!). Since
> a; = 0, we can assume without loss of generality that 7 = 1. Notice that X, has a chi distribution with
2 degrees of freedom (also known as a Rayleigh distribution) whose density function is given by ze=/2
for 2 > 0 and zero otherwise. In particular, it is easy to see that both E[X;] and E[X; '] are finite (both

re \/7/2). Therefore, by Claim log X; is (1, 3) subexponential for some constant 5 > 0. From this it
follows that X; = log X; — E[log XZ] are centered (1, 3") subexponential random variables for some constant
S' > 0. The result now follows by applying Lemmato X1,..., X, using the bound ||a|~ < 1, and the
observation that 3", a; E[log X;] = 0. O

> t] < 2lexp(—t/2) .

In the next lemma we show that small perturbations of the continuous Gaussian distribution still satisfy
the condition in Theorem

Lemma5.5. Ler X = (Xy,...,X,,X{,...,X]) be i.i.d. N(0,r) variables for some r > 0, and let

Y =M,....Ya, Y, ..., Y)) be a (not necessarily independent) random vector satisfying ||Y ||2 < u with
probability lfor some u < r/(20y/n). Let Z = X +Y and define X, Y;, Z; as before. Then for any unit
vectors all) ... al) € R™ that are orthogonal to the all-1 vector, it holds with constant probability that for
all 3,

’Z agj) log(Z;

Proof. By Lemma[5.4] we have that with some constant probability close to 1,

D 1og(X;)| < 101og ¥ . 3)

Moreover, since X; < r/(10,/n) implies that both X; and X/ are smaller than r/(10+/n), we see that the
probability of this event is at most ¢/n for some small constant ¢ and as a result we have that with constant
probability close to 1,

Vi, X; > r/(10v/n) .

In the following we assume that these two conditions hold (which happens with constant probability close to
1 by union bound), and bound the effect of Y. Now let a be one of the unit vectors in the statement of the
lemma. Then,

'10g(Xz)

‘Z ailog(Z;)

+ ‘Z a; log(Zz/Xz)

< 10log¥ + ‘Z a; 10g(2i/Xi) )

where we used Eq. (3). Notice that by the triangle inequality (for two-dimensional Euclidean space),

Xi—Yi<Z;<Xi+Y;.

12



Since ¥; < ||[Yl2 < u < 7/(20/n) < X;/2, and using the inequality |log(1 + &)| < 2|8| valid for all
5e-1/2,1/2,

< (Z(log(zy/fa))?)1/2

)

< (Sv/x)

< 20v/n/r - (2%2)1/2

<20v/nu/r <1,

‘Z a;log(Zi/ X:)
) p

where the first inequality follows from Cauchy-Schwarz. O

Finally, we consider the spherical (in the embedding basis) discrete Gaussian distribution over an arbitrary
lattice L C R?". Such distributions show up often in cryptographic constructions (see, e.g., [LPR13]]), and
often that lattice is the (embedding of the) ring of integers R. For background on the discrete Gaussian
distribution and the smoothing parameter, see, e.g., [MRO4]. In order to apply Lemma[5.5]to this distribution,
take X to be the continuous Gaussian D, for some r > 100nn.(L), and Y the discrete Gaussian Dy, x s over
the coset L — X of parameter s = 7. (L) for some negligible parameter €. Using Banaszczyk’s result [Ban93]
we have that with all but exponentially small probability in n, | Y ||2 < v/2nn.(L) < r/(604/n). Moreover,
by the lemma below, the distribution of Z = X + Y is within negligible statistical distance of the discrete
Gaussian distribution Dy, v for ' = (r? 4 n-(L)?)'/2. We therefore see that the condition in Theorern
holds for the discrete Gaussian distribution Dy, ,» for any lattice L and any ' > 200n1n,(L).

Lemma 5.6 (Special case of [Peil0, Theorem 3.1]). Let L be a lattice and r, s > 0 be such that s > n.(L)
for some £ < 1/2. Then if we choose x from the continuous Gaussian D, and then choose 'y from the discrete
Gaussian Dy, s then X + y is within statistical distance 8¢ of the discrete Gaussian D L,(r2+4s2)1/2-

A Numeric Data

The previous sections established asymptotic bounds related to the log-embeddings of the cyclotomic units.
Here we give concrete numeric data for several practical (and even impractical) choices of cyclotomic fields.
This data confirms that the method works in practice.

B Proof of Theorem

Proof. First, Corollary 4.13 of [Was97] gives that Z[(]* is generated by Z[¢ + ¢]* and (, so it follows that
A = Log Z[(]" = Log Z[¢ + (",

since the kernel of Log is the group {£1} - U.

Next, recall that the group of cyclotomic units is defined as C = A N R*. We define the group of real
cyclotomic units as C* = A N Z[¢ + ¢]*. The analogue of Lemma for the real cyclotomic units, also
included in Lemma 8.1 of [Was97], says that the group C™" of real cyclotomic units is generated by —1 and
¢(1=9)/2 . ;. So as above, we obtain that

LogC = LogCt .
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km=2" | 6 7 8 9 > 10
\|b]VH*1 5.04 | 8.56 | 14.69 | 25.71 | > 45.85

k(m=3F) | 4 5 >6
bY[~! | 5.72 | 13.65 | > 34.04

k(m=5%1 3 4 >5
bY[~! || 10.04 | 36.43 | > 143

Figure 1: Lower bounds on the inverse lengths of the dual vectors b]v defined in Section , for various
cyclotomics of prime-power index. Larger values correspond to larger decoding distances for the log-
embedding of the cyclotomic units.

The theorem then follows from the sequence of equalities
[A:LogC| = [LogZ[C—i—a* : LogC"] = [Z[C—ka* :CT] =nt,

where the second equality follows from ker(Log) N C = ker(Log) N Z[¢ + ¢]* (= {#1}), and the third
equality is Theorem 8.2 of [Was97]. ]
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